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Abstract:  
Genetic variation, epigenetic regulation and major environmental stimuli are key contributors to 
phenotypic variation, but the influence of minor perturbations or “noise” has been difficult to 
assess in mammals. In this work, we uncover one major axis of random variation with a large 
and permanent influence: developmental stochasticity. By assaying the transcriptome of wild 
monozygotic quadruplets of the nine-banded armadillo, we find that persistent changes occur 
early in development, and these give rise to clear transcriptional signatures which uniquely 
characterize individuals relative to siblings. Comparing these results to human twins, we find the 
transcriptional signatures which define individuals exhibit conserved co-expression, suggesting 
a substantial fraction of phenotypic and disease discordance within mammals arises from 
developmental stochasticity.   

One sentence summary 

Longitudinal gene expression in identical armadillo quadruplets reveals a major role for 
developmental stochasticity. 
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Main text: 
Variability in human phenotype is the product of genetic and environmental contributions, along 
with a complex interplay between the two (1).  While genomic data has permitted valuable 
progress in our understanding of both heritable and non-heritable phenotypic variation, this 
progress has been more piecemeal in sources of non-heritable variation.  All studies of genetic 
or environmental influences on phenotype are affected by this unexplained, non-heritable 
variability or ‘noise’ (2). One possibility is that ‘noise’ can be partitioned into well-defined 
categories of its own, based on underlying mechanisms.  Development has long been thought 
to be a potential driver of unexplained phenotypic variability (3); it is a time when small initial 
changes can permanently propagate forward to large later effect (Fig. 1A).  While programmatic 
variability in development has received particular attention (4, 5), early random effects could be 
a major source of phenotypic variance (Fig. 1B).  In order to measure this developmental 
stochasticity, tight environmental and genetic are necessary to minimize external drivers of 
variability, while outbred genetics are necessary to maximize the likely functional implications of 
observed variability.  In this work, we exploit polyembrony in Dasypus novemcinctus (the nine-
banded armadillo) to control for genetics and environment and quantify the impact of early 
random variation across outbred genetic backgrounds (Fig. 1C-D).  Uniquely among mammals, 
armadillos have evolved a reproductive strategy that produces litters of identical quadruplets, 
creating a unique opportunity for outbred control of both genetics and environment. 

Our central experimental strategy is to measure gene expression over time and look for 
signatures permanently distinguishing siblings from one another.  As an aggregate readout of 
epigenetic variability between the genetically identical individuals, gene expression serves as a 
likely intermediate to capture variability with potential phenotypic impact.  Because the 
environment is controlled, armadillo expression profiles are extremely similar even across 
genetic background (Fig. 1E, r>0.95). Within sibling cohorts, the correlations are tighter (r>0.98) 
reflecting the expected addition of controlled genetics (Fig. 1F). However, the genes which do 
vary in their expression across individuals within each quad are consistent and can be predicted 
from the variability in the other quads (Fig. 1G, AUROC~0.9).  

Allelic expression imbalance on the X-chromosome in females is particularly striking in its 
variability. As X-chromosome inactivation (XCI) is stochastic when it first occurs (6)  and then is 
maintained in cell lineages (7), it creates permanent variability between individuals (e.g., Fig. 
2C). The choice of which X to inactivate is effectively a coin flip at the time of inactivation, 
meaning that the population variance is defined from a simple binomial model (8).  Because this 
variability is permanently fixed within cell lineages, it does not change later in development and 
the observed variance provides an estimate of the number of cells present in the population at 
the time of X-inactivation.  In our female samples, we can estimate XCI occurring after the 
embryos have split, at a population size of 25 cells (Fig. 2D), +/- ~1 cell division. This occurs 
after the developing armadillo embryo has split into four, causing each sibling to be a distinct 
individual with respect to XCI.   
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Fig. 1: Defining transcriptional identity.  

(A) Gene expression is canalized. (B) This can occur at different stages of development. (C) 
The study design. (D) Measuring identity. (E) Transcriptional similarity is higher between 
siblings than across armadillo quadruplets.  Heatmap of sample-sample correlations for the first 
time point with example sample-sample scatterplots. (F) Distributions of the within and between 
correlations. (G) Variable genes within a quad are variable in other quadruplets. (H) Weight 
similarity showing lower variance within than across all, and a set of quadruplets.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 12, 2019. ; https://doi.org/10.1101/2019.12.11.873265doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.11.873265
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

More generally, we can define gene ‘identity signatures’ by their capacity to consistently identify 
a given individual, much like a fingerprint marks identity. This is a task that can be easily made 
into a formal assessment as a supervised classification problem and rigorously tested within our 
data (Fig S9). To this end, we developed a machine-learning method that determines the 
consistency over time of allelic profiles that distinguish armadillo siblings. In brief, we perform 
cross-validation, holding out one time-point as test data and learning allelic ratios that are 
distinct to each armadillo in the remaining training data. We then predict identity in the test data, 
reporting a score between 0 and 4, indicating how many individuals were correctly identified 
within the quadruplet sibling set (then averaged across all sets). Not surprisingly, the allelic 
imbalance ratios of the X genes are highly predictive of an individual within a quadruplet (Fig. 
2E, score=2.56, p=5.9e-5, Fig. 2F p =0.001).  

While an allelic signature is expected on the X-chromosome, we wished to extend this to a 
genome-wide assessment. Typically, allelic imbalance is attributed to the impact of a variant: 
either the variant within the gene has an effect on the stability of the mRNA, or an upstream 
SNV has cis-regulatory effects (9). As armadillos are genetically identical, any variant that has 
the same impact on gene expression will not distinguish individuals.  Although we cannot 
exclude de novo variation, the expectation of the rate precludes it as the major factor. Rather, 
epigenetic regulation, set independently of genotype, will appear as random allelic imbalances, 
showing a preference for one allele over the other on average. For these imbalances to 
characterize individuals over time, they will need to be stably passed down along cell lineages.  
In essence, total imbalances will reflect the compositional distribution of these cell-lineages 
within an individual, where groups of cells are skewed in one direction, for a set of genes.  
Looking across all quadruplets and removing the genes on the X-chromosome, we find on 
average 700 genes within each quad to show an allelic imbalance, highly predictive of 
individuality (Fig. 2G score=2.2, Fig. 2H p=0.002) and implying a significant fraction of these 
genes are epigenetically canalized. In magnitude of impact, this provides a signature of 
individuality approximately equivalent to an additional half an X-chromosome worth of 
imbalance distributed across the genome of both females and males.  

As in the case of XCI, we can estimate the timing at which expression was canalized by 
exploiting the variance of allelic expression under the same coin-flip (binomial) model.  We find 
that most of the observed variance is due to epigenetic marks set early in the development of 
the blood lineage, at around a few hundred cells (Fig. 2I). Given the nature of epigenetic 
regulation, this is plausible, as the reprogramming of the embryo and setting of marks occurs at 
these stages (10). The signature of the allelic imbalanced genes was unique to each sibling 
cohort of quadruplets, but did include enrichment for a common immune response signal (Fig. 
2J) as well as signals related to signaling and enzymatic activities. These are of particular 
interest in development as they ensure the switching on and off of programs that may result in 
phenotypic abnormalities if not controlled.  
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Fig. 2:  Persistent allelic imbalance as a mark of individuality.  

(A) Developmental timing of epigenetic marks can be estimated by calculating the starting 
number of cells required to generate the range of allelic imbalances observed. (B) Allele specific 
expression across all armadillos and all SNPs. (C) X-inactivation estimates from RNA-seq data 
in quadruplet 12-10 shows variation in skewing. (D) We estimate the number of cells where 
inactivation occurred to be around 25. (E-F) XCI is strongly predictive of identity. (G-H) Other 
genes with allelic imbalances also map identity. (I) Modeling imbalance, we find that our signal 
is explained by 500-700 genes and time events to a few hundred cells present when epigenetic 
marks were set. (J) And functionally this is explained by signaling and molecular functions 
unique to each quad. 
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We applied the same paradigm to gene expression, as opposed to allelic ratios, to ascertain 
likely functional impacts of transcriptional individuality. Allele-specific expression is a useful 
probe for the timing of epigenetic effects, but does not directly assay the overall impact of total 
abundance reflected by a gene’s expression. As in the previous analysis, we define genes as 
markers of identity if their expression level can be used to predict identity at a held-out time 
point when trained on the remaining data (Fig. 3A). Consistent with greater selection for stability 
in gene expression, we find a weaker although still statistically significant signature of 
individuality (Fig. 3B, score=1.8, Fig. 3C p=0.014). Interestingly, allelically imbalanced genes do 
not show excess variability across individuals in their total expression – meaning these genes 
were stably expressed even if their alleles were not (Fig S14).  This supports the hypothesis 
that selection is operating principally on expression level rather than at the level of individual 
alleles.  

Are particular molecular functions more likely to vary across individuals? To answer this, we use 
a combination of co-expression and enrichment to identify and annotate molecular functions. 
Importantly, we find an uneven impact in the signatures of individuality across sibling cohorts, 
with individuality easier to detect in some quadruplet sets than others. Two of the armadillo 
quadruplets have many more genes which perfectly mark identity than expected (Fig. 3F). We 
define these gene sets as “perfect predictors”. Remarkably, the perfect predictor sets of genes 
are co-expressed in all armadillo quadruplets, even where they are not markers for identity. 
Because co-expression often reflects a shared functional relationship, it appears that the perfect 
predictors reflect pathways that, while present in all armadillos, were only differentially regulated 
in a few of the quadruplet sets. These genes are part of conserved functions that interact with 
environmental or lifestyle stimuli, such as sexual characteristics (hormones, heat) or cardiac 
muscle growth (exercise, stress). The perfect predictor genes are not outliers or distinctive in 
terms of their average expression levels (Fig S12). We estimate that individuality is encoded by 
a small fraction of the genome (Fig. 3J,K), with approximately 150 genes on average showing 
important alterations in gene expression level. Simulating the impact of this number of genes 
within our data suggests that relatively modest fold changes across this set of genes could 
account for the observed variation (|log2FCs|~0.3, Fig. 3L).  In order to determine if the 
functional perturbations driving identity in armadillos were conserved in human, we assessed a 
large compendium of human expression data, finding broad similarity of co-expression across 
species, and suggesting the same functions are potential targets of developmental stochasticity 
in human as well (Fig. 3I).  
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Fig. 3:  Gene expression marks functional signatures of individuality.  

(A) Feature genes mark identity and form feature modules (co-linear/co-expressed). (B– C) 
Feature gene sets mark identity, and this signal differs from the (D) X-chromosome genes and 
(E) ASE imbalanced genes since these sets are not predictive. (F) The signal is specific to each 
quadruplet (G) with weak cross-quad predictability. (H) These identity genes contribute to 
known pathways and process that are also quadruplet specific. (I) Globally, gene sets retain 
functional similarity across species, as shown by the average GO performances of their co-
expression networks. (J-K) A model and our empirical estimates ~150 or so genes would 
contribute to this signal. (L) This reflects ~ 0.3 |log2FC| according to our model.  
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While similar molecular functions are at play in humans and armadillos, we wished to attempt a 
more direct replication of our experiment in the human data best mimicking armadillo 
polyembrony, i.e., that taken from human identical twins.  Identical twins share an in utero 
environment, but their post-natal environment is more variable compared to armadillos raised 
under controlled conditions (Fig. 4A). This is likely to make expression a less reliable measure 
of phenotypic individuality in humans:  There will be additional variation reflecting uncontrolled 
lifestyle differences or environmental variation. And indeed, we see this reflected in the average 
fold changes in human monozygotic twins compared to armadillos. Performing pairwise 
expression comparisons between armadillos within a quadruplet set, we find the range of fold 
changes is very low (on average |log2FCs|~0.16, Fig. 4B). This is not surprising given the 
signatures of individuality we measured earlier – only a handful of genes will be differentially 
expressed. In contrast, human twins on average have fold changes closer to |log2FCs|~0.38, 
greater than a 1.2-fold average difference. We interpret this as arising due to uncontrolled 
environmental variation, as the average variation across unrelated armadillos in a fixed 
environment is also lower (armadillos |log2FCs|~0.30, humans |log2FCs|~0.56).  Interestingly, 
genes showing variability between identical armadillos and humans are frequently perturbed in 
differential expression studies (Fig. 4D).  This implies that the variation in gene expression is 
regulated, and that these genes are stimulus-responsive. Additionally, we find that these genes 
are less likely to be associated with eQTLs (Fig. 4E), indicating that their contribution to 
phenotypic variance does not arise through genetic variation, even outside of identical siblings. 
In summary, our data suggests that the regulatory factors at play early on during reprogramming 
define baseline phenotypic states which may vary stochastically between genetically identical 
individuals, but that a significant fraction of expression variation in humans reflects transient 
environmental responses, revealed as much larger fluctuations in expression levels (Fig. 4C).   
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Fig. 4:  Armadillos reveal sources of variation 

(A) Phenotypic variation results from three main sources: genetic variation, epigenetic variation 
and environmental effects. These are all influenced by stochasticity of gene expression. (B) 
Distributions of |log2FCs| calculated between armadillos within the same quadruplet, and those 
across quadruplets. Shown in comparison to fold changes between human twins (MZ and DZ), 
and those between unrelated individuals. (C) Modeling signatures of identity as observed in 
controlled and variable environments (D) Genes variable between identical siblings are 
commonly differentially expressed in the general population. (E) eGenes (genes with known cis-
eQTLs from blood) show a trend towards lower fold change within quads, suggesting variability 
in the population is not genetically influenced. 
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In conclusion, our work demonstrates that purely stochastic variation in development has a 
large and permanent impact on gene expression, permitting the identification and 
characterization of genetically identical individuals over time.  Using allelic imbalances, we have 
timed the contribution of developmental stochasticity within our data to the assignment of tissue-
specific epigenetic marks.  Using expression profiles, including co-expression and human twin 
data, we have determined conserved functions affected by developmental stochasticity. Given 
our cohort size, it is harder to estimate the magnitude of this effect downstream on phenotype; 
however, it is striking that in one of our two highest performing quadruplet sets, the impact on 
phenotype appears clear.  The quadruplet set with high individuality in genes associated with 
muscle growth and development exhibits far more variance between siblings in size than the 
other quadruplets; in fact, the variability is roughly on par with the variance between quadruplet 
sets.  As a Fermi estimate, we might imagine this suggests developmental stochasticity 
accounts for 20% as much variability as genetics does, in aggregate, for many phenotypes 
(e.g., perhaps 10% of total variance).  Size is one of a handful of properties readily quantified, 
so we suspect this is simply a readout from one obvious phenotype exhibiting variability, rather 
than a discovery of the sole epigenetically variable phenotype.  Because we did not select our 
cohort for disease, the influence of stochasticity on known variability in penetrance is likely far 
higher, consistent with the known effect of X-skewing. Through its potential influence on many 
phenotypes, developmental stochasticity defines a central convergent axis across individuals, 
species, and – probably – diseases.   We believe, in time, that “noise” will cease to be a catch-
all term and, instead, added to the traditional axes of nature and nurture as a principal and well-
defined contributor to phenotypic variance. 
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Material and methods: 

Armadillo collection and samples  

Five sets of armadillo quadruplets (20 armadillos in total) were used in this study. Pregnant 
females were captured using long-handled nets at night from the wild in 2012, 2015 and 2016. 
Capture of the pregnant females was done during the spring to avoid collecting females who 
were nursing young, but were potentially pregnant. The animals were retrieved from the nets 
and placed in kennels for immediate transport to the holding facility at the University of the 
Ozarks, Clarksville, AR. The pregnant females were kept in outdoor pens that had burrows 
where they gave birth to the quadruplets. The babies were kept with the mothers until they were 
observed foraging at about 6-10 weeks postnatal age. After separation from the mothers, the 
animals were housed together in semi-outdoors pens (rubber covered concrete floor under a 
roof). Most litters in the semi-outdoor pens shared the pen with another litter (2 litters per pen). 
All adults and young over 49 days postnatal age (pna) were fed a mix of dry dog and cat 
chicken-and-rice chow moistened with water—in an approximate ratio by volume of 1:1:2. 
Adults were provided 0.75-1.5 cups (indoor-outdoor) of moistened chow once a day during the 
gestation and 1.25-1.75 cups per day during known or suspected lactation. Animals housed in 
outdoor enclosures were able to forage as well. Occasionally, a raw egg and earthworms were 
provided in addition to the chow. Litters were fed replacement formula of reconstituted Esbilac 
puppy replacement formula until old enough (11). After 35 days pna, the diet was gradually 
transitioned to that of adult by 49-56 days pna. The wild-caught females were administered 0.15 
ml Ivermectin SC, and Exceed antibiotic if they showed any wounds or abscesses. Adults were 
dewormed every 6-8 weeks with Panacure on chow for three consecutive days, or with 0.2 ml 
Ivermectin on food. The babies were treated once with Panacure on chow for three consecutive 
days.  

At four to five months of age, the animals were delivered to the National Hansen’s Disease 
Program (NHDP) facility in Baton Rouge, LA where they were placed in pairs in modified rabbit 
cages (12).  They were fed the same dry food as that given at the Arkansas facility. After a 
period of adaption of approximately one year, the animals were treated with Penicillin (1.0 mL) 
and dewormed with Ivermectin (0.1 mL) and Praziquantel (0.4 mL). Prednisone (10mg/mL) was 
also given at this time.  

Armadillo time course analysis and Hansen’s disease 

Blood samples were collected at three time points per quadruplet staggered over the course of 
a year, starting from March 2017 until August 2018 (Table S1). The pilot study consisted of two 
sets of quadruplets (12-10 and 15-50), and then later blood was obtained from quadruplets 16-
20, 16-30 and 16-90. During the course of the year, the original two of the five sets of armadillo 
quadruplets were infected intravenously in the saphenous vein with 1x109 Mycobacterium 
leprae derived from athymic nude mice (13) – both after the first time point was collected. Blood 
was collected at different time points throughout the course of disease and at 18-24 months 
post-infection, the animals were humanely sacrificed when they developed heavy M. leprae 
dissemination with severe hypochromic microcytic anemia. The bacteria will locate in the bone 
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marrow and the animals will eventually succumb to secondary complications of persistent 
bacteremia if not sacrificed (14). 

Human twin samples  

Blood samples from the TwinsUK data was used for the human twin analysis. Briefly, BAM files 
were downloaded from the EGAD00001001088 EUROBATS project after access was granted 
to the controlled files. This data contains 391 blood samples collected from monozygotic (MZ) 
and dizygotic (DZ) female twins. After quality control, we were left with 66 MZ and 96 DZ twin 
pairs available for analysis.  

Armadillo RNA-sequencing   

Blood was collected from the subclavian vein in BD Vacutainer Glass Mononuclear Cell 
Preparation (CPT) tubes (Fisher, USA), and peripheral blood mononuclear cells (PBMC) were 
isolated following standard protocols (15). Blood collection was performed under general 
anesthesia using Ketamine HCL (10 mg/kg) and Dexdomitor (0.1 mg/kg). All animals were 
screened for leprosy and their health (CBC and blood chemistry) evaluated at tri-monthly blood 
screenings. RNA was extracted from the PBMC using an automated Maxwell 16 Instrument 
(Promega) and a Total RNA purification kit (Promega). Library preparation was done with a 
poly(A) selection kit (KAPA mRNA HyperPrep) to enrich for mRNAs. Multiplexed paired end 
sequencing (PE76) was done using an Illumina NextSeq500 on multiple flow cells. We blocked 
for lane batch effects by splitting the quadruplet samples into pairs and ran two pairs of each set 
per flow cell. We downloaded the armadillo genome (DasNov3) from Ensembl (v95) (16), and 
generated an index file for use within STAR (17). We mapped reads with STAR and 
standardized counts to counts per million (CPM) by summing the counts and dividing by 1e6.   

Armadillo DNA-sequencing   

DNA was extracted from blood collected according to standard protocols. