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One Sentence Summary: Dietary restriction altered the tissue-specific enrichment of sulfhydrated proteins and 

their downstream signaling pathways in liver, kidney, skeletal muscle, brain, heart, and plasma that was partly 

dependent on the hydrogen sulfide producing enzyme cystathionine γ-lyase. 

 

Abstract: Hydrogen sulfide (H2S) is a cytoprotective redox-active metabolite that signals through protein 

sulfhydration (R-SSnH). Despite the known importance of sulfhydration on relatively few identified proteins, 

tissue-specific sulfhydrome profiles and their associated functions are not well characterized, specifically under 

conditions known to modulate H2S production. We hypothesized that dietary restriction (DR), which increases 

lifespan and boosts endogenous H2S production, expands functional tissue-specific sulfhydromes. Here, we found 

that 50% DR enriched total sulfhydrated proteins in liver, kidney, muscle, and brain but decreased these in heart 

of adult male mice. DR promoted sulfhydration in numerous metabolic and aging-related pathways. Mice lacking 

the H2S producing enzyme cystathionine γ-lyase (CGL) had decreased liver and kidney protein sulfhydration and 

failed to functionally augment their sulfhydrome in response to DR. Overall, we defined tissue- and CGL-

dependent sulfhydromes and how diet transforms their makeup, underscoring the breadth for DR and H2S to 

impact biological processes and organismal health. 
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Introduction 

The search for anti-aging interventions predates the modern medical and scientific era. Currently, the best 

studied and effective interventions and genetic models to extend both lifespan and healthspan across evolutionary 

boundaries are dietary restriction (DR) (Fontana and Partridge, 2015) and disruption of the growth hormone 

(GH)/insulin-like growth factor 1 (IGF-1) axis (Junnila et al., 2013). Largely defined as reduced nutrient intake 

without malnutrition, DR encompasses decreased total daily caloric intake, the removal of specific macronutrients 

such as amino acids, and/or intermittent fasting. In addition to defending against aging-related diseases (Mattison 

et al., 2017; Sinclair, 2005; Weindruch and Walford, 1982), DR also provides stress resistance (Mitchell et al., 

2010; Peng et al., 2012) and metabolic fitness (Fabbiano et al., 2016; Plaisance et al., 2011). Emerging DR studies 

in humans indicate an average daily caloric reduction of approximately 12% over two years resulted in favorable 

improvements in metabolic rate, endocrine activity, and redox status (Redman et al., 2018). Similar to DR, mice 

lacking adequate GH production (Flurkey et al., 2001) or GH receptor (GHRKO) signaling (Bonkowski et al., 

2006) have increased lifespans, resistance to a number of stressors, and metabolic fitness (Brown-Borg, 2015). 

Interestingly, GHR deficiency in humans reduces pro-aging signaling, cancer, and diabetes (Guevara-Aguirre et 

al., 2011). It is hypothesized that common molecular pathways enriched or affected by DR and GH/IGF-1 axis 

disruption are central to improved aging (Li et al., 2014). Identifying these shared pathways and elucidating their 

mechanism of action will shed light onto the underpinnings of aging and usher more targeted diagnostics and 

therapies into the clinic. 

A common molecular phenomenon amongst several dietary (Hine et al., 2015; Nakano et al., 2015; 

Yoshida et al., 2018), pharmaceutical (Wiliński et al., 2013), and genetic (Hine et al., 2017; Wei and Kenyon, 

2016) models of longevity is the increased production capacity and/or bioavailability of hydrogen sulfide (H2S) 

gas (Hine et al., 2018). H2S and its HS- anion and S2- ion, herein referred simply as H2S, is historically classified 

as an environmental and occupational hazard due to its inhibition of mitochondrial respiration (Szabo et al., 2013; 

Wu et al., 2011) and lethality at elevated levels (Hendrickson et al., 2004). However, in the later part of the 20th 

and early part of the 21st Centuries, functional and beneficial endogenous production of H2S via enzymatic 

catalysis of sulfur containing amino acids (Stipanuk and Beck, 1982) was first discovered in the brain, aorta, and 

vascular smooth muscle cells (Abe and Kimura, 1996; Hosoki et al., 1997; Zhao et al., 2001). Exogenously 

provided H2S, either in gas form or via donor molecules, increases lifespan in model organisms (Miller and Roth, 

2007), prevents multi-tissue ischemic-reperfusion injury (Elrod et al., 2007; Hine et al., 2015), improves 

cardiovascular health (Das et al., 2018; Yang et al., 2008), and is recognized as a potential therapeutic agent 

against aging-associated diseases (Zhang et al., 2013). Conversely, deficiencies in endogenous H2S levels or 

production correlate with and/or are causative of hypertension (Yang et al., 2008), colitis (Flannigan et al., 2014), 

neurodegeneration (Sbodio et al., 2016), and glioma growth (Takano et al., 2014) while H2S levels in humans are 

reported to decline during aging, particularly those suffering from COPD (Chen et al., 2005; Perridon et al., 2016). 

Thus, the field of H2S in biology, physiology, and medicine has blossomed (Wallace and Wang, 2015; Wang, 

2012), with endogenous H2S serving as a therapeutic target and the third functional gasotransmitter alongside 

carbon monoxide and nitric oxide (Paul and Snyder, 2018).  

Due to the multiphasic dose response of H2S, life evolved with several mechanisms for its controlled 

production and utilization. In mammals, H2S is enzymatically produced during the metabolism of sulfur 

containing amino acids, primarily cysteine and homocysteine, via the activities of cystathionine β-synthase 

(CBS), cystathionine γ-lyase (CGL), and 3-mercaptopyruvate sulfurtransferase (3-MST) (Kabil and Banerjee, 

2014). CBS and CGL, both central to the transsulfuration pathway, require pyridoxal phosphate (PLP) as co-

factor for α,β-elimination or β-replacement of the thiol group on cysteine or homocysteine to produce H2S (Singh 

and Banerjee, 2011). 3-MST produces H2S via sulfane sulfur and 3-mercaptopyruvate, which is synthesized by 
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the conversion of cysteine to 3-mercaptopyruvate via cysteine aminotransferase (CAT) (Shibuya et al., 2009). 

CGL and CBS are predominantly cytoplasmic, while 3-MST is principally mitochondrial (Kimura, 2014). In 

addition to their differences in subcellular localization, CGL, CBS, and 3-MST are differentially expressed and 

active in tissue-specific manners, with CGL contributing the majority of enzymatic H2S production in the kidney, 

liver, and endothelium (Kabil et al., 2011b; Longchamp et al., 2018; Yang et al., 2019). Lack of CGL expression 

and/or activity is attributed to hypertension (Yang et al., 2008), neurodegeneration (Paul et al., 2014), and the 

inability to properly respond to dietary and endocrine cues (Hine et al., 2015; Hine et al., 2017; Ishii et al., 2010; 

Kabil et al., 2011a; Longchamp et al., 2018; Nakano et al., 2015). Remarkably, it was recently found that increased 

CGL expression in liver is a hallmark of numerous dietary, genetic, hormonal, and pharmaceutical mouse models 

of extended lifespan and may serve as a molecular biomarker associated with longevity (Tyshkovskiy et al., 2019). 

The downstream mechanisms as to how enhanced CGL expression and subsequent endogenous H2S 

production are utilized and impart cellular, tissue, and systemic benefits rests on the versatility of sulfur to have 

oxidation states from -2 to +6 and accept or donate electrons (Filipovic et al., 2018). With the sulfur on H2S 

having an oxidation state of -2, indicative of a reducing agent, it results in H2S performing several non-mutually 

exclusive biochemical reactions. These include mitochondrial electron transfer, alterations of iron-sulfur and 

heme centers, antioxidant activity, and protein posttranslational modification via sulfhydration; aka persulfidation 

or s-sulfhydration, of reactive cysteine residues to form persulfide tails of various lengths (R-SSnH) (Filipovic, 

2015). While the benefits of a readily diffusible antioxidant to counter oxidative damage (Harman, 2009) and 

improvement in mitochondrial bioenergetics to delay the onset of aging-related disorders (Bratic and Larsson, 

2013) are easily identifiable, the act of sulfhydration and its extent to initiate improved fitness, lifespan, and 

healthspan is less well understood.  

Like other protein posttranslational modifications, sulfhydration of readily active cysteine residues 

potentially alters a protein’s structure, function, stability, and/or macromolecular interactions. (Filipovic et al., 

2018; Kimura, 2019; Mustafa et al., 2009). The sulfhydration process generally involves: 1) oxidation of the 

cysteine residue(s) on the targeted protein, as H2S cannot solely react with a reduced thiol group, followed by 

nucleophilic attack of the oxidized thiol and/or disulfide by H2S, or 2) reaction between H2S derived polysulfides 

(H2Sn) with a reduced protein thiol (Gao et al., 2015; Kimura, 2019). It is estimated that 10 to 25% of proteins in 

the rodent liver, a strong generator of H2S in the body (Kabil et al., 2011b), are sulfhydrated (Mustafa et al., 2009) 

and this modification typically increases the reactivity of the modified cysteine (Paul and Snyder, 2012). 

Examples of metabolic, stress resistance, and aging-related proteins identified to have functional sulfhydration 

modifications include, but are not limited to, glyceraldehyde phosphate dehydrogenase (GAPDH) at Cys150 (Gao 

et al., 2015; Mustafa et al., 2009), nuclear factor κB (NF-κB) at Cys38 (Sen et al., 2012), the Kir 6.1 subunit of 

endothelial ATP-sensitive potassium channel at C43 (Mustafa et al., 2011), sirtuin 1 (SIRT1) at Cys371, Cys374, 

Cys395, and Cys398 (Du et al., 2019), and the E3 ubiquitin ligase Parkin at Cys95 (Vandiver et al., 2013). The 

majority of studies identifying and examining the biochemical functions of sulfhydration are primarily 

constructed on cell culture models and/or with purified proteins in vitro. One of the few studies to examine the 

total number and identity of sulfhydrated proteins, or sulfhydrome, of an organism in vivo was completed in the 

plant Arabidopsis thaliana, with the discovery of 2,015 proteins, or approximately 5% of the entire proteome, as 

sulfhydrated (Aroca et al., 2017). However, the sulfhydrome profiles and their associated biological functions of 

major organs in a mammal, particularly under dietary and/or genetic conditions known to impact endogenous H2S 

production, have not been described.  

Utilizing the relatively new approach for the identification of sulfhydrated proteins developed by Gao, et 

al., termed the Biotin-Thiol-Assay (BTA) (Gao et al., 2015), we set out to test the hypothesis that interventions 

known to increase lifespan, improve metabolic and stress resiliency, and boost endogenous H2S production would 
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essentially expand and/or alter tissue-specific sulfhydrome profiles in vivo. To address this hypothesis, we 

employed a daily 50% caloric restriction for 1-week versus ad libitum (AL) feeding in 6-month male CGL wild 

type (WT) and total body knock out (KO) mice to examine for diet-, tissue- and genotype-specific changes in H2S 

production (i), protein sulfhydration (ii), and biological pathways impacted by protein sulfhydration (iii) (Figure 

1A). This type and duration of dietary intervention was chosen as it was previously shown to induce functional 

CGL-dependent hepatic H2S production in WT mice (Hine et al., 2015).  Here, we identified 977, 1086, 459, 431, 

884 and 160 total sulfhydrated proteins and their associated biological pathways in the liver, kidney, heart, muscle 

(quadriceps), brain and plasma, respectively. DR enriched the number of sulfhydrated proteins in liver, kidney, 

muscle, and brain while it decreased these in the heart and had minimal impact in the plasma. DR in WT mice 

promoted sulfhydration of proteins involved in numerous pathways, notably metabolic and protein/nitrogen 

homeostasis. CGL KO mice had an overall decrease in sulfhydrated proteins in the liver and kidney and failed to 

appropriately augment their sulfhydrome in response to DR. These findings suggest DR plays an important role 

in H2S production and transformation of the protein sulfhydrome to ultimately promote stress resistance, 

metabolic fitness, neuroprotection, and longevity. 

