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Abstract 

Histological atlases of the cerebral cortex, such as those made famous by Brodmann 
and von Economo, are invaluable for understanding human brain microstructure and its 
relationship with functional organization in the brain. However, these existing atlases are 
limited to small numbers of manually annotated samples from a single cerebral hemisphere, 
measured from 2D histological sections. We present the first whole-brain quantitative 3D 
laminar atlas of the human cerebral cortex. This atlas was derived from a 3D histological 
model of the human brain at 20 micron isotropic resolution (BigBrain), using a convolutional 
neural network to segment, automatically, the cortical layers in both hemispheres. Our 
approach overcomes many of the historical challenges with measurement of histological 
thickness in 2D and the resultant laminar atlas provides an unprecedented level of precision 
and detail . 

 
We utilized this BigBrain cortical atlas to test whether previously reported thickness 
gradients, as measured by MRI in sensory and motor processing cortices, were present in a 
histological atlas of cortical thickness, and which cortical layers were contributing to these 
gradients. Cortical thickness increased across sensory processing hierarchies, primarily 
driven by layers III, V and VI. In contrast, fronto-motor cortices showed the opposite pattern, 
with decreases in total and pyramidal layer thickness. These findings illustrate how this 
laminar atlas will provide a link between single-neuron morphology, mesoscale cortical 
layering, macroscopic cortical thickness and, ultimately, functional neuroanatomy. 
 
 
 
Introduction 

The cerebral cortex has six cytoarchitectonic layers that vary depending on cortical 
area [1], but cannot readily be resolved using in vivo  MRI techniques[2]. Nevertheless, cortical 
microstructure underpins the functional, developmental and pathological signals we can 
measure in vivo  [3,4]. Thus bridging the gap between micro scale structural measurement and 
whole brain neuroimaging approaches remains an important challenge. To address this, we 
sought to create the first whole brain, 3D, quantitative atlas of cortical and laminar histological 
thickness. 

Cortical thickness is one widely used marker of both in vivo  and ex vivo  cortical 
structure [5–7]. Early histological studies noted marked interareal thickness differences on post 
mortem histological sections[1,8], which have since been replicated [5,9] and extended using in 
vivo  MRI [10], and alterations in these patterns may be seen in neuropsychiatric illness [11–13]. 

MRI approaches have demonstrated patterns of cortical thickness relating to functional 
and structural hierarchical organisation across sensory cortices of both macaques and humans 
[10]. While classical studies of cortical histology also observed that primary sensory regions are 
thinner than their surrounding secondary sensory cortices [1,8], the thickness gradients 
identified in MRI extend far beyond neighbouring secondary areas into association cortical 
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areas, while such a pattern has not been systematically studied in post mortem brains. However 
MRI thickness is known to be impacted by the degree of cortical myelination [6,14], and cortical 
myelination exhibits similar gradients, with primary sensory areas being more heavily myelinated 
than secondary sensory areas[15]. Thus it remains unclear whether thickness gradients found in 
MRI are artefactual, driven by gradient differences in cortical myelination causing systematic 
cortical reconstruction errors, or truly represent the underlying histology. 

Creating a cortical layer segmentation of the BigBrain, a 3D histological model of the 
human brain [16], offers a solution to these problems and allows us to create a link between 
laminar patterns and standard MRI measures. Using this dataset, we can determine whether 
cortical thickness gradients are evident in measurements made with much greater spatial 
resolution. It opens the possibility to study whether similar cortical thickness gradients are 
present in fronto-motor cortices such as those identified in in vivo  neuroimaging [17]. Going 
beyond overall cortical thickness, it becomes possible to examine which cortical laminae 
contribute to these thickness gradients, enabling better characterisation of cortical structure and 
the potential to link these macroscale thickness gradients to changes in laminar cortical 
connectivity in sensory and motor hierarchies. 

Sensory processing hierarchies describe the concept that the cerebral cortex is 
organised with gradually changing structural and functional properties from primary sensory 
areas, to secondary sensory areas and ultimately higher-order association areas. Multiple 
measurement modalities converge on similarly ordered patterns including increasing dendritic 
arborisation in of pyramidal neurons [18] and electrophysiological characteristics[19], laminar 
connectivity patterns of projecting cortical neurons [20–22], laminar differentiation [23,24], MRI 
cortical thickness[10], MRI myelination [15], receptor densities [25] and temporal dynamics [26]. 
Topographically, hierarchies are organised such that progressively higher cortical areas are 
located with increasing geodesic distance across the cortical surface from their primary areas 
[10,27]. Ordering cortical areas along these gradients provides a framework for quantifying and 
understanding the relationships between cortical topology, microstructure and functional 
specialisation. 

Carrying out analyses of histological thickness gradients poses several methodological 
challenges. First, thickness measurements carried out in 2D are associated with measurement 
artefacts due to oblique slicing [28] and stereological bias. Second, manual measurement is 
associated with observer dependent variability, estimated to be up to 0.5 mm [8]. Third, due to 
the labour-intensive nature of histological analysis, many histological atlases have a small 
number of sample points, with studies commonly restricted to measuring around 100 cortical 
samples[8,29]. These factors hinder the ability to detect and map potentially subtle 
cross-cortical variations in cytoarchitecture as well as overall and laminar thicknesses. BigBrain 
offers a unique dataset to resolve histological cortical layers comprehensively in 3D, thereby 
providing a concrete link between microscale patterns of structure and in vivo  markers.  

We therefore set out to automate segmentation of cortical layers in 3D in order to 
characterise patterns of cortical and laminar thickness across sensory and fronto-motor cortical 
areas. To do this we used a convolutional neural network to segment profiles of histological 
intensity sampled between the pial and white matter. Training profiles were generated from 
examples of manually segmented layers on cortical regions from 2D histological sections of the 
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BigBrain dataset. The trained network was used to segment intensity profiles derived obliquely 
through the 3D histological volume and generate mesh segmentations of six cortical layers. 
These surfaces were used to calculate cortical and laminar thicknesses. Geodesic surface 
distance from primary visual, auditory, somatosensory and motor areas were calculated and 
used as a marker of hierarchical progression. Cortical and laminar thickness gradients were 
calculated for each system. 
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Results: 
 

The automatically identified cortical layers closely follow bands of intensity within the 
BigBrain (Figure 1) and continue to follow the same features beyond the limits of training 
examples (Figure 2a).  

In the original BigBrain surfaces, as with MRI white matter surfaces, the white surface 
was placed at the maximum intensity gradient between grey matter and white matter[30]. By 
contrast the neural network is trained on examples where the white boundary has been 
manually located according to the presence of cortical neurons. This has caused a systematic 
shift in the location of the new white matter surface. On closer inspection, the maximum gradient 
at which the original surfaces were placed appears to be at the border between sublayers VIa 
and VIb, where the change in neuronal density is sharper than at the boundary between white 
matter and layer VI (Supplementary Figure 4). 

A second feature apparent on visual inspection is segmentation of the layers cannot 
follow a single set of rules applied indiscriminately - laminar segmentations vary between 
cortical areas. This is most readily apparent at the V1-V2 boundary where layer IV changes 
considerably (Figure 2b). Layer IV is particularly broad in V1 and has multiple sublayers creating 
extra peaks and troughs in the intensity profiles, whereas in V2 it is much thinner and no longer 
differentiated into sublayers. The transition from a thick layer IV to a thin layer IV occurs 
precisely at the boundary between these two regions, suggesting that the network is also 
internally learning certain areal properties. 
 
Comparison of total and layer thickness maps 

On visual inspection, maps of BigBrain cortical thickness are consistent with classical 
atlases of histological thickness reported by von Economo and Koskinas (Figure 3). In 
particular, the precentral gyrus is the thickest part of the cortex, with values over 4.5mm (when 
adjusted for shrinkage in BigBrain) and 3.5 - 4.5mm in von Economo (area FA). The thickness 
of the motor cortex is often underestimated in MRI thickness measurement [31], probably due to 
the high degree of intracortical myelination which affects the grey-white contrast, causing the 
white matter surface to be too close to the grey surface, such that cortical thickness is 
underestimated [10,14]. The calcarine sulcus is especially thin on both BigBrain (1.67 - 2.86 
mm, 95% range) and von Economo (1.8 - 2.3 mm, area OC). This is also consistent with 
measurements from Amunts [32] of 1.47±.24mm (left) and 1.57±0.41 (right). Overall, regional 
values from BigBrain were highly correlated with their corresponding values in von Economo 
and Koskinas (left hemisphere: r=0.84, right hemisphere: r=0.83). In addition, folding-related 
differences are clearly visible on the BigBrain, with sulci being thinner than their neighbouring 
gyri. 

BigBrain layer thickness maps are also consistent with layer thicknesses from the von 
Economo atlas (Figure 4). Layer III is thick in the precentral areas, and particularly thin in the 
primary visual cortex. Layers V and VI are thicker in frontal and cingulate cortices, but also thin 
in the occipital cortex. Each layer is strongly correlated with the corresponding von Economo 
measurements except layer II (Layer I, left r=0.48, right r=0.56, layer II, left r=-0.06, right 
r=-0.16, layer III, left r=0.50, right r=0.42, layer IV, left r=0.71, right r= 0.65, layer V, left r=0.63, 
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right r=0.65, layer VI, left r=0.64, right r=0.61). The reason for the lack of agreement between 
layer II measurements is likely due to the low degree of intra-areal variance coupled with 
sources of noise such as interindividual differences and imperfect coregistration. 

Of interest is the clear boundary exhibited by layer IV at the boundary between V1 and 
V2 in the occipital cortex. This change in thickness is abrupt enough to generate an automated 
anatomical label for V1 (Figures 2 and 4). 
 
Cortical gradients and processing hierarchies 

Cortical thickness was positively correlated with geodesic distance in visual (left, r=0.56, 
p=0, right, r=0.42, p=0; von Economo r=0.72, p=0.02), somatosensory (left, r=0.20, p=0, right, 
r=0.30, p=0; von Economo r=0.64, p=0.12), and auditory cortices (left, r=0.20, p=0, right, r=0.13, 
p=0; von Economo r=0.92, p=0.01) (Figure 5A-C). By contrast in the motor cortex, thickness 
was negatively correlated with geodesic distance ( left, r=-0.25, p=0, right, r=-0.16, p=0; von 
Economo r=-0.84, p=0) (Figure 5D). These results are consistent with MRI thickness findings in 
sensory gradients but contradictory for the fronto-motor gradient. 

Cortical layers did not contribute equally to the total thickness gradient in the visual and 
somatosensory cortices (Figure 6A). Layers III and V had the largest contributions to the total 
thickness gradient, followed by layer VI and then II. A similar but less pronounced pattern was 
seen within the auditory cortex. In the motor cortex the inverse was true, with decreases in 
layers III, V and VI. Changes in the same cortical layers appeared to drive gradients in the von 
Economo laminar thickness measurements (Figure 6B), but due to the small number of 
recorded samples the confidence intervals were larger and generally included zero. 

Thus, somatosensory and visual areas exhibited positive histological thickness gradients 
primarily driven by layers III, V and VI. By contrast the fronto-motor areas exhibited an inverse 
gradient, peaking in the motor cortex and driven by the same layers (Figure 6B & C). 
 
Neural network training 

In the cross-validation, average per-point accuracy on the test fold was 83% ± 2% prior 
to post-processing, indicating that the network was able to learn generalisable layer-specific 
features and transfer them to novel cortical areas. The predictions of the model trained on the 
full dataset were used to create a 3D segmentation of the cortical layers in both hemispheres of 
the BigBrain dataset (Figure 1). 
 
Confidence results 

Layer confidence maps, given by the difference between prediction values (between 0 
and 1) of the highest and second-highest predicted classes for each point, give an 
approximation of the reliability of laminar segmentations for the cortex where ground truth 
manual segmentations have not been carried out (Supplementary Figure 2). Throughout the 
cortex, the network has high confidence for supra-pial and white matter classes. Cortical layers 
also exhibit consistent confidence maps, with slightly lower confidence for layer IV. This pattern 
matches with visual observations that layer IV is often the most difficult layer to identify. 
 
Resolution results 
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Downsampling BigBrain to decrease the resolution, from 20μm down to 1000μm, 
progressively decreased the accuracy of the network on the test folds from 85% to 60% 
(Supplementary Figure 3). However, at 100μm (the approximate upper limit for current 
high-resolution structural MRI), profiles had sufficient detail to maintain an accuracy of 76%. 
 
 
Open data availability 

All code used for the segmentation and analysis of cortical layers are being made 
available at https://github.com/kwagstyl . BigBrain volumes, layer surfaces and intensity profiles 
are available to download at ftp://bigbrain.loris.ca/ as well as at 
https://bigbrain.humanbrainproject.org . 
 
 

Discussion 
 
We automatically segmented the six histological layers of the cerebral cortex in the 3D 

reconstructed BigBrain. This is the first whole brain quantitative, laminar atlas with high 
precision, and the first ever in 3D. Our approach overcomes many historical problems with 
histological thickness measurements, and provides a higher level of precision and detail than 
any past laminar atlases. We used this atlas to test for gradients of cortical and laminar 
thickness within sensory and motor processing hierarchies. Consistent with previous findings 
using in vivo  MRI [10] and 2D histological measurements [8], sensory hierarchies exhibited a 
gradient of increasing cortical thickness from primary sensory to higher order areas. In visual, 
somatosensory and auditory cortices, these gradients were primarily driven by layers III, V, VI. 
By contrast, the fronto-motor cortices exhibited a decreasing cortical thickness gradient away 
from the primary motor cortex towards higher order frontal areas, which was driven by 
decreases in these layers. These findings highlight the utility of the BigBrain for linking micro- 
and macro-scale patterns of cortical organisation. 

Gradients of thickness are large scale markers of systematic changes in the cortical 
microcircuit. The volume of the cortex is 80-90% neuropil [33–37], of which 60% is axons and 
dendrites and the remainder is synaptic boutons, spines and glia. As neuronal density 
decreases with increasing cortical thickness [38,39], and most of the volume of the cortex is 
neuropil, increased thickness is most likely to mark increased intracortical connectivity [7]. At a 
laminar level, the strongest contributors to the overall thickness gradients were layers III, V and 
VI (Figure 6). Cell-morphological studies in macaques have shown that the cell size and 
dendritic arborisation of layer III and V pyramidal neurons increase along the visual pathway 
[18,40,41]. Similarly, afferent axonal patch sizes scale with pyramidal neuronal arborisation [42]. 
Increasing dendritic arborisation, axonal field size and number of synapses all contribute to an 
increase in the volume of laminar neuropil and are therefore a likely driver of the laminar and 
overall thickness gradients measured here. Layer VI also increased in thickness in sensory 
pathways. However, while neurons located in these layers might exhibit increases of their 
associated neuropil, the measured thickness change may in part be due to the extended 
arborisations of III/V pyramidal neurons forming connections within these layers. Histological 
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gradients of layer thickness provide us with a meso-scale link between in vivo  patterns of MRI 
cortical thickness and microstructural, neuronal-scale changes in the cortical microcircuit. Such 
links help us to understand the neurobiological significance of interindividual, longitudinal and 
neuropathological biomarkers[7]. 

 
In contrast to in vivo  studies of fronto-motor functional, myelin and MRI cortical thickness 

organisation, which place the primary motor cortex at the same level as primary sensory 
areas[15,17,27], we found that total and laminar fronto-motor thickness gradients were the 
inverse of those measured in sensory cortices. This places the fronto-motor cortex in a distinct 
hierarchical position. Histologically, the motor cortex was especially thick and the thickness 
decreased with geodesic distance from the primary motor cortex, with layers III, V and VI 
following a similar inverse pattern. This finding is consistent with reported trends in other 
histological properties such as laminar structural type [8] and neuronal density [38], as well as 
the observation that the motor cortex has large, pyramidal neurons with extensive dendritic 
arborisation [43,44]. It is also in agreement with the distribution of neurotransmitter receptors. 
The molecular architecture as estimated by neurotransmitter receptors also provides evidence 
that primary visual and motor cortex are on opposite positions in cortical hierarchy – the 
acetylcholinerigc M2 receptor, but also NMDA, GABAA, GABAA/BZ, M2, α2, 5-HT2, and D1 
receptors show high densities in the primary sensory areas, lower densities in association areas 
and the primary motor cortex among the lowest [25]. 

Functionally, these structural differences might be considered in terms of narrow, 
specific columnar receptive fields for accurate sensory perception [45], and wider receptive 
fields [46] for the coordination of multiple muscle groups [47] in precise motor control. Such 
microstructural trends are likely to be a result of matching gradients of genetic expression [48], 
and may indirectly relate to other microstructural trends including the relative somal size and 
connectivity patterns of pyramidal neurons in layers III and V [22,49]. Thus there is a coherent 
group of cortical microcircuit properties which diverges from patterns of cortical myelination and 
fMRI-derived gradients, establishing the motor cortex at the peak of a gradient of increasing 
cortical thickness, layer III, V and VI thickness and pyramidal neuronal arborisation, with primary 
sensory areas at the opposite extreme. 

 
Atlas of cortical layers 

The layers we have generated to test gradient-based hypotheses have applications 
beyond the scope of this study. Surface-based models of layer structure also create a 
framework for translating between microstructural modalities and surface-based neuroimaging. 
For instance, layer segmentations can be used to define regions of interest for further detailed 
analysis, and for associating cortical in vivo  and ex vivo  data to the common BigBrain template. 
Furthermore, current approaches to measuring laminar structure and function in vivo  rely on 
prior models of the cortical layers - for example signal-source simulation in MEG [50] or for 
sampling laminar BOLD signal in fMRI [51]. The whole-brain histological models for areal layer 
depth provided here, combined with a thorough understanding of how the layers vary with local 
cortical morphology[28,52,53] will aid such anatomical models. 
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Limitations 
It is important to acknowledge that the gradients of laminar thickness measured may be 

affected by limitations in the BigBrain dataset. The first limitation is that the post mortem brain 
was damaged during extraction and mounting. In some areas this resulted in minor shears. This 
problem was addressed to some extent through the utilisation of non-linear registration 
techniques. Nevertheless, some shifts in cortical tissue between consecutive sections are 
present and will affect the accuracy of layer reconstructions. In other areas, the cortex has been 
torn. Spatial smoothing and the large total number of sample points make it unlikely that these 
errors are affecting the results. A second limitation is that there is only one BigBrain. Future 
work will be necessary to establish the interindividual and age-dependent variability in laminar 
structure, either using other histological BigBrains or with complementary high-resolution MRI 
imaging approaches. 

 
Conclusions 

Total cortical thickness and thicknesses for each of the six isocortical layers were 
measured in the BigBrain to explore the histological drivers of MRI-based thickness gradients. 
Overall, the pattern of thickness in the BigBrain is consistent with histological atlases of cortical 
thickness, such as that from von Economo and Koskinas (1925). In the visual and 
somatosensory cortices, an increasing gradient of histological cortical thickness was identified 
and found to be primarily driven by layers III, V and VI. In the fronto-motor cortex, the inverse 
pattern was found. These findings provide a link between patterns of microstructural change 
and morphology measurable through MRI, and emphasise the importance of testing MRI-based 
anatomical findings against histological techniques. The laminar atlases provide an invaluable 
tool for comparison of histological and macroscale patterns of cortical organisation. 
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Methods 
Volumetric data preparation 

BigBrain is a 20x20x20μm (henceforth described as 20μm) resolution volumetric 
reconstruction of a histologically processed post mortem human brain (male, aged 65). It is 
available for download at ftp://bigbrain.loris.ca and is used as a reference brain of the Atlases of 
the Human Brain Project at https://www.humanbrainproject.eu/en/explore-the-brain/atlases/. In 
order to run computations on this 1TB dataset, the BigBrain was partitioned into 125 individual 
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blocks, corresponding to five subdivisions in the x, y and z directions, with overlap. The overlap 
of blocks was calculated to be sufficient such that each single cortical column could be located 
in a single block, enabling extraction of complete intensity profiles between pairs of vertices at 
the edge of blocks without intensity values being altered by boundary effects when the data 
were smoothed. Blocks were smoothed anisotropically[54], predominantly along the direction 
tangential to the cortical surface, to maximise interlaminar intensity differences while minimising 
the effects of intralaminar intensity variations caused by artefacts, blood vessels and individual 
neuronal arrangement[28]. The degree of anisotropic smoothing is determined by repeatedly 
applying the diffusive smoothing algorithm. The optimal level of smoothing was previously 
determined and gave an effective maximum full width at half maximum (FWHM) of 
0.163mm[28]. For subsequent analyses both the raw 20μm and anisotropically smoothed blocks 
were used. 

Lower resolution volumes were extracted by subsampling the raw BigBrain 20μm 
volume at 40, 100, 200, 400 and 1000μm. Anisotropically smoothed volumes were also 
generated at each of these resolutions. 
 
Profile extraction 
Pial and white surfaces originally extracted using a tissue classification of 200μm were taken as 
starting surfaces[30]. Prior to intensity profile extraction, the start and end surfaces were altered 
to address several issues. First, the vectors connecting white and grey vertices were altered in 
order to improve their approximation of columnar trajectories and to minimise intersecting 
streamlines. Second, “pial” and “white” surfaces were respectively expanded beyond their 
original limits, extending the extracted profiles to contain the whole cortex with additional 
padding. This was to enable the network to adjust surface placement of these borders according 
to features learned from the manual delineation of these boundaries. To achieve this, the 
following steps were taken: 

1) A mid-surface was generated that was closer to the pial surface in sulci and closer to the 
white surface in gyri, weighting the distance vector by the cortical curvature. Thus the 
mid-surface was closer to the surface with the higher curvature. 

2) This mid-surface was upsampled from 163842  to 655362 vertices to increase its 
resolution. 

3) For each vertex, the vector between nearest points on the pial and white surfaces was 
calculated. 

4) To avoid crossing profiles which can result in mesh self-intersections, the vector 
components were smoothed across the mid-surface with a FWHM of 3mm 
(Supplementary Figure 1).  

5) Profiles were calculated along these vectors from the mid-surface, extending the profiles 
0.5mm further than the minimum distance in the pial or white direction, to ensure the 
resultant intensity profile captured the full extent of the cortex. 

 The resultant profiles were less oblique and more likely to be lined up with the cortical columns 
(Supplementary Figure 1). 
 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 10, 2019. ; https://doi.org/10.1101/580597doi: bioRxiv preprint 

https://paperpile.com/c/nvEgXa/tD4mn
https://paperpile.com/c/nvEgXa/xnp7
https://paperpile.com/c/nvEgXa/xnp7
https://paperpile.com/c/nvEgXa/wEz6c
https://doi.org/10.1101/580597
http://creativecommons.org/licenses/by/4.0/


11 

Extended intensity profiles were then created by sampling voxels at 200 equidistant points 
between each pair of vertices from the raw and anisotropically smoothed BigBrain volumes, at 
each available resolution. For an extended profile of approximately 4mm, this gives a distance 
of 0.02mm or 20μm between points, corresponding to the highest resolution volume available. 
To account for the rostrocaudal gradient in staining intensity enabling the network to better 
generalise between profiles, profile intensity values were adjusted by regressing between mean 
profile intensity and posterior-anterior coordinate in 3D space.  
 
Training data 

Manual segmentations of the 6 cortical layers were created on 51 regions of the cortex, 
distributed across 13 of the original histological BigBrain sections at rescanned at a higher 
in-plan resolution of 5μm (Figure 2). These regions were chosen to give a distribution of 
examples demonstrating a variety of cytoarchitectures, in both gyri and sulci, from sections 
where the cortex was sectioned tangentially. Layers were segmented according to the following 
criteria. Layer I, the molecular layer, is relatively cell-sparse with few neurons and glia. Layer II, 
the external granular layer, is a much more dense band of small granular cells. Layer III, the 
external pyramidal layer, is characterised by large pyramidal neurons that become more 
densely packed towards its lower extent. Layer IV, the internal granular layer (usually referred to 
simply as the “granular layer”), generally contains only granular neurons, bounded at its lower 
extent by pyramidal neurons of layer V. Layer V, the internal pyramidal layer, contains large but 
relatively sparse pyramidal neurons while layer VI, the multiform layer, has a lower density of 
pyramidal neurons [1]. Segmentations were verified by expert anatomists: SB, NPG and KZ. 
This resolution is sufficient to distinguish individual cell bodies, a prerequisite to analyze their 
distribution pattern in cortical layers and to delineate the layers. Averaged across all training 
examples, layer classes contributed to profiles as follows: background/CSF (cerebrospinal fluid): 
14.6%, layer I: 7.5%, layer II: 5.6%, layer III: 20.8%, layer IV: 5.5%, layer V: 14.8%, layer VI: 
17.8%, white matter: 13.4%. For the cortical layers, these values represent an approximate 
relative thickness. 

Manual segmentations were then co-registered to the full aligned 3D BigBrain space. 
The manually drawn layers were used to create corresponding pial and white surfaces. These 
cortical boundaries were extended beyond layer VI and beyond the pial surface between 
0.25mm and 0.75mm so as to match the variability of cortical extent in the test profile dataset. 
Training profiles were created by sampling raw, smoothed and manually segmented data, 
generating thousands of profiles per sample. Ea ch pixel in the labelled data had a class value of 
0-7, wh ere pixels su perficial to the pial surface were set to 0, followed by layers numbered 1-6, 
and white matter was classed as 7. This 1D profile-based approach greatly expanded the 
training dataset from 51 labelled 2D samples to 564,041 profiles. 
 
Neural network 

A 1D convolutional network for image segmentation was created to enable the 
identification of laminar-specific profile features which can appear at a range of cortical profile 
depths[28]. The network was created using stacked identical blocks. Each block contained a 
batch normalisation layer to normalise feature distributions between training batches, a rectify 
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non-linearity layer used to model neurons which can have a graded positive activation but no 
negative response [55], and a convolutional layer[56]. There was a final convolutional layer with 
filter size 1 and 8 feature maps, one for each class. The cost function was median 
class-frequency weighted cross-entropy. Class-frequency weighting was added to weigh errors 
according to the thickness of the layers so that incorrectly classified points in thinner layers were 
more heavily weighted than errors in incorrectly classified thicker layers[57]. Raw and smoothed 
profiles were considered as two input channels. The network was iteratively trained until the 
accuracy did not improve for 50 epochs (all training profiles are seen once per epoch). At this 
point, the previous best model was saved and used for subsequent testing on the full dataset. 
When testing the network, a soft maximum was then applied to detect the most likely layer class 
for each point. The output was a matrix of 8 (predicted layers) by 200 (sample points) by 
655362 (vertices on a mesh) by 2 (cortical hemispheres).  

For each vertex, a measure of confidence was calculated from these predictions. Per 
point confidence is the difference between the prediction value for the highest predicted class 
and the value of the 2nd highest predicted class. Per class/layer confidence is the mean 
confidence for all points in that class/layer. The per-vertex summary measure is the mean 
across all points in the profile. These measures give an indication of the relative confidence for 
the regional and laminar classifications. 
 
Hyperparameter optimisation and cross-validation: 

Here, a set of 50 experiments with random hyperparameters was carried out to explore 
their impact on training accuracy (there is no consensus method for finding optimum parameters 
for a neural network). Learning rate, convolutional filter size, number of layers (blocks), weight 
decay and batch size were all varied. In summary, the final network was initialised with 6 layers, 
filter size = 49, learning rate = 0.0005, weight decay = 0.001, where the learning rate determines 
the amount weights are updated on each iteration, and weight decay determines the rate at 
which weights decrease each iteration (which helps prevent overfitting). 

For network cross validation, the manually labelled areas were subdivided into 10 
equally sized random subsets or folds. Initially, 2 folds were removed from the dataset during 
training and network weights were optimised for segmenting samples on one of these folds. 
This trained network was then used to predict layers on the final previously unseen test fold 
from which the accuracy was calculated. This process was repeated 10 times to generate an 
estimate of the network’s ability to segment novel cortical regions. The same process was 
carried out using profiles extracted at all available resolutions. 

For generating BigBrain layer segmentations, the network was trained on the full training 
dataset and tested on all intensity profiles. 

 
Shrinkage estimate: 

Histological processing, including fixation and sectioning, causes distortion of the tissue 
that is non-uniform in the x,y and z directions. Part of this distortion was corrected in the original 
reconstruction of the BigBrain [16].  

Initial shrinkage of the brain during fixation prior to sectioning was calculated based on 
the estimated fresh volume of BigBrain, inferred from the original fresh weight, and the volume 
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after histological processing. This gave a volume-based (3D) shrinkage factor of 1.931, which 
corresponds to an isotropic length-based (1D) shrinkage factor of 1.245. 

To estimate the scale of shrinkage in each of the three orthogonal directions, the 
BigBrain volume was linearly coregistered to a volumetric MRI template derived from a group of 
older subjects (ADNI) [58]. The transformation matrix gave linear scale factors of 1.15, 1.22 and 
1.43 in the x,y and z directions, with a mean of 1.26. The concordance of these measures of 
shrinkage suggests that subsequent thickness and length estimates can be adequately 
corrected for comparison to in vivo  measures. 

Thus, to approximately compensate for the non-uniform compression of xyz, we 
transformed the mesh surfaces into MNI space based on the ADNI template. Subsequent 
thickness analyses were carried out on the transformed meshes. Such compensation for 
shrinkage is necessary when analysing cortical thickness gradients on oblique profiles in 3D 
over the whole brain. Non-linear corregistration was not applied as this can lead to localised 
warping and non-biological thickness measurements.  
 
Surface reconstruction: post-processing 1D profiles: 

1D classified profiles were transformed into mesh layer boundary reconstructions as 
follows. Transitions between predicted layers were located for each profile and the coordinates 
of these transitions became vertex locations for the new layer meshes. For the small number of 
vertices where the network failed (less than 1%), vertex locations were interpolated from the 
neighbouring vertices. Surface indices were smoothed 0.5mm FWHM across the cortical 
surface and 20 iterations of shrinkage-free mesh smoothing was applied to the output surface 
[59]. This removed non-biologically high frequency changes in surface curvature, most 
commonly due to minor, local misalignment of consecutive 2D coronal sections. 
 
Cortical thickness, layer thickness: 
Cortical thickness was calculated between pial and white cortical surfaces and laminar 
thicknesses were calculated between adjacent pairs of cortical surfaces. 
 
Masking: 
Manual masks were created to remove the medial wall, the allocortex, including parts of the 
cingulate and entorhinal cortex which do not have 6 layers, and large cuts in the anterior 
temporal cortex (caused by the saw during extraction of the brain from the skull) from 
subsequent analyses. 
 
Surface-based parcellations: 

For comparison, several existing surface-based parcellations defined upon in vivo 
human template surfaces (von Economo: [8,60]; Glasser: [61]) were coregistered to the 
BigBrain cortical surfaces using an adaptation of the Multimodal Surface Matching approach 
[62,63]. 
 
Gradients and processing hierarchies: 
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Surface labels for the primary visual, auditory, somatosensory and motor areas were manually 
delineated on each hemisphere using morphological markers and histological characteristics 
(Supplementary Figure 5a). For each system, a larger area containing associated cortical 
regions was manually delineated (Supplementary Figure 5b)[10,17,61]. For each vertex within 
the associated cortical regions, geodesic distance from the primary sensory labels was 
calculated (Supplementary Figure 5b) [10,17,61,64]. 
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Figure Legends 

 
Figure 1 
Cortical layers in 3D. Six cortical layers segmented on the 3D volume on three orthogonal 
planes: A=coronal, B=axial, C=sagittal. Panel D shows the location of the sections on the 
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reconstructed pial surface of the 3D BigBrain. A, the coronal plane is the original plane of 
sectioning. Within this plane the axes are centered on an area of the cortex where layers would 
be impossible to segment in 2D, because the section only shows part of the gyrus and most 
layers are not visible due to the oblique sectioning of the cortex with respect to the gyrus. 
 

 
Figure 2 

Cortical layers (coloured lines) intersected on a 2D coronal section of the right occipital 
cortex with manually segmented layers (superimposed grey-scale masks). A) The boundaries 
follow the same contours as delineated by the manually segmented training areas, and appear 
to accurately follow the layer bounds outside of each training area. B) At the V1-V2 boundary 
(marked with arrows) the thickness of layer IV changes dramatically in both manual and 
automated segmentations (between green and blue lines), with additional peaks in V1 intensity 
due to the sublayers of layer IV. As each profile is individually segmented by the network, 
without reference to the neighbouring profiles, the network is able to apply area-specific rules 
according to the shape of the profile, suggesting it might be internally identifying the area from 
which the profile is extracted as being either V1 or V2. 
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Figure 3 

Comparison of von Economo’s maps of cortical thickness (coregistered with and 
visualized on the left hemisphere of BigBrain) with cortical thickness of the BigBrain for left and 
right hemispheres. Thickness values range from 1.8mm in the calcarine sulcus to 4.5 mm in the 
precentral gyrus. A) The pattern of cortical thickness across the BigBrain (displayed on 
smoothed surfaces, values were smoothed 3mm FWHM) matched that measured by von 
Economo and Koskinas. In particular, the precentral gyrus, containing the primary motor cortex, 
which is often underestimated with MRI, was the thickest area. Additionally, the occipital cortex 
around the calcarine sulcus was particularly thin in both BigBrain and von Economo. While 
broad trends are consistent between the two maps, BigBrain exhibits more local variability, for 
instance due to cortical folding, and due to the higher density of measurements made. Von 
Economo reported thickness measurements from around 50 cortical areas, whereas the 
thickness of around 1 million vertices has been measured on BigBrain. B) Regional BigBrain 
thickness values were highly correlated with measurements from von Economo and Koskinas. 
The size of each point is proportional to the area of the cortical region and overall correlations 
were weighted according to these areas. 
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Figure 4 

Comparison of von Economo’s laminar thickness maps (coregistered with and visualized 
on the BigBrain) with laminar thicknesses of the BigBrain for left and right hemispheres. 
BigBrain thickness values were smoothed across the surface with a 3mm FWHM Gaussian 
kernel. Layer thickness values strongly correlated between BigBrain and von Economo for all 
layers except layer II (see Results). Similarities include the clear changes in thickness in pre- 
and post-central thicknesses of layers III, V and VI. For layer IV, the most striking feature is the 
abrupt change in layer IV thickness at the V1-V2 border. This abrupt change and the unique 
features of layer IV in V1 lead us to conclude that the neural network may have internally 
learned to recognise V1 and apply the appropriate laminar segmentation rules. 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 10, 2019. ; https://doi.org/10.1101/580597doi: bioRxiv preprint 

https://doi.org/10.1101/580597
http://creativecommons.org/licenses/by/4.0/


23 

 
 
Figure 5 

Cortical thickness with increasing geodesic distance from the primary area. To aid 
visualisation, Locally Weighted Scatterplot Smoothing lines are fit for each hemisphere. For 
primary visual, auditory and somatosensory cortices (A-C), consistent with MRI studies of 
cortical thickness, thickness increased with geodesic distance from the primary sensory areas. 
These trends were also present in the von Economo dataset, where statistical power was 
limited by the small number of samples. For the motor cortex (D), a negative relationship was 
present with thickness decreasing from the primary motor cortex into the frontal cortex in the 
BigBrain dataset and von Economo. This structural gradient is the inverse of the pattern of 
myelination and of previously reported MRI frontal thickness gradients, but consistent with 
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patterns of structural type and neuronal density. These findings suggest the presence of distinct 
but overlapping structural hierarchies. 
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Supplementary Figure 1 

Improving streamline trajectories. A) Streamline vectors were smoothed across the 

cortical surface by varying degrees to assess the impact of smoothing on i) the number of self-

intersections in the pial and white surfaces and ii) the angle between the streamline and the 

normal vector on the pial and white surfaces. These optimisation curves demonstrate that a 

FWHM of around 2mm drastically decreases the number of self-intersections and obliqueness 

of the streamline vectors relative to the pial and white surfaces. B) Visualising streamlines 

against a histological section. Streamlines more closely follow visible cortical columnar 

trajectories after this improvement (blue) relative to before this streamline vector smoothing 

process (red).  

 

 

Supplementary Figure 2 
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 Layer confidence maps. Per-vertex confidence is defined as the difference between the 

prediction value for the highest predicted class and the value of the 2nd highest predicted class, 

averaged over the whole profile. This gives an approximation of the reliability of laminar 

segmentations for the cortex where ground truth manual segmentations have not been carried 

out. Confidence for supra-pial and white matter classes was high throughout the cortex, thus 

increasing the confidence in overall cortical thickness measures. Layers exhibit relatively 

consistent confidence maps, with layer IV least confident overall. This pattern matches with 

visual observations that layer IV is the most difficult to identify. Regional variations in confidence 

can guide the choice of target regions for future extensions to the training data. 

 

 

Supplementary Figure 3 

Impact of voxel resolution on overall and layer accuracies. A) Overall per-point 

accuracies on withheld test regions calculated using 10-fold validation. Accuracy decreases with 

decreasing resolution. B) Mean deviation in depth prediction on test folds between prediction 

and manually defined layers. Pial/layer I and layer I-II boundaries exhibited the smallest 

deviations, followed by II/III, with layer III/IV and VI/white boundaries exhibiting larger deviations. 
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Supplementary Figure 4 

 Comparison of white matter surfaces generated by the neural network and by placing 

the white surface at the maximum intensity gradient. For visual comparison, the surfaces are 

overlaid on a 2D section, where manually segmented layers are available. The maximum 

intensity gradient white surface (red) was identified on lower-resolution data (200μm). This 

surface was consistently superficial to the new surface (blue), which was created based on 

features derived from the histological definition of the white matter surface, which is determined 

by the absence or presence of cortical neurons. The blue surface more consistently follows the 

layer VIa/VIb boundary. This systematic difference highlights the role of using histological 

expertise when translating across scales and fields to ensure consistent definitions. It also 

raises an important question on the placement of the white surface in MRI cortical 

reconstructions, which is placed at the maximum MRI intensity gradient. This gradient is 

determined predominantly by myelin contrast, and therefore influenced by changes interregional 

and longitudinal in cortical myelination. Future cortical segmentation algorithms need to be 

developed with closer reference to histological definitions of the gray/white boundary. 
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Supplementary Figure 5 

 A. Manually segmented primary visual (blue), primary auditory (black, partially buried in 

the lateral sulcus), primary somatosensory (green) and primary motor (yellow) areas, projected 

onto a heavily smoothed surface. B. Manually segmented regions across which cortical and 

laminar hierarchical thickness gradients were calculated. C. Geodesic distance across the 

cortical surface from the primary areas. 
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Figure 6 
Gradients of cortical and laminar thickness against geodesic distance from primary 

areas. A) Fronto-motor gradients show an inverse relationship from sensory gradients both on 
cortical and laminar thicknesses. Increasing sensory cortical thickness gradients were generally 
driven by thickness increases in layers III, V and VI. By contrast, fronto-motor cortical thickness 
gradients exhibited decreases in thickness of the same layers. B) The same trends were evident 
in the von Economo dataset, however due to the small number of recorded samples the 
confidence intervals were larger and generally included zero. 
C) Typical neuronal types and morphologies of individual cortical layers.  Cortical thickness 
gradients in either direction are primarily driven by changes in pyramidal cell layers (in layers III, 
V and VI). D) Layer thicknesses averaged across vertices in a sliding window of geodesic 
distance values from the primary area for the visual, somatosensory, auditory and motor 
systems. The motor cortex exhibits the inverse pattern of change to those observed in sensory 
gradients. 
E) Single-cell morphological studies of pyramidal neurons in macaque sensory processing 
pathways reveal increasing dendritic arborisation [65] consistent with the hypothesis that 
laminar volume changes and ultimately thickness changes represent increases in intracortical 
connectivity. 
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