 

Results  

Diet and CGL status impact tissue specific H2S production 

To establish the impact of 1-week 50% DR on mouse physiology, H2S production, and sulfhydrome 

profiles, the daily food intake was first measured to determine the correct amount of modified AIN-93G rodent 

diet to restrict to achieve a 50% reduction in calories consumed. Ad libitum (AL) mice were then provided 24-

hour access to the rodent diet and the 50% DR (DR) mice were fed their calculated allotment near the start of 

their dark phase at 7pm to avoid disturbances in circadian rhythms and feeding patterns between the two groups 

(Acosta-Rodriguez et al., 2017; Froy et al., 2009). Average daily food intake monitored over the 1-week 

intervention showed the AL group consumed 0.2g food/g mouse, or approximately 12 kcal/mouse, per day while 

the DR group consumed 0.1g food/g mouse, or approximately 6 kcal/mouse, per day (Supplemental Figure 1A, 

B). DR for 7 days reduced body mass similarly in both CGL WT and KO mice by 5-10% of initial weight 

(Supplemental Figure 1C, D). After the 1-week dietary intervention liver, kidney, heart, muscle (quadriceps), 

brain, and plasma were collected for downstream H2S production capacity analysis via the lead acetate/lead 

sulfide endpoint method (Hine and Mitchell, 2017) and for sulfhydration profiling. Similar to previous results 

obtained in our laboratory regarding the tissue specificity of CGL, CBS, and 3MST protein expression, H2S 

production, and the dependence on CGL for H2S production (Yang et al., 2019), and in line with unbiased 

ENCODE transcriptome data of H2S producing and consuming genes obtained from NCBI Gene Database (Yue 

et al., 2014) (Supplemental Figure 1E-H), we show H2S production capacity in AL fed mice is highest in liver 

and kidney, and this is dependent on CGL (Figure 1B, C). Heart, muscle, brain, and plasma showed low H2S 

production capacities with little to no dependence on CGL (Figure 1B, C). DR increased H2S production capacity 

in liver (Figure 1D) and kidney (Figure 1E), but had little to no impact in heart, muscle, brain, or plasma (Figure 

1F-I). As CGL status is important for liver and kidney H2S production, we next focused on the impact of DR on 

H2S production in these two organs in CGL KO mice. DR failed to increase detectable H2S production capacity 

in the liver and kidney of CGL KO mice (Figure 1J, K). Thus, we confirm that H2S production capacity is highest 

and malleable via DR in liver and kidney, which are dependent on CGL, while other tissues tested have relatively 

low H2S production capacity independent of CGL status or diet. 
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Figure 1: Diet and CGL status impact H2S production in a tissue specific manner. (A) Graphical presentation 

of the overarching experimental setup. 6-month old male cystathionine γ-lyase (CGL) WT and total body KO 

mice were placed on ad libitum (AL) or 50% dietary restriction (DR) diets for 1 week prior to tissue harvest. 

Tissues were analyzed for (i) H2S production capacity via the lead acetate/lead sulfide method, (ii) protein 

sulfhydration profiles via the biotin thiol (BTA) assay, and (iii) biological pathway enrichment/function of the 

identified sulfhydrated proteins. (B-C) H2S production capacity in tissues in AL fed CGL WT (n= 3 mice/group) 

and CGL KO (n=3 mice/group) mice at short 6 hr (B) and long 16 hr (C) exposures. The asterisk indicates the 

significance of the difference in the average tissue-specific H2S production capacity between the CGL WT and 

KO groups; * p < 0.05. (D-I) H2S production capacity in tissues harvested from CGL WT mice after one week of 

AL (n=4 mice/group) or 50% DR (n=5 mice/group) feeding. (J-K) H2S production capacity in liver (J) and kidney 

(K) in CGL KO mice after one week of AL (n=3 mice/group) or 50% DR (n=3 mice/group) feeding. Error bars 

are ± SEM. The asterisks indicate the significance of the difference between the dietary treatment groups; *p < 

0.05. See also Supplemental Figure 1. 
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DR enriches the sulfhydrome in liver, kidney, muscle, and brain 

To first verify the ability of the modified BTA (Gao et al., 2015) (Supplemental Figure 2A) to detect 

sulfhydrated proteins from tissue samples, we ran Western blot analysis on the final liver BTA elution -/+ DTT 

for α-Tubulin and GAPDH, two hepatic proteins previously shown to be sulfhydrated (Mustafa et al., 2009) 

(Supplemental Figure 2B). α-Tubulin and GAPDH were detected in the sulfhydration-specific +DTT elution (Gao 

et al., 2015) from WT mice but not CGL KO mice nor in the –DTT elution lanes (Supplemental Figure 2B). Pre-

treatment of NaHS on WT livers ex vivo prior to performing the BTA assay not only failed to increase detection 

of these two proteins, but resulted in decreased detection. This is indicative that ex vivo addition of NaHS/H2S 

alone cannot sulfhydrate proteins without an oxidant to activate the cysteine residue or without formation of a 

polysulfide prior to modifying the cysteine residue, as noted in previous reports (Filipovic et al., 2018; Gao et al., 

2015), and that ex vivo addition of NaHS may act as a reducing equivalent, similar to DTT, and remove the 

sulfhydration modification prior to the BTA assay (Supplemental Figure 2B). Thus, utilizing this modified BTA 

technique followed by mass spectrometry-based quantitative proteomics analysis of peptide spectral counts 

(Supplemental Figure 2A, Supplemental Data File 1), we set out to examine tissue-, dietary-, and CGL-dependent 

sulfhydrome profiles on major the tissue samples listed in Figure 1A. 

Of the six tissues tested in WT mice via the BTA, four were found to have enriched sulfhydrome profiles 

in response to DR when compared to AL feeding (Figures 2A-D, Supplementary Figures 2C-F, Supplemental 

Tables 1-4). These tissues included liver (Figure 2A, Supplementary Figure 2C, Supplemental Table 1), kidney 

(Figure 2B, Supplementary Figure 2D, Supplemental Table 2), muscle (Figure 2C, Supplementary Figure 2E, 

Supplemental Table 3), and brain (Figure 2D, Supplementary Figure 2F, Supplemental Table 4). Total 

sulfhydrated proteins identified in each tissue independent of diet included 977 in liver, 1086 in kidney, 431 in 

muscle, and 884 in brain. Identified proteins enriched under DR, displayed as green dots, included 30 in liver, 16 

in kidney, 34 in muscle, and 369 in brain that met a  biological- and statistical-significance threshold of at least a 

2-fold increase in DR:AL spectral count ratio with a p-value <0.05, respectively (Figures 2A-D). Likewise, 

proteins enriched under AL feeding in these four tissues, displayed as blue dots, included 16 in liver, 5 in kidney, 

0 in muscle, and 42 in brain that met a biological- and statistical-significance threshold of at least a 2-fold increase 

in AL:DR spectral count ratio with a p-value <0.05, respectively (Figures 2A-D). In addition, sulfhydrated 

proteins not meeting these thresholds for biological- and statistical significance, displayed as gray dots, were 

overall skewed in all four tissues for enrichment under DR feeding (Figures 2A-D). Thus, DR enhances the 

number of sulfhydrated proteins in liver, kidney, muscle, and brain. However, the concerted biological functions 

and pathways affected by these sulfhydration events, their commonality across tissue types, and how they are 

altered as a function of diet are yet to be classified.  
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Figure 2: Dietary restriction enriches the sulfhydration profiles in liver, kidney, muscle, and brain. (A-D) 

Volcano plots showing biologically- and statistically-significant differentially abundant sulfhydrated proteins in 

liver (A), kidney (B), quadriceps muscle (C), and whole brain (D) from ad libitum (AL; n = 4 mice/group) versus 

50% dietary restriction (DR; n = 5 mice/group) fed cystathionine γ-lyase (CGL) WT mice. The log2(Fold Change 

DR:AL) X-axis displays the average fold change in spectral counts for each identified sulfhydrated protein while 

the –log10 Y-axis displays the calculated p-value when comparing the individual spectral count values for each 

identified sulfhydrated protein in a specific tissue from AL versus DR fed mice. The non-axial red dotted vertical 

lines highlight the biological significance threshold of +/-2-fold change in spectral counts between DR versus 

AL, while the non-axial red dotted horizontal line with asterisk highlights our statistical significance threshold of 

p <0.05. The number of total sulfhydrated proteins identified in each tissue are given next to the tissue name, 

while blue (AL enriched) and green (DR enriched) colored dots and text indicate sulfhydrated proteins reaching 

both biological- and statistical- thresholds. Gray color dots indicate sulfhydrated proteins not reaching the criteria 

for both biological and statistical significance for enrichment under either diet. See also Supplemental Figure 2. 
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Numerous pathways enriched with sulfhydrated proteins dependent on diet and organ 

 In the four organs positively enriched for sulfhydrated proteins after 1-week 50% DR, a total of 1,854 

individual proteins were identified, with 209, or 11.3%, shared amongst liver, kidney, muscle, and brain (Figure 

3A, Supplemental Table 5). Biological function and pathway enrichment via g:Profiler analysis (Raudvere et al., 

2019) of the shared 209 sulfhydrated proteins utilizing the KEGG database (Kanehisa et al., 2016) revealed a total 

of 15 pathways, with carbon metabolism, proteasome, and valine, leucine, and isoleucine degradation as the top 

three most significantly enriched (Figure 3B). As this previous analysis did not take into account diet-related 

changes in the sulfhydromes of these four organs, we next compared the proteins and pathways enriched for 

sulfhydration under AL and DR feeding (Figures 3C-G, Supplementary Tables 6-9). A total of 63 individual 

proteins were identified to be enriched for sulfhydration under AL feeding with 0 shared (Figure 3C), while a 

total of 429 proteins were identified to be enriched for sulfhydration under DR feeding with 0 shared (Figure 3D).  

As no common sulfhydrated proteins were enriched as a function of diet in all four organs, we next 

examined tissue-specific functional enrichment analysis of sulfhydrated proteins. Liver contained 2 pathways 

enriched; selenocompound metabolism and terpenoid backbone biosynthesis, under AL and 1 pathway enriched; 

metabolic pathways, under DR feeding (Figure 3E, Supplemental Table 6). Kidney contained 1 pathway enriched; 

glycine, serine, and threonine metabolism, under AL and 1 pathway; nitrogen metabolism, under DR feeding 

(Figure 3F, Supplemental Table 7). No pathways were enriched from the diet-specific sulfhydrated proteins in 

muscle. Brain contained 12 pathways enriched under AL and 13 enriched under DR feeding (Figure 3G, 

Supplemental Table 9). The top three pathways enriched under AL feeding in the brain included valine, leucine, 

and isoleucine degradation, fatty acid degradation, and metabolic pathways, while the top three pathways enriched 

under DR feeding in the brain included carbon metabolism, biosynthesis of amino acids, and 

glycolysis/gluconeogenesis (Figure 3G).  

Sulfhydrated proteins not significantly impacted by diet, which primarily compose the majority of the 

sulfhydromes in liver, kidney, muscle, and brain, still trended for enrichment under DR (Figures 2A-D; gray dots). 

Function and pathway enrichment of these proteins revealed 34, 41, 15, and 13 pathways in liver, kidney, muscle, 

and brain, respectively (Supplemental Figure 3A-D). Ten of the pathways identified were shared amongst all four 

tissues, and include metabolic processes, carbon metabolism, valine, leucine and isoleucine degradation, 

biosynthesis of amino acids, glyoxylate and dicarboxylate metabolism, cysteine and methionine metabolism, 

pyruvate metabolism, proteasome, citrate cycle (TCA cycle), and glycolysis/gluconeogenesis. While not shared 

amongst all tissues, pathways related to aging-related neurodegenerative Parkinson and Huntington diseases were 

enriched with sulfhydrated proteins in both kidney and muscle (Supplemental Figure 3B, C). Thus, we have 

identified 4 major metabolic tissues/organs that respond to dietary restriction via enriching their total number of 

sulfhydrated proteins, with many of the proteins falling into specific biological pathways and functions. 
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Figure 3: Multiple pathways enriched with sulfhydrated proteins dependent on diet and organ. (A) 4-way 

Venn diagram showing the abundance of shared and non-shared sulfhydrated proteins identified in liver, kidney, 

muscle, and brain in CGL WT mice. 209 sulfhydrated proteins were shared amongst all 4 organs. n = 9 mice total; 

4 AL and 5 DR. (B) KEGG biological function and pathway enrichment of the shared 209 proteins found in liver, 

kidney, muscle, and brain via g:Profiler analysis. The number in the bar indicates the number of individual 

sulfhydrated proteins identified for that specific pathway. (C-D) 4-way Venn diagram showing shared and non-

shared sulfhydrated proteins enriched under AL (C) and DR (D) feeding. (E-G) KEGG biological function and 

pathway enrichment of AL enriched (blue bars) or DR enriched (green bars) sulfhydrated proteins in liver (E), 

kidney (F), and brain (G). The number inside the bar indicates the quantity of sulfhydrated proteins involved in 

that specific pathway. Statistical significance for pathway enrichment plotted as –log10 (P-Value) and obtained 

via the g:Profiler g:SCS algorithm for KEGG database analysis. See also Supplemental Figure 3. 
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DR decreases heart and negligibly impacts plasma sulfhydrome profiles 

While DR enriched the sulfhydromes of liver, kidney, muscle, and brain, it failed to do so in heart and 

plasma (Figure 4A, B; Supplemental Figure 4A, B; and Supplemental Tables 10, 11). In heart, a total of 459 

sulfhydrated proteins were identified, with 45 enriched under AL feeding and 17 enriched under DR feeding 

(Figure 4A; Supplemental Figure 4A; and Supplemental Table 10). In plasma, a total of 160 sulfhydrated proteins 

were identified, with 3 enriched under AL feeding and 0 enriched under DR feeding (Figure 4B; Supplemental 

Figure 4B; and Supplemental Table 11). Between heart and plasma, in total 78 common sulfhydrated proteins 

were identified (Figure 4C; Supplemental Table 12), of which 4 biological functions/pathways were enriched, 

and include complement and coagulation cascades, staphylococcus aureus infection, HIF-1 signaling, and 

glycolysis/gluconeogenesis (Figure 4D). Of the sulfhydrated proteins enriched under AL and DR feeding in heart 

and plasma, 0 were common between the two tissues (Figure 4E). As no common sulfhydrated proteins were 

enriched as a function of diet in heart and plasma, we next examined tissue-specific functional and pathway 

enrichment analysis of sulfhydrated proteins. Heart contained 12 pathways enriched; with the top three being 

carbon metabolism, valine, leucine, and isoleucine degradation, and citrate/TCA cycle, under AL and 3 pathways 

enriched; complement and coagulation cascades, ferroptosis, and staphylococcus aureus infection, under DR 

feeding (Figure 4F, Supplemental Table 13). Plasma had no diet-specific pathway enrichment of sulfhydrated 

proteins (Supplemental Table 14).  

Sulfhydrated proteins not significantly impacted by diet did not trend for enrichment under either diet type 

(Figure 4A, B; gray dots). Function and pathway enrichment of these proteins revealed 27 and 6 pathways 

enriched in the heart and plasma, respectively (Supplemental Figure 4C, D). In heart, the top three pathways 

enriched include carbon metabolism, metabolic pathways, and pyruvate metabolism (Supplemental Figure 4C). 

In plasma, the top three pathways enriched include complement and coagulation cascades, staphylococcus aureus 

infection, and prion diseases (Supplemental Figure 4D). One shared pathway amongst this population of 

sulfhydrated proteins in heart and plasma included complement and coagulation cascades. Similar to kidney and 

muscle, the heart also showed enrichment for sulfhydrated proteins in the aging-related Parkinson and Alzheimer 

disease pathways (Supplemental Figure 4C). 

When combining all six tissues analyzed in CGL WT mice, 3,997 individual and shared sulfhydrated 

proteins were identified, with 111 and 466 statistically and biologically enriched under AL and DR feeding, 

respectively (Figure 4G). The remaining proteins not meeting statistical and biological criteria still trended for 

enrichment under DR feeding (Figure 4G). To examine shared sulfhydrated proteins amongst all six tissues, we 

compared the 209 proteins identified as shared in liver, kidney, muscle, and brain with the 78 proteins identified 

as shared in heart and plasma. A total of 28 proteins were identified as common in all six tissues (Figure 4H, 

Supplemental Table 15). These 28 were involved in 2 blood-centric biological functions/pathways, which 

included complement and coagulation cascades, and platelet activation (Figure 4I).  

Thus, diet impacts the mammalian sulfhydrome in a tissue-specific manner, with the majority of tissues 

tested having expanded and enhanced sulfhydromes after 1-week of 50% DR. However, increases or decreases 

in tissue-specific sulfhydromes surprisingly only correlated to H2S production capacity in liver and kidney, which 

were CGL-dependent for their DR-induced increase in H2S production. This is indicative of sulfhydration being 

more than just the presence of H2S modifying a protein, and suggests a more complicated systemic regulation of 

tissue-specific sulfhydrome maintenance either at baseline or when faced with a stressor, such as restricted food 

access. 
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Figure 4: Sulfhydromes of heart and plasma respond differently to diet compared to those of liver, kidney, 

muscle, and brain. (A-B). Volcano plots showing biologically- and statistically-significant differentially 

abundant sulfhydrated proteins in heart (A), and plasma (B) from AL (n = 4 mice/group) versus DR (n = 5 

mice/group) fed CGL WT mice. The log2(Fold Change DR:AL) X-axis displays the average fold change in 

spectral counts for each identified sulfhydrated protein while the –log10 Y-axis displays the calculated p-value 

when comparing the individual spectral count values for each identified sulfhydrated protein in a specific tissue 

from AL versus DR fed mice. The number of total sulfhydrated proteins identified in each tissue are given next 

to the tissue name, while blue (AL enriched) and green (DR enriched) colored dots and text indicate sulfhydrated 

proteins reaching both biological- and statistical- thresholds. Gray color dots indicate sulfhydrated proteins not 

reaching the criteria for both biological and statistical significance for enrichment under either diet. (C) Venn 

diagram showing the abundance of shared and non-shared sulfhydrated proteins in heart and plasma in CGL WT 

mice. 78 sulfhydrated proteins were shared amongst these two tissues. (D) KEGG biological function and pathway 

enrichment of the shared 78 proteins found in heart and plasma via g:Profiler analysis. The number in the bar 

indicates the number of individual sulfhydrated proteins identified for that specific pathway. (E) Overlap of AL 

enriched sulfhydrated proteins in heart and plasma. (F) KEGG biological function and pathway enrichment of 

AL enriched (blue bars) or DR enriched (green bars) sulfhydrated proteins in heart. (G) Comprehensive volcano 

plot showing diet-related protein sulfhydration enrichment in liver, kidney, muscle, brain, heart, and plasma 

between AL and DR fed mice. (H) Venn diagram to show shared and unshared sulfhydrated proteins, with 28 

shared amongst all 6 tissues. (I) KEGG biological function and pathway enrichment of the shared 28 proteins 

found in all 6 tissues via g:Profiler analysis. The number in the bar indicates the number of individual sulfhydrated 

proteins identified for that specific pathway. Statistical significance for pathway enrichment plotted as –log10 (P-

Value) and obtained via the g:Profiler g:SCS algorithm for KEGG database analysis. See also Supplemental 

Figure 4. 
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CGL deficiency limits the sulfhydrome under AL and DR feeding 

DR-enhanced H2S production capacity (Hine et al., 2015; Yoshida et al., 2018) (Figure 1D, E, J, and K), 

stress resistance (Hine et al., 2015), endocrine response (Hine et al., 2017), angiogenesis (Longchamp et al., 

2018), and lifespan (Kabil et al., 2011a) requires CGL activity. Thus, we next tested the CGL requirement for 

diet-induced changes in the sulfhydrome. As the dependency of H2S production in liver and kidney were primarily 

CGL derived (Figure 1A, B), we chose these same two tissues to examine CGL-dependent and independent 

sulfhydration at baseline and under DR.  

In the liver, a total of 698 sulfhydrated proteins were detected in CGL KO mice; an approximate 30% 

reduction compared to CGL WT mice (Figure 5A, Supplemental Figure 5A, and Supplemental Table 16). Of 

these 698 proteins, 4 were enriched under AL feeding while 25 were enriched under DR feeding (Figure 5A, and 

Supplemental Table 16). In comparing total liver sulfhydrated proteins of WT and CGL KO mice, we discovered 

a total of 1,021 individual proteins, with 323; or 31.6%, unique to WT mice, 44; or 4.3 %, unique to KO mice, 

and 654; or 64.1%, shared between WT and CGL KO mice (Figure 5B). Biological function and pathway 

enrichment via g:Profiler analysis of these shared 654 sulfhydrated proteins utilizing the KEGG database revealed 

over 25 pathways, with the top three being metabolic pathways, carbon metabolism, and valine, leucine, and 

isoleucine degradation (Figure 5C). Pathway enrichment for the CGL-dependent 323 sulfhydrated proteins was 

found to total 8, and included aging and health-related targets such as metabolic pathways, oxidative 

phosphorylation, Parkinson disease, Huntington disease, non-alcoholic fatty liver disease, lysosome, Alzheimer 

disease, and thermogenesis (Figure 5D). Interestingly, no functions/pathways were enriched from the 44 unique 

sulfhydrated proteins found only in the livers of CGL KO mice. In comparing AL diet-enriched sulfhydrated 

proteins in WT and CGL KO mice, we found a total of 19 individual proteins enriched under AL, with 15; or 

78.9%, unique to WT mice, 3, or 15.8%, unique to KO mice, and 1, or 5.3%, shared between WT and CGL KO 

mice (Figure 5E). The 3 proteins unique to CGL KO mice and the 1 protein shared between WT and CGL KO 

mice failed to account for any significant pathway enrichment. However the 15 proteins unique to AL fed WT 

mice livers resulted in the same 2 enriched pathways as detected previously (Figure 3E), and included 

selenocompound metabolism, and terpenoid backbone biosynthesis (Figure 5F). In comparing DR-enriched 

sulfhydrated proteins in WT and CGL KO mice, we found a total of 55 individual proteins enriched under DR, 

with 30; or 54.5%, unique to WT mice, 25; or 45.5%, unique to KO mice, and 0 shared between WT and CGL 

KO mice (Figure 5G). Interestingly, the 25 sulfhydrated proteins unique to CGL KO mice failed to account for 

any functional enrichment. The 30 sulfhydrated proteins unique for CGL WT mice under DR provided the same 

enriched function detected previously (Figure 3E), that being metabolic pathways (Figure 5H). Sulfhydrated 

proteins not significantly impacted by diet in CGL KO livers did not trend for enrichment under either diet type 

(Figure 5A; gray dots). Function and pathway enrichment of these proteins revealed 30 pathways (Supplemental 

Figure 5B, Supplemental Table 17). The top three pathways enriched include metabolic pathways, carbon 

metabolism, and valine, leucine, and isoleucine degradation (Supplemental Figure 5B).  
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Figure 5: CGL dependent and independent sulfhydration and pathway enrichment in the liver. (A) Volcano 

plot showing biologically- and statistically-significant differentially abundant sulfhydrated proteins in liver from 

AL (n = 3 mice/group) versus DR (n = 3 mice/group) fed CGL KO mice. The log2(Fold Change DR:AL) X-axis 

displays the average fold change in spectral counts for each identified sulfhydrated protein while the –log10 Y-

axis displays the calculated p-value when comparing the individual spectral count values for each identified 

sulfhydrated protein in liver from AL versus DR fed mice. The number of total sulfhydrated proteins identified 

was 698, while blue (AL enriched) and green (DR enriched) colored dots and text indicate sulfhydrated proteins 

reaching both biological (2-fold enrichment)- and statistical (p < 0.05)- thresholds. Gray color dots indicate 

sulfhydrated proteins not reaching the criteria for both biological and statistical significance under either diet. (B) 

Venn diagram to show shared and unshared sulfhydrated proteins between CGL WT and KO livers, with 654 

common. (C-D) Enriched function/pathway analysis of the shared 654 proteins (C) or the 323 unique to CGL 

WT liver (D). Numbers inside the bars indicate the number of sulfhydrated proteins involved in that specific 

pathway. (E) Venn diagram to examine the number of shared and unshared AL enriched sulfhydrated proteins in 

WT and CGL KO livers. (F) Enriched function/pathway analysis of the 15 unique sulfhydrated proteins found in 

AL fed WT livers, similar to Figure 3E. (G) Venn diagram to examine the number of shared and unshared DR 

enriched sulfhydrated proteins in WT and CGL KO livers. (H) Enriched function/pathway analysis of the 30 

unique sulfhydrated proteins found in DR fed WT livers, similar to Figure 3E. See also Supplemental Figure 5. 
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In the kidney, a total of 869 sulfhydrated proteins were detected in CGL KO mice; an approximate 20% 

reduction compared to CGL WT mice (Figure 6A, Supplemental Figure 6A, and Supplemental Table 18). Of 

these 869 proteins, 10 were enriched under AL feeding while only 5 were enriched under DR feeding (Figure 6A, 

and Supplemental Table 18). In comparing total kidney sulfhydrated proteins of WT and CGL KO mice, we 

discovered a total of 1,341 individual proteins, with 472; or 35.2%, unique; to WT mice, 268; or 20 %, unique to 

KO mice, and 601; or 44.8%, shared between WT and CGL KO mice (Figure 6B). Biological function and 

pathway enrichment via g:Profiler analysis of these shared 601 sulfhydrated proteins utilizing the KEGG database 

revealed over of 25 pathways, with the top three being metabolic pathways, carbon metabolism, and valine, 

leucine, and isoleucine degradation (Figure 6C). Pathway enrichment for the CGL-dependent 472 sulfhydrated 

proteins was found to total 2, and included metabolic pathways, and valine, leucine, and isoleucine degradation 

(Figure 6D) with no pathways enriched from the 268 proteins unique to CGL KO kidney. In comparing AL diet-

enriched sulfhydrated proteins in WT and CGL KO mice, we found a total of 15 individual proteins enriched 

under AL, with 5; or 33.3%, unique to WT mice, 10; or 66.7%, unique to KO mice, and 0 shared between WT 

and CGL KO mice (Figure 6E). The 10 kidney proteins unique to AL fed CGL KO mice failed to account for any 

pathway enrichment. However the 5 kidney proteins unique to AL fed WT mice resulted in the same enriched 

pathway as detected previously (Figure 3F), and included glycine, serine, and threonine metabolism (Figure 6F). 

In comparing DR-enriched kidney sulfhydrated proteins in WT and CGL KO mice, we found a total of 21 

individual proteins enriched under DR, with 16; or 76.2%, unique to WT mice, 5; or 23.8%, unique to KO mice, 

and 0 shared between WT and CGL KO mice (Figure 6G). The 5 sulfhydrated proteins unique to CGL KO mice 

failed to account for any functional enrichment. The 16 sulfhydrated proteins unique for CGL WT mice under 

DR provided the same enriched function detected previously (Figure 3F), that being nitrogen metabolism (Figure 

6H). Sulfhydrated proteins not significantly impacted by diet in CGL KO kidneys trend for enrichment under AL 

feeding (Figure 6A; gray dots), which is opposite for what was detected in CGL WT kidneys (Figure 2B). 

Function and pathway enrichment of these proteins revealed 31 pathways (Supplemental Figure 6B, Supplemental 

Table 19). The top three pathways enriched include metabolic pathways, carbon metabolism, and citrate (TCA) 

cycle (Supplemental Figure 6B).  
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Figure 6: CGL dependent and independent sulfhydration and pathway enrichment in the kidney. (A) 

Volcano plot showing biologically- and statistically-significant differentially abundant sulfhydrated proteins in 

kidney from AL (n = 3 mice/group) versus DR (n = 3 mice/group) fed CGL KO mice. The log2(Fold Change 

DR:AL) X-axis displays the average fold change in spectral counts for each identified sulfhydrated protein while 

the –log10 Y-axis displays the calculated p-value when comparing the individual spectral count values for each 

identified sulfhydrated protein in kidney from AL versus DR fed mice. The number of total sulfhydrated proteins 

identified was 869, while blue (AL enriched) and green (DR enriched) colored dots and text indicate sulfhydrated 

proteins reaching both biological (2-fold enrichment)- and statistical (p < 0.05)- thresholds. Gray color dots 

indicate sulfhydrated proteins not reaching the criteria for both biological and statistical significance under either 

diet. (B) Venn diagram to show shared and unshared sulfhydrated proteins between CGL WT and KO kidneys, 

with 601 common. (C-D) Enriched function/pathway analysis of the shared 601 proteins (C) or the 472 unique 

to CGL WT kidney (D). Numbers inside the bars indicate the number of sulfhydrated proteins involved in that 

specific pathway. (E) Venn diagram to examine the number of shared and unshared AL enriched sulfhydrated 

proteins in WT and CGL KO kidneys. (F) Enriched function/pathway analysis of the 5 unique sulfhydrated 

proteins found in AL fed WT livers, similar to Figure 3F. (G) Venn diagram to examine the number of shared 

and unshared DR enriched sulfhydrated proteins in WT and CGL KO kidneys. (H) Enriched function/pathway 

analysis of the 16 unique sulfhydrated proteins found in DR fed WT kidneys, similar to Figure 3F. See also 

Supplemental Figure 6. 

 

 

15

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 10, 2019. ; https://doi.org/10.1101/869271doi: bioRxiv preprint 

https://doi.org/10.1101/869271
http://creativecommons.org/licenses/by/4.0/


In examining CGL-dependent and independent sulfhydration regulation in the liver and kidney under both 

feeding conditions, we discovered CGL is required for approximately 30% of total proteins sulfhydrated in the 

liver and 20% in the kidney (Figure 5B and Figure 6B). Additionally, CGL is required for concerted sulfhydration 

of proteins for functional pathway enrichment under DR (Figure 5G, H and Figure 6G, H). Further examining the 

extent and requirement for CGL in shaping the sulfhydrome under DR in these two tissues, we re-plotted 

individual and shared sulfhydrated proteins from WT liver and kidney (Figure 7A) and from CGL KO liver and 

kidney (Figure 7B). In total, 2,063 proteins were detected in WT liver and kidney and 1,567 proteins in KO liver 

and kidney, resulting in an approximate 25% decrease in sulfhydrated proteins due to loss of CGL. While the fold 

enrichment in sulfhydrated proteins meeting both statistical and biological thresholds between DR and AL is 

similar between WT and KO; 2.2-fold and 2.1-fold, respectively, we have already demonstrated that the 

sulfhydrated proteins enriched in CGL KO mice, but not WT mice, for both of these tissues fail to fall under 

specific functional pathway enrichment. This is indicative that CGL may not just produce H2S for random 

sulfhydration or in itself randomly sulfhydrate proteins, but that CGL may process specificity for its protein 

targets. Also remarkable is when visually examining the plots for the sulfhydrated proteins that failed to meet 

statistical and biological thresholds of significance for enrichment under AL versus DR in liver and kidney (Figure 

7A, B; gray dots). This subset of sulfhydrated proteins is prominently shifted towards enrichment under DR in 

WT mice, with ~75% with a DR:AL average spectral count ratio above 1 (Figure 7A). Conversely, this same 

subset of sulfhydrated proteins is shifted towards enrichment under AL in CGL KO mice, with only 38% having 

a DR:AL average spectral count ratio above 1 (Figure 7B). The overall reductions in sulfhydrated proteins in liver 

and kidney of CGL KO mice are proportional to their relative H2S production capacities, as seen in Figure 7C, 

where we show a strong, positive correlation between both CGL WT and KO tissue-specific H2S production 

capacities under AL feeding and the total numbers of sulfhydrated proteins identified (N = 8, r = 0.881, p = 

0.0072). Removing CGL KO tissues from this analysis still provides an almost identical Spearman r-value and 

positive correlation, albeit one with a less-significant p-value (Supplemental Figure 7A) (N = 6, r = 0.8857, p = 

0.0333), indicative that sulfhydration in CGL KO liver and kidney is appropriate for their levels of H2S production 

capacity. Thus, CGL-independent H2S production processes via CBS, 3MST, or non-enzymatic production (Yang 

et al., 2019) can contribute to sulfhydration in these two tissues, however CGL is required for DR-mediated 

sulfhydration of specific proteins for functional pathway enrichment as well as an amplified shift of the entire 

sulfhydrome.  
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Figure 7: CGL is required for DR-mediated enrichment of the entire liver and kidney sulfhydrome. (A-B) 

Volcano plots re-imaging data from Figures 2, 5, and 6 to show biologically- and statistically-significant 

differentially abundant sulfhydrated proteins in kidney and liver from CGL WT AL (n = 4 mice/group) versus 

CGL WT DR (n = 5 mice/group) (A) and in kidney and liver from CGL KO AL (n = 3 mice/group) versus CGL 

KO DR (n = 3 mice/group) (B). The log2(Fold Change DR:AL) X-axis displays the average fold change in spectral 

counts for each identified sulfhydrated protein while the –log10 Y-axis displays the calculated p-value when 

comparing the individual spectral count values for each identified sulfhydrated protein in kidney and liver from 

AL versus DR fed mice. Blue (AL enriched) and green (DR enriched) colored dots and text indicate sulfhydrated 

proteins reaching both biological (2-fold enrichment)- and statistical (p < 0.05)- thresholds. Gray color dots 

indicate sulfhydrated proteins not reaching the criteria for both biological and statistical significance under either 

diet. (C) Correlation between average H2S production capacity and total number of sulfhydrated proteins in CGL 

WT and KO tissues. Arbitrary average H2S production capacity values determined from ImageJ IntDen function 

using the lead acetate/lead sulfide H2S assay as shown in Figure 1C (n = 3 samples/tissue) were plotted on the X-

axis while the total number of sulfhydrated proteins stated in Figures 2, 4, 5, and 6 were plotted on the Y-axis (n 

= 9 samples/tissue for CGL WT and n = 6 samples/tissue for CGL KO). Graphpad Prism was used to fit the 

trendline and the given statistics calculated via XY analysis nonparametric correlation (Spearman) test with a 

two-tailed P- value and 95% confidence interval. (D) Model figure depicting the impact of DR on endogenous 

H2S production and protein sulfhydration in tissue specific and CGL-dependent manners. Arrows pointing up 

indicate an increase, arrows pointing down indicate a decrease, and horizontal arrows indicate no change. See 

also Supplemental Figure 7. 
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Discussion  

In the current study, we examined the multi-tissue and systemic extent to which dietary restriction (DR), 

a well-studied anti-aging intervention (Fontana and Partridge, 2015), impacts H2S production capacity and the 

sulfhydromes in liver, kidney, muscle, brain, heart, and plasma. In addition, we hypothesized the H2S producing 

enzyme cystathionine γ-lyase (CGL), which is required for stress resistance and angiogenesis benefits of short-

term DR (Hine et al., 2015; Longchamp et al., 2018; Trocha et al., 2019), is partially required for baseline and 

diet-induced changes in tissue-specific sulfhydromes. We found H2S production is strongest in liver and kidney 

and primarily driven by CGL in these tissues, while other tissues had relatively weak H2S production independent 

of CGL. Short-term 1-week 50% DR increased H2S production capacity in a CGL-dependent manner in liver and 

kidney, while it had minimal effect on production capacities in the other tissues. Interestingly, despite only liver 

and kidney showing increased H2S production after DR, the sulfhydromes of muscle and brain were also expanded 

and enriched after one week of DR. The concerted augmentation for sulfhydrated proteins in liver and kidney to 

enrich specific biological functions and pathways was CGL-dependent. Also surprising, the heart sulfhydrome 

was diminished after DR. These results are summarized in the model Figure 7D. Below, we discuss these findings 

with regard to their contexts in the fields of aging and sulfide-redox biology while also addressing this study’s 

limitations and future directions. 

Enhanced bioavailability and/or production capacity of endogenous H2S, particularly via CGL activity, 

has only recently been recognized as a common phenomenon and proposed mechanisms of action for dietary, 

genetic, and pharmacological models of longevity and healthy aging across evolutionary boundaries (Hine et al., 

2018; Kabil et al., 2011a; Tyshkovskiy et al., 2019). However, the molecular mechanisms underlying many of 

the pleiotropic cellular, physiological, and systemic benefits of H2S, particularly and in the context of diet and 

aging, have remained unclear. As aging is a multifaceted and complex decline in numerous physiological and 

metabolic functions, the role H2S plays in combating these declines theoretically should not be limited to one 

molecular pathway, receptor, system, or mechanism. Most likely, it is through H2S performing several non-

mutually exclusive functions related to antioxidant and redox homeostasis (Kabil et al., 2014), mitochondrial 

electron transfer (Luna-Sanchez et al., 2017), and protein modification and signaling via 

persulfidation/sulfhydration (Filipovic et al., 2018; Gao et al., 2015; Mustafa et al., 2009). Here, we focused on 

the latter mechanism, as little has been revealed regarding the entirety and scope of sulfhydration in mammals 

across several organ systems while under an anti-aging intervention. Additionally, uncovering the multi-organ 

sulfhydrome provides a resource and a primer for numerous downstream mechanistic and biochemical studies 

related to basic physiological processes and potential clinical issues impacted by, or the lack of, protein 

sulfhydration modifications. 

By what means does protein sulfhydration, and its augmentation during DR and other anti-aging 

interventions, serve to extend lifespan and healthspan? As sulfhydration offers a protective barrier on protein 

cysteine residues from irreversible oxidative modifications (Filipovic et al., 2018), it first protects the proteome 

from unwanted oxidative stress and prevents the need to synthesize new proteins to replace those that have been 

damaged. It also offers neuroprotection by preventing protein misfolding and amyloid formation linked to a 

number of neurodegenerative diseases (Rosario-Alomar et al., 2015). Most importantly, it enhances the anti-aging 

and cytoprotective activities of longevity and metabolism associated proteins such as, but not limited to, 

glyceraldehyde phosphate dehydrogenase (GAPDH) (Gao et al., 2015; Mustafa et al., 2009), nuclear factor κB 

(NF-κB) (Sen et al., 2012), endothelial ATP-sensitive potassium channels (Mustafa et al., 2011), sirtuin 1 (SIRT1) 

(Du et al., 2019), and the E3 ubiquitin ligase parkin (Vandiver et al., 2013). As we have uncovered in this study 

well over 1,000 sulfhydrated proteins involved in numerous biological pathways across multiple tissues, these 

results hint at a far reaching and potent H2S-mediated change in global proteome stability and function. 
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As expected, sulfhydrome profiles were expanded under DR in the liver and kidney and this was CGL-

dependent. While this is not the first study to recognize relative changes in tissue-specific protein sulfhydration 

as a function of CGL (Wedmann et al., 2016), it is the first to reveal the individual identities and abundances of 

these proteins, their functional and pathway involvement, and the dependence of both tissue-type, diet, and CGL 

to impact their sulfhydration status. These sulfhydration events in liver and kidney imparted on numerous 

metabolic, cellular homeostasis, and signaling pathways affected by the aging process, notably the proteasome, 

Parkinson’s disease, and Huntington’s disease. What we did not expect is the increase in global sulfhydration in 

muscle and brain under DR, as both of these tissues fail to augment H2S production capacity under DR. This 

indicates DR-mediated enhanced sulfhydration in these tissues may not be tissue autonomous, and the sources of 

H2S that enhance sulfhydration in these tissues arise from distal tissues, such as the liver or kidney, or from diet-

modifiable H2S producing endothelial cells residing within the tissue (Longchamp et al., 2018). While the idea of 

H2S itself being a circulating gasotransmitter in blood is somewhat controversial, mostly due to a number of issues 

regarding H2S detection methodology preferences (Olson, 2009), our data show these weak producing tissues still 

augment their sulfhydromes under DR. The failure to detect increased H2S production capacity or enriched 

sulfhydration in plasma may suggest DR does not induce systemic increases in sulfide availability and local 

enrichment of sulfhydration may be tissue autonomous via direct enzymatic sulfhydration of proteins via CGL, 

CBS, and/or 3-MST. However, only plasma was assayed here and not whole blood including white and red blood 

cells, of which the latter act as a sink for H2S via exchange in the microcirculation of strong H2S-producing tissues 

(Jennings, 2013). Thus, we cannot entirely rule out DR-enhanced H2S or persulfides in circulation as the 

mechanism for augmented sulfhydration in marginally H2S producing tissues. Future studies will need to test the 

requirement and protein-protein interactions for CGL, CBS, and 3-MST in DR induced sulfhydration changes as 

well as identify sources of H2S and/or polysulfides for sulfhydration in brain, muscle, and other weak H2S 

producing tissues. 

The absolute number of sulfhydrated proteins in the brain and their expansion under DR was unforeseen 

and surprising. This was primarily due to the lack of detectable DR-enhanced H2S production (Figure 1H) along 

with the purported sensitivity to H2S-induced toxicity in the central nervous system (CNS) owning to its low or 

non-existent sulfide quinone oxidoreductase (SQR) expression (Supplemental Figure 1H) (Lagoutte et al., 2010; 

Linden et al., 2012). SQR is a key mitochondrial enzyme catalyzing the initial steps of H2S oxidation, 

detoxification, and removal (Horsman and Miller, 2016; Libiad et al., 2014). However, H2S does serve beneficial 

roles in the brain, as decreased H2S or disruption of H2S producing enzymes in the brain or neuronal cells are 

associated with aging-related Parkinson’s, Huntington’s, and Alzheimer’s disease-like phenotypes (Paul and 

Snyder, 2018), while controlled H2S exposure serves to protect against cerebral ischemia-reperfusion injury (Yin 

et al., 2013) and slow the progression of neurodegeneration (Kamat et al., 2013). This suggests the lack of SQR 

enables H2S that reaches or is produced in the CNS to be utilized primarily for protein sulfhydration, and the 

benefits of H2S in the CNS are primarily derived through sulfhydration. An example of this transformation and 

biological impact in the brain can be seen when examining pyruvate kinase (PKM), the protein in the brain with 

the greatest increase; > 500-fold, in sulfhydration enrichment under DR detected in our study. PKM catalyzes the 

final rate-limiting step of glycolysis to produce pyruvate and ATP, and modification of cysteine residues 

allosterically regulate PKM’s enzymatic activity (Gao et al., 2015; Mitchell et al., 2018). Importantly, it was 

previously shown that oxidation or nitrosylation of key cysteine residues prevent and/or destabilize the active 

tetrameric form of PKM and drive PKM to its inactive monomeric form (Mitchell et al., 2018), while CGL 

generated H2S increases PKM activity without altering PKM protein levels (Gao et al., 2015). Thus, DR may 

stimulate glycolytic flux in the brain via increased sulfhydration of PKM and maintenance of its active state. The 

functional impact of sulfhydration on other individual proteins identified here but not in previous studies will be 

of great interest and focus for numerous future studies. 
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Higher SQR activity in liver, kidney or heart potentially limits protein sulfhydration via the oxidation of 

and removal of H2S. This may explain the decrease in sulfhydration in heart upon DR, as H2S may impart its 

beneficial cardiac functions (Kondo et al., 2013; Polhemus et al., 2013), particularly under ischemic-reperfusion 

injury, via SQR-mediated mitochondrial oxidation of H2S rather than sulfhydration-centric mechanisms. Future 

studies need to examine SQR expression or activity in cardiac tissue in response to DR to elucidate its DR-induced 

loss of sulfhydration. Conversely, the decrease in cardiac sulfhydration upon DR may not be solely due to 

increased H2S oxidation and removal via SQR, but through potential depersulfidation of proteins via the 

thioredoxin (Trx) system (Doka et al., 2016; Wedmann et al., 2016). The function and potential benefit of 

removing sulfhydryl groups on proteins in cardiac tissue upon DR is not well understood or described in our 

study. However, Trx mediated cleavage of cysteine persulfides results in H2S release (Wedmann et al., 2016). 

Thus, a potential hypothesis is that depersulfidation in the heart releases H2S and/or polysulfides for potential 

beneficial use elsewhere, perhaps via SQR for mitochondrial protection and appropriate changes in metabolism 

and fuel usage during ischemic reperfusion. Further examination into Trx depersulfidase activity during DR, and 

if it is stunted in tissues with enhanced sulfhydrome profiles and boosted in tissues with decreased sulfhydrome 

profiles, is warranted. This also offers an alternative explanation for the changes in tissue-specific sulfhydromes 

as a function of DR that is mutually exclusive of H2S production capacities. While SRQ and Trx may impart some 

regulation into sulfhydrome profiles under different dietary cues, our results in Figure 7C support the hypothesis 

that in general the overall number of sulfhydrated proteins in a tissue is strongly correlated to its H2S production 

capacity under ad libitum feeding conditions. 

Reactive oxygen and nitrogen species (RONS), much like H2S, display hormetic dose responses and act 

as secondary cellular messengers. Similarly, transiently increased RONS production during DR through increased 

mitochondrial fatty acid oxidation is thought to drive many of the benefits of DR and DR-mimetics (Calabrese 

and Mattson, 2011; Hine and Mitchell, 2012; Ristow and Schmeisser, 2011; Ristow et al., 2009). Thus, in light 

of the requirement for the activation of cysteine residues via oxidation prior to sulfhydration by H2S (Filipovic et 

al., 2018; Gao et al., 2015), it is appropriate to consider the interdependence of DR-mediated augmentation in 

RONS and H2S for promoting changes in the sulfhydrome during DR and together driving adaptive mechanisms 

of antioxidant protection, stress resistance, and longevity. Likewise, non-dietary means to extend lifespan in the 

worm Caenorhabditis elegans via germline loss, low levels of paraquat, or mild inhibition of respiration 

simultaneously triggered the generation of RONS and H2S, with the boost of both hormetic factors responsible 

and necessary for the stress resistance and slowed aging found in these manipulations (Wei and Kenyon, 2016). 

Thus, this hypothesis can be framed in such a way that the same cues that lead to increased H2S production also 

boost non-harmful RONS production, and these RONS prime cysteine residues for sulfhydration. This ultimately 

alters the protein’s structure, interactions, and function concurrent with protecting the protein’s cysteine residues 

from irreversible over-oxidation. Taking into context these biological complexities of the sulfhydration process 

that may not be fully recapitulated in cell culture systems or in vitro with exogenous addition of H2S highlights 

the need for more studies to be done in vivo and under various conditions to take snapshots of malleable and 

dynamic tissue-specific and/or organism-specific sulfhydromes. 

Limitations to our study include the lack of sulfhydration site identification on individual proteins and 

their mechanisms of action. While we identified specific proteins as sulfhydrated, we did not shown what cysteine 

residue or residues are sulfhydrated. Additionally, the pathway enrichment analysis simply shows the involvement 

of these sulfhydrated proteins in specific pathways, but the direction of metabolic flux or pathway 

activation/silencing is not inferred. Our biological experimental setup may also limit or influence the 

sulfhydromes identified, as we used male mice at 6-months of age, tissues harvested in the morning, and under a 

a 1-week dietary intervention. Changing the variables of sex, age, harvest timing, and diet could impact the tissue 
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specific sulfhydromes, by either expanding them or condensing them. Insights into how these variables impact 

H2S and sulfide biology include the sex-, diet-, and circadian-dependent differences in growth hormone and 

thyroid hormone signaling, of which are potent regulators of H2S production (Hine et al., 2017). Additionally, 

diurnal fluctuations in plasma H2S exist (Jin et al., 2017), so time of tissue harvest may impact sulfhydrome 

profiles. Likewise, technical variables in our experimental setup possibly influence the sulfhydromes identified. 

As we examined whole tissue lysates, we may be missing tissue region-specific sulfhydration enrichments. The 

ratio of NM-biotin to protein added during the BTA could also affect the results, Gao, et al. previously showed 

how lower concentrations of NM-biotin result in selective labeling of the more highly reactive sulfhydrated 

cysteine groups versus the less reactive non-sulfhydrated cysteine thiol (Gao et al., 2015). By increasing the 

amount of NM-biotin added, it could be possible to diminish the overall number of sulfhydrated proteins identified 

via labeling both the sulfhydrated cysteine and the non-sulfhydrated cysteines and thus preventing elution with 

DTT, and/or offering more selective isolation to proteins with multiple sulfhydration modifications. Thus, due to 

the dynamic rather than static nature of the sulfhydrome, the biological or technical experimental factors listed 

above, or use of another sulfhydration/persulfidation detecting methodology such as the biotin-switch (Mustafa 

et al., 2009) or tag-switch methods (Kouroussis et al., 2019), generation of alternative sulfhydrome profiles is 

likely. Despite these limitations, our work provides a starting point by identifying these proteins and their 

sulfhydration changes specific to tissue, diet, and CGL status. Future work is needed to identify the residue or 

residues of each protein sulfhydrated, how these residues are sulfhydrated; i.e. passive or targeted, and the 

functional changes in protein stability, location, and activity induced by these modifications. 

In summary, we reveal the global sulfhydration profile alterations in major metabolic organs under ad 

libitum and calorically restricted feeding. We show the importance of CGL enzyme for protein sulfhydration in 

liver and kidney. Ultimately, this study establishes a data resource for dietary restriction and H2S-related research 

while prompting the need to decipher downstream effects of these sulfhydrated proteins in metabolism, stress 

resistance, and longevity for ultimate use in developing sulfhydrated protein-based interventions and diagnostics. 
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Materials and Methods 

Animal Husbandry and Diet Intervention: All experiments were performed under the approval of the 

Cleveland Clinic Institutional Animal Care and Use Committee (IACUC), protocol number 2016-1778, and 

followed the National Institutes of Health Guide for the Care and Use of Laboratory Animals. Mice were bred, 

weaned between 21-23 days of age, and maintained under standard barrier housing conditions in the Cleveland 

Clinic Lerner Research Institute Biological Resource Unit on a 12-hour light/ 12-hour dark cycle, temperature 

between 20–23°C, 30%–70% relative humidity, and with initial ad libitum access to standard rodent food (Envigo 

#2918) and drinking water until the dietary intervention. Mice utilized were F2 generation 6-month old 

cystathionine γ-lyase (CGL) wildtype (WT) and total body knock out (KO) male mice obtained from initial 

parental CGL Het x Het breeding to generate CGL WT and KO F1s, and then breeding CGL WT x WT or CGL 

KO x KO F1s to generate the littermate and/or age-matched F2 experimental animals. Mice were group housed 

during all experimental procedures, with 3-5 mice per cage. The CGL WT and KO mice were originally generated 

on a mixed 129/C57BL/6 background as described previously (Hine et al., 2015; Yang et al., 2008) and then 

subsequently rederived into pathogen free C57/BL6 mice at Jackson Laboratories prior to colony establishment 

at the Cleveland Clinic. At 6-months of age, mice were switched to the experimental AIN-93G-based diet 

(Research Diets D10012G-2V-Formula 1) and exposed to ad libitum access for several days to adapt to the new 

food and for monitoring intake. The experimental diet consists of 20% of calories from protein, 64% of calories 

from carbohydrate, and 16% calories from fat, and has a 2x concentrations of mineral mix S10022G, vitamin mix 

V10037, and choline bitartrate to ensure proper nutrition and avoid malnutrition during the dietary restriction 

period. The powdered food mix was added in a 1:1 ratio (grams:mL) to a 2% agar (Sigma #A1296) solution in 

water before solidification to a semi-solid consistency that lessens the potential for hoarding of food in group 

housing of mice and increases accuracy of measuring food consumption as large chunks can’t be taken at one 

time and the food doesn’t crumble like with standard rodent chows. Ad libitum food intake per cage was measured 

daily for four days to determine the correct amount to restrict to achieve a 50% reduction in food intake, and thus 

a 50% reduction in calories consumed. After randomly assigning ad libitum (AL) or diet restriction (DR) feeding 

to the cages, food intake and body mass were measured over the 1-week intervention. AL fed mice were provided 

24-hour access to the diet and the DR mice fed their calculated allotment near the start of their dark phase at 7pm 

to limit disturbances in circadian rhythms and feeding patterns between the two groups (Acosta-Rodriguez et al., 

2017; Froy et al., 2009). After the 1-week dietary intervention, mice were euthanized in the late morning (between 

9am-12pm) via isoflurane anesthesia overdose followed by cervical dislocation and harvest of liver, kidney, heart, 

muscle (quadriceps), brain, and plasma. Plasma was collected via retro-orbital bleed and the blood immediately 

placed into lithium-heparin-coated tubes (Terumo #T-MLH). Tubes were centrifuged to separate RBCs from the 

serum/plasma. Collected tissues were immediately placed in 1.5 mL centrifuge tubes, flash frozen in liquid 

nitrogen, and then stored at -80oC until further analysis. 

Lead acetate/lead sulfide assay to detect enzymatic H2S production: The endogenous H2S production 

capacity of tissues were measured by following the lead acetate/lead sulfide method previously described (Hine 

et al., 2015; Hine and Mitchell, 2017). Briefly, ~80mg of tissue is first placed in 1.5 mL microcentrifuge tubes 

containing 250 µL of 1x passive lysis buffer (Promega) and homogenized, followed by multiple rounds of flash 

freezing/thawing using liquid nitrogen. After homogenization and lysis, tubes were briefly spun down to remove 

debris and the protein supernatant was saved. Protein concentration of the supernatant was measured with 

bicinchoninic acid assay (BCA) kit (Bio-Rad) followed by normalization of proteins via the addition of 1x passive 

lysis buffer. Next, the lead acetate/lead sulfide assay is setup by initially preparing the reaction mixture of 10mM 

L-cysteine (Sigma #168149) and 1mM pyridoxal phosphate (PLP) (Sigma #9255) in PBS, with 150 µL placed 

into each well of a 96-well plate. 100 µg of proteins from each tissue or 20 µL of plasma are added to each 
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respective well, then the plate is overlaid with filter paper embedded with lead acetate (Sigma #316512) and an 

addition weight on top, and incubated at 37 °C until a desirable amount of lead sulfide is detected for proper 

quantification using ImageJ densitometry analysis via the IntDen function. 

  Biotin thiol assay (BTA): The isolation and detection of sulfhydrated proteins were performed using an 

adaptation to the biotin thiol assay (BTA) as previously described by Gao, et al. (Gao et al., 2015). To isolate 

sulfhydrated proteins, tissues were first lysed with RIPA lysis buffer (Thermo Fisher Scientific, # 89900) 

containing protease inhibitor cocktail (Thermo Fisher Scientific, #78415). Protein concentration was determined 

via BCA kit (Bio-Rad) and all samples normalized to the same protein concentration. Next, 7 mg of protein were 

incubated with 343 µM Maleimide-PEG2-biotin (Thermo Fisher Scientific, #21901BID) at room temperature for 

30 minutes with agitation by precipitating the alkylated protein with 1 mL of 100% cold acetone by incubating at 

-20°C for 30 min. Additional washes were performed with 1 mL of 75% cold acetone followed by centrifugation 

and removal of acetone. Proteins were then resuspended in 0.25 mL of suspension buffer (RIPA + 1% SDS, pH 

7.5) followed by adding 0.75 mL of neutralization buffer (30 mM Tris, 1 mM EDTA, 150 mM NaCl, 0.5 % Triton 

X-100, pH 7.5). Alkylated proteins were incubated in 0.39 mL of streptavidin-agarose resin (Thermo Scientific, 

#20347) contained in spin columns (Pierce, Catalog No. 69705) and kept rotating overnight at 4˚C. Avidin beads 

were washed six times in 0.85 mL of wash buffer 1 (30 mM Tris, 1 mM EDTA, 150 mM NaCl, 0.5 % Triton X-

100, pH 7.5) followed by another six washes with 0.85 mL of wash buffer 2 (30 mM Tris, 1 mM EDTA, 600 mM 

NaCl, 0.5 % Triton X-100, pH 7.5) and finally another three washes with 0.85 mL of wash buffer 3 (30 mM Tris, 

1 mM EDTA, 100 mM NaCl, pH 7.5). Resin with bound proteins was first incubated with 500 µL elution buffer 

without DTT for 30 min at 25˚C which serves as a negative control and then subsequently with 500 µL 20 mM 

DTT for 30 min at 25˚C to elute sulfhydrated proteins. The addition of DTT selectively elutes sulfhydrated 

proteins, as it breaks the S-S bond but not the S-NM-Biotin bond, as can be seen with the –DTT control gel lanes 

having a lower detectable protein compared to the +DTT gel lanes (Supplemental Figure 2 B, C, D, E, F; 

Supplemental Figure 4 A, B; Supplemental Figure 5 A; and Supplemental Figure 6 A), supporting the 

effectiveness of the BTA method. Eluted proteins were run through Amicon Ultracel 10K (Millipore, 

#UFC501096) to concentrate in a final volume of 50µL. After obtaining this final protein solution with 

sulfhydrated proteins, subsequent gel electrophoresis analysis and mass spectrometry-based label-free protein 

identification is commenced to visualize, identify, and quantify the sulfhydrated proteins. 

Gel Electrophoresis and in-gel digestion: 1.5 mm thick hand cast sodium dodecyl sulfate (SDS)-12% 

polyacrylamide gels were used to separate and visualize purified sulfhydrated proteins via staining or Western 

Blot relative to –DTT controls and input controls via gel electrophoresis. 0.75 mm thick one-dimensional (SDS)- 

12% polyacrylamide hand cast gels were used to performed gel electrophoresis to separate sulfhydrated proteins 

for in-gel digestion and downstream HPLC-MS/MS analysis. For both of these processes, 11 µL of proteins from 

input, eluted –DTT samples, and +DTT samples, were mixed and denatured by boiling at 100oC with 2µL of 5x 

Laemmli loading buffer (Fisher Scientific, Catalog No. 39001) and loaded into each lane, with 7 µL of PageRuler 

Plus Prestained (Thermo Fisher #26619) protein ladder in the first lane. Gels were run at 135 volts for 2 hours for 

imaging only and Western blot endpoints, and for 13-15 minutes for gels purposed for obtaining sulhfydrated 

proteins for in-gel digestion and HPLC-MS/MS analysis. Gels for imaging only were then carefully washed with 

ddH2O for 10 minutes, protein bands stained with colloidal blue staining kit (Thermo Fisher, #LC6025) for 3 

hours at room temperature, and followed by another 3 hours of washing with ddH2O. Clean and visible protein 

containing gels were then scanned (Epson, #LW8W004863) to obtain images and then stored at 4oC in 5% acetic 

acid and 10% glycerol solution in a heat-sealable roll stock pouches (Fisher Scientific, #0181226E). Proteins in 

gels used for Western Blotting were then transferred to polyvinylidene difluoride membranes (Whatman), blotted 

for GAPDH (Abcam #ab8245) or α-tubulin (Abcam #ab4074) followed by horseradish peroxidase-conjugated 
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secondary antibody ( Abcam #97051) and visualized using SuperSignal West Femto Maximym Sensitivity 

Substrate (Thermo Scientific #34096) on an Amersham Imager 600 (General Electric). Gels used for in-gel 

digestion and downstream HPLC-MS/MS analysis were then washed for half an hour with ddH2O at room 

temperature. Protein bands were visualized by staining with gel code blue stain reagent (Thermo Fisher scientific, 

#24590) for one hour followed by washing the gel with ddH2O for another one hour at room temperature with 

gentle shaking. Clean and visible protein containing gels were scanned by using the Epson Scanner. A clean 

scalpel was first used to excise the entire band, and then the band was further cut into smaller bands of approximate 

1 mm3. All of the smaller gel pieces from the original band were transferred to 0.2 mL of wash buffer (50% 

ethanol and 5% acetic acid) in a 1.5 mL tube and washed overnight at room temperature. The following day gel 

pieces were dehydrated with acetonitrile and dried in a SpeedVac for 6 minutes. Sulfhydrated proteins in the dried 

bands were reduced with 0.1 mL of 65 mM dithiothreitol (DTT) (Fisher Scientific # BP172-5) at room 

temperature for 30 minutes, followed by alkylation for another 30 minutes at room temperature with 0.1 mL of 

162 mM iodoacetamide (Fisher Scientific, #AC122270050). Gel pieces were dehydrated two times with 0.2 mL 

acetonitrile and rehydration with 0.2 mL of 100 mM ammonium bicarbonate. Then, 40 µL of 10 ng/µL trypsin 

(Promega, #V5111) was added into the dried gel pieces with an additional 20 µL of 50 mM ammonium 

bicarbonate added to completely cover the gel pieces and kept overnight at room temperature for tryptic digestion. 

0.08 mL of extraction buffer (50% acetonitrile + 5% formic acid) was added twice for 10 minutes at room 

temperature each time to extract the digested peptides from the gel pieces followed by micro centrifuging for 10 

seconds. Supernatants were combined and transferred into a new 0.5 mL centrifuge tube and dried at room 

temperature in a Speedvac for 3 hours. 30 µL of 1% acetic acid was added into the dried peptides and transferred 

into an HPLC vial w/ cap (Sun-Sri, #200 050 & 501 313) for further mass spectrometric analysis.  

HPLC-Tandem mass spectrometric analysis/Orbitrap tribrid fusion lumos analysis: Digested 

peptides were analyzed on a ThermoFisher Scientific UltiMate 3000 HPLC system (ThermoFisher Scientific, 

Bremen, Germany) interfaced with a ThermoFisher Scientific Orbitrap Fusion Lumos Tribrid mass spectrometer 

(Thermo Scientific, Bremen, Germany). Liquid chromatography was performed prior to MS/MS analysis for 

peptide separation. The HPLC column used is a Dionex 15 cm x 75 µm Acclaim Pepmap C18, 2 μm, 100 Å 

reversed-phase capillary chromatography column. 5 μL volumes of the peptide extract were injected and peptides 

eluted from the column by a 90-minute acetonitrile/0.1% formic acid gradient at a flow rate of 0.30 μL/min and 

introduced to the source of the mass spectrometer on-line. Nano electrospray ion source was operated at 2.3 kV. 

The digest was analyzed using the data dependent multitask capability of the instrument acquiring full scan mass 

spectra using a Fourier Transform (FT) orbitrap analyzer to determine peptide molecular weights and collision 

induced dissociation (CID) MS/MS product ion spectra with an ion-trap analyzer to determine the amino acid 

sequence in successive instrument scans. The MS method used in this study was a data-dependent acquisition 

(DIA) with 3 second duty cycle. It includes one full scan at a resolution of 120,000 followed by as many MS/MS 

scans as possible on the most abundant ions in that full scan. Dynamic exclusion was enabled with a repeat count 

of 1 and ions within 10 ppm of the fragmented mass were excluded for 60 seconds.  Chromatograms obtains from 

this HPLC-MS/MS method are included in Supplemental Data File 1. 

Bioinformatics for Peptide identification and quantification: In order to do label free quantitative and 

qualitative proteomics analysis we used Mascot, SEQUEST and Scaffold software packages. These software were 

used for protein identification by converting raw spectrometric data into protein IDs and for relative quantification 

of protein abundance via label-free spectral counting.  For protein identification, three search engines were used 

including Mascot, Sequest which is bundled into Proteome Discoverer 1.4, and X!Tandem which is bundled into 

Scaffold 4.8.7.   For the Mascot searches, primary raw MS/MS data were converted into its MGF (Mascot Generic 

File) format files by using Discoverer Daemon 1.4 software (Licensed under Cleveland Clinic Proteomics Core).  
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The parameters selected for these searches include the following: Database: SwissProt, Taxonomy: Mus 

Musculus, Enzyme: Trypsin, Fixed modification: Carbamidomethyl(C), Variable modification: Oxidation of 

Methionine, Precursor Mass Tolerance: 10 ppm, Fragment Mass Tolerance: 0.8 Da, Peptide charge: 2+, 3+ and 

4+, with the monoisotopic and decoy database present.  

Scaffold, an online database software (version Scaffold_4.8.7, Proteome Software Inc., Portland, OR) 

(Craig and Beavis, 2004) was used to validate peptide and protein identifications and to create a comprehensive 

lists of target proteins. Protein and peptide identifications were validated using a decoy database strategy (reverse 

sequence of each protein for use as a decoy) and the decoy rate was set to zero, which may limit the total number 

of proteins identified but enables a higher confidence in protein identity for those that do meet all stringent criteria. 

Other settings for Scaffold included only allowing positive IDs if they could be established at greater than 99.9% 

probability and contained at least 2 identified peptides by the Peptide Prophet algorithm (Keller et al., 2002; 

Nesvizhskii et al., 2003) with Scaffold delta-mass correction. Proteins that contained similar peptides and could 

not be differentiated based on MS/MS analysis alone were grouped to satisfy the principles of parsimony. 

Additionally, to remove any false positive hits, we individually analyzed all of the proteins identified to ensure 

each one contained at least one cysteine residue by using the mouse protein amino acid sequences from UniProt 

Knowledgebase protein database (Proteome_ID/Tax_ID: UP000000589/10090). Those that did not contain at 

least one cysteine residue, and thus could not theoretically be sulfhydrated (approx. ~ 2-4% of our initial findings), 

were removed from our database and from further analysis. Peptide identifications were also required to exceed 

specific database search engine thresholds, including Mascot identifications required at least 40 ion score, Sequest 

identifications required at least XCorr (+1) is 1.5, XCorr (+2) is 2, XCorr (+3) is 2.25, and XCorr(+4) is 2.5, and  

X!Tandem identifications required at least 2.  

Label-free spectral counting was used to determine relative differences in sulfhydrated protein abundance 

between AL versus DR fed groups within a specific tissue (Asara et al., 2008). The spectral counts, which are 

defined as the total number of spectra identified for a specific protein (Lundgren et al., 2010), have integer values 

ranging from 0 for proteins below the level of detection up to 505. Theoretically, the higher the spectral count for 

a given protein equates to higher abundance of that protein in a given tissue sample, where the number of spectra 

matched to peptides from a specific protein are used as a surrogate measure of protein abundance (Choi et al., 

2008). The average spectral counts for each protein in each tissue were calculated, and the ratio of average spectral 

counts amongst AL (n = 4 CGL WT, 3 CGL KO) compared to DR (n = 5 CGL WT, 3 CGL KO) were used to 

determine fold-change between the two diet types. Spectral count values below the level of detection were 

originally automatically assigned a value of 0, however, these were changed to 0.1 for purposes of statistical 

analysis and plotting in log scale in volcano plots. 

Biological Function and Pathway Enrichment. The online-based web server g:Profiler  

(https://biit.cs.ut.ee/gprofiler/gost) (Raudvere et al., 2019) was used for functional enrichment analysis of 

identified sulfhydrated proteins. Gene ID’s or accession number of enriched proteins were used in the g:GOSt 

(Gene Group Functional Profiling) identifier tool to detect biological pathways from the KEGG database 

(Kanehisa et al., 2016) significantly enriched with sulfhydrated proteins. These significance values are given a 

threshold of p < 0.05 and were auto-calculated by the software’s proprietary g:SCS algorithm that utilizes multiple 

testing correction for p-values gained from pathway enrichment analysis. In setting the boundaries for significance 

determination, it corresponds to an experiment-wide threshold of a=0.05, with the g:SCS threshold pre-calculated 

for list sizes up to 1000 accession number or gene ID terms and analytically approximates a threshold t 

corresponding to the 5% upper quantile of randomly generated queries of that size. As per the g:Profiler 

description, all actual p-values resulting from the query are automatically transformed to corrected p-values by 

multiplying these to the ratio of the approximate threshold t and the initial experiment-wide threshold a=0.05 with 

25

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 10, 2019. ; https://doi.org/10.1101/869271doi: bioRxiv preprint 

https://biit.cs.ut.ee/gprofiler/gost
https://doi.org/10.1101/869271
http://creativecommons.org/licenses/by/4.0/


consideration to the underlying gene sets annotated to terms of each organism from the KEGG database, and 

therefore gives a tighter threshold to significant results (Raudvere et al., 2019). 

Statistical analysis: Statistical significance and data display were generated in Microsoft Excel, GraphPad 

Prism, Origin, and Venny 2.1.0 software. The significant differences between the two diet groups within the same 

genotype in regards to H2S production or spectral counts for individual sulfhydrated proteins from specific tissues 

were analyzed by Student’s t-test, with a level of significance set to p < 0.05 and n-values equaling 4 mice for 

WT AL, 5 mice for WT DR, 3 mice for KO AL, and 3 mice for KO DR for the majority of the experiments and 

data analysis. Data was arranged in Microsoft Excel to show both relative fold-changes in average spectral counts 

for an individual protein as well as the t-test p-value, which can be found in Supplemental Tables 1, 2, 3, 4, 10, 

11, 16, and 18. Bar-graph data in Figure 1 are displayed as means +/-SEM with n-values between 3 and 5 as 

indicated in the figure legend. To determine the correlation between average H2S production capacity and total 

number of sulfhydrated proteins in CGL WT and KO tissues, the arbitrary average H2S production capacity values 

determined from ImageJ IntDen function using the lead acetate/lead sulfide H2S assay as shown in Figure 1C (n 

= 3 samples/tissue) were plotted on the X-axis while the total number of sulfhydrated proteins stated in Figures 

2, 4, 5, and 6 were plotted on the Y-axis (n = 9 samples/tissue for CGL WT and n = 6 samples/tissue for CGL 

KO). GraphPad Prism was used to fit a logarithmic trendline and the given statistics calculated via XY analysis 

correlation function using a nonparametric correlation (Spearman) test with a two-tailed P-value and 95% 

confidence interval. Origin software (https://www.originlab.com/) was used for volcano plots to display 

biologically- and statistically-significant differentially abundant sulfhydrated proteins in tissues from AL versus 

DR fed mice. The log2(Fold Change DR:AL) X-axis displays the average fold change in spectral counts for each 

identified protein while the –log10 Y-axis displays the calculated p-value when comparing the individual spectral 

count values for each identified protein in a specific tissue from AL versus DR fed mice. The non-axial red dotted 

vertical lines highlight the biological significance threshold of +/-2-fold change in spectral counts between DR 

versus AL, while the non-axial red dotted horizontal lines with asterisks highlight our statistical significance 

threshold that was set to p <0.05. Venny 2.1.0 software was used to generate Venn diagrams and determine 

differences and commonalities in sulfhydrated proteins between tissues, diets, and genotypes. Statistical analysis 

for pathway enrichment via g:SCS algorithm is described in the above section regarding the g:Profiler online 

functional enrichment analysis tool, and further specific information regarding this statistical approach can be 

found at the following webpage: https://biit.cs.ut.ee/gprofiler/page/docs. The calculated p-values and identities of 

proteins for each enriched pathway are found in Supplemental Tables 6, 7, 8, 9, 13, 14, 17, and 19. 
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Supplemental Materials 

 

 

Supplemental Figures 1-7 
 
Supplemental Figure 1: Food intake and changes in body mass as a result of 1 week 50% Dietary Restriction.  
 
Supplemental Figure 2: Modified biotin thiol assay (BTA) to isolate and detect differentially sulfhydrated proteins 

in mouse tissues after one week of dietary restriction. 
 
Supplemental Figure 3: Biological function and pathway enrichment for sulfhydrated proteins not significantly 

changed by diet. 
 
Supplemental Figure 4: Sulfhydration analysis and pathway enrichment in heart and plasma. 
 
Supplemental Figure 5: Sulfhydration analysis and pathway enrichment in CGL KO liver. 
 
Supplemental Figure 6: Sulfhydration analysis and pathway enrichment in CGL KO kidney. 
 
Supplemental Figure 7: Positive correlation between H2S production capacity and number of sulfhydrated 

proteins identified in CGL WT tissues. 
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Mass Spectrum Chromatograms from each animal and tissue analyzed 

 

 

Supplemental Tables 1-19: Data highlighted in Green are enriched under DR, data highlighted in Blue are 

enriched under AL, and data highlighted in Grey do not meet statistical and/or biological significance thresholds 

when comparing spectral counts for a specific protein between AL vs. DR. Biological significance set to ≥ 2-fold 

difference in average spectral counts and statistical significance set to p < 0.05 using a Student’s t-test. 
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Supplemental Table 4: WT Brain Sulfhydrome 
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Supplemental Table 7: Pathway Enrichment in WT Kidney for Sulfhydrated Proteins 

Supplemental Table 8: Pathway Enrichment in WT Muscle for Sulfhydrated Proteins 

Supplemental Table 9: Pathway Enrichment in WT Brain for Sulfhydrated Proteins 

Supplemental Table 10: WT Heart Sulfhydrome 

Supplemental Table 11: WT Plasma Sulfhydrome 

Supplemental Table 12: Accession Numbers for the 78 Shared Sulfhydrated Proteins in WT Heart and Plasma 

Supplemental Table 13: Pathway Enrichment in WT Heart for Sulfhydrated Proteins 

Supplemental Table 14: Pathway Enrichment in WT Plasma for Sulfhydrated Proteins 
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Supplemental Figures: 

 

 
Supplemental Figure 1: Food intake and changes in body mass as a result of 1 week 50% Dietary 

Restriction. (A-B) Daily (A) and average (B) food intake of modified AIN-93G rodent diet displayed as grams 

of food eaten per gram of mouse body mass per day over a 1 week period of ad libitum (AL) (n=7 mice/group) 

or 50% dietary restriction (DR) (n=8 mice/group) feeding. Asterisk indicates the statistical significance between 

AL versus DR; ∗p < 0.05. Error bars are ± SEM. (C-D) Body masses of cystathionine γ-lyase (CGL) wildtype 

(WT) (C) and total body CGL knock out (KO) (D) mice over the 7-day dietary intervention normalized to % 

initial starting weight. WT AL n=4 mice/group, WT DR n=5 mice/group, KO AL n=3 mice/group, and KO DR 

n=3 mice/group. Error bars are ± SEM. (E-H) RNA expression profiling data sets of H2S producing (E-G) and 

consuming (H) proteins generated by the Mouse ENCODE project (Yue et al., 2014) and extracted from the NCBI 

Mouse Gene Database. CGL = cystathionine γ-lyase, CBS = cystathionine β-synthase, 3-MST = 3-

mercaptopyruvate sulfurtransferase, SQR = sulfide:quinone oxidoreductase, RPKM = reads per kilobase of 

transcript, per million mapped reads. See also Figure 1. 
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Supplemental Figure 2: Modified biotin thiol assay (BTA) to isolate and detect differentially sulfhydrated 

proteins in mouse tissues after one week of dietary restriction. (A) Schematic presentation of the biotin-thiol-

assay (BTA) adapted from the method developed by Gao, et al (Gao et al., 2015) to isolate, detect, and quantify 

sulfhydrated proteins in mouse tissue. Tissues are first homogenized and lysed, the protein concentrations equally 

normalized, and then lysates subjected to thiol- and persulfide-specific (shown in yellow text) alkylation and 

binding to NM-biotin. Subsequent addition of biotin bound and unbound proteins into an avidin column isolates 

those bound to biotin, with several buffered wash steps and elution without dithiothreitol (-DTT) to remove non-

specific non-sulfhydrated proteins attached to the column. A final buffered elution with DTT (+DTT) reduces 

and cleaves the disulfide bond between the cysteine-attached sulfur and the persulfide (shown in yellow text) 

bound to the biotin/avidin column, thus eluting the sulfhydrated proteins for downstream gel-based analysis (B-

F) as well as mass spectrometry based LC-MS/MS analysis coupled with label-free spectral counting to measure 

relative sulfhydrated protein abundance between different samples as a function of diet and/or genotype. (B) 

Validation of the BTA via Western blot analysis of liver lysates treated ex vivo -/+ sodium hydrosulfide (NaHS) 

from CGL WT and KO mice for the known sulfhydrated proteins α-tubulin and GAPDH following application 

of the BTA. (C-F) SDS-PAGE gel electrophoresis followed by colloidal staining on liver (C), kidney (D), muscle 

(E), and brain (F) protein lysate input loading controls as well as –DTT and +DTT eluates from the BTA derived 

from ad libitum (AL, n=4) or 50% dietary restriction (DR; n=5) fed cystathionine γ-lyase (CGL) WT mice (top 

gels). Bottom SDS-PAGE gel images are from the same +DTT eluates shown in the upper gels but run for a short 

period of time; 13-15 minutes, prior to excising the entire protein lane to ensure all of that tissue’s sulfhydrated 

proteins across the full spectrum of protein masses are accounted for in the subsequent downstream LC-MS/MS 

proteomics analysis. Yellow font for +DTT indicates the experimental conditions in which the sulfhydrated 

proteins were eluted and isolated for future gel and LC-MS/MS proteomics analysis. See also Figure 2. 
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Supplemental Figure 3: Biological function and pathway enrichment for sulfhydrated proteins not 

significantly changed by diet.  (A-D) KEGG biological function and pathway enrichment via g:Profiler analysis 

of sulfhydrated proteins whose relative abundance was not changed under AL or DR feeding in liver (A), kidney 

(B), muscle (C), and brain (D). The number inside the bar indicates the quantity of sulfhydrated proteins involved 

in that specific pathway.  n = 9 mice in total; 4 in the AL group and 5 in the DR group. Statistical significance for 

pathway enrichment plotted as –log10 (P-Value) and obtained via the g:Profiler g:SCS algorithm for KEGG 

database analysis. See also Figure 3. 
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Supplemental Figure 4: Sulfhydration analysis and pathway enrichment in heart and plasma. (A-B). SDS-

PAGE gel electrophoresis followed by colloidal staining on heart (A), and plasma (B) protein lysate input loading 

controls as well as –DTT and +DTT eluates from the BTA derived from AL (n=4) or DR  (n=5) fed cystathionine 

γ-lyase (CGL) WT mice (top gels). Bottom SDS-PAGE gel images are from the same +DTT eluates shown in the 

upper gels but run briefly prior to excising the entire protein lane to ensure all of that tissue’s sulfhydrated proteins 

across the full spectrum of masses are accounted for in the subsequent downstream LC-MS/MS proteomics 

analysis. Yellow font for +DTT indicates the experimental conditions in which the sulfhydrated proteins were 

eluted and isolated for future gel and LC-MS/MS proteomics analysis. (C-D) KEGG biological function and 

pathway enrichment via g:Profiler analysis of sulfhydrated proteins whose relative abundance was not changed 

under AL or DR feeding in heart (C), and plasma (D). The number inside the bar indicates the number of 

sulfhydrated proteins involved in that specific pathway.  n = 9 mice in total; 4 in the AL group and 5 in the DR 

group. Statistical significance for pathway enrichment plotted as –log10 (P-Value) and obtained via the g:Profiler 

g:SCS algorithm for KEGG database analysis. See also Figure 4. 
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Supplemental Figure 5: Sulfhydration analysis and pathway enrichment in CGL KO liver. (A) SDS-PAGE 

gel electrophoresis followed by colloidal staining on liver protein lysate input loading controls as well as –DTT 

and +DTT eluates from the BTA derived from AL (n=3) or DR  (n=3) fed cystathionine γ-lyase (CGL) KO mice 

(top gels). Bottom SDS-PAGE gel images are from the same +DTT eluates shown in the upper gels but run briefly 

prior to excising the entire protein lane to ensure all of the liver’s sulfhydrated proteins across the full spectrum 

of masses are accounted for in the subsequent downstream LC-MS/MS proteomics analysis. Yellow font for 

+DTT indicates the experimental conditions in which the sulfhydrated proteins were eluted and isolated for future 

gel and LC-MS/MS proteomics analysis. (B) KEGG biological function and pathway enrichment via g:Profiler 

analysis of sulfhydrated proteins whose relative abundance was not changed under AL or DR feeding in liver of 

CGL KO mice. The number inside the bar indicates the number of sulfhydrated proteins involved in that specific 

pathway.  n = 6 mice in total; 3 in the AL group and 3 in the DR group. Statistical significance for pathway 

enrichment plotted as –log10 (P-Value) and obtained via the g:Profiler g:SCS algorithm for KEGG database 

analysis. See also Figure 5. 
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Supplemental Figure 6: Sulfhydration analysis and pathway enrichment in CGL KO kidney. (A) SDS-

PAGE gel electrophoresis followed by colloidal staining on kidney protein lysate input loading controls as well 

as –DTT and +DTT eluates from the BTA derived from AL (n=3) or DR  (n=3) fed cystathionine γ-lyase (CGL) 

KO mice (top gels). Bottom SDS-PAGE gel images are from the same +DTT eluates shown in the upper gels but 

run briefly prior to excising the entire protein lane to ensure all of the kidney’s sulfhydrated proteins across the 

full spectrum of masses are accounted for in the subsequent downstream LC-MS/MS proteomics analysis. Yellow 

font for +DTT indicates the experimental conditions in which the sulfhydrated proteins were eluted and isolated 

for future gel and LC-MS/MS proteomics analysis. (B) KEGG biological function and pathway enrichment via 

g:Profiler analysis of sulfhydrated proteins whose relative abundance was not changed under AL or DR feeding 

in kidney of CGL KO mice. The number inside the bar indicates the number of sulfhydrated proteins involved in 

that specific pathway.  n = 6 mice in total; 3 in the AL group and 3 in the DR group. Statistical significance for 

pathway enrichment plotted as –log10 (P-Value) and obtained via the g:Profiler g:SCS algorithm for KEGG 

database analysis. See also Figure 6. 
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Supplemental Figure 7: Positive correlation between H2S production capacity and number of sulfhydrated 

proteins identified in CGL WT tissues. Correlation between average H2S production capacity and total number 

of sulfhydrated proteins in CGL WT and KO tissues. Arbitrary average H2S production capacity values 

determined from ImageJ IntDen function using the lead acetate/lead sulfide H2S assay as shown in Figure 1C (n 

= 3 samples/tissue) were plotted on the X-axis while the total number of sulfhydrated proteins stated in Figures 2 

and were plotted on the Y-axis (n = 9 samples/tissue). GraphPad Prism was used to fit the trendline and the given 

statistics calculated via XY analysis nonparametric correlation (Spearman) test with a two-tailed P- value and 

95% confidence interval. See also Figure 7. 
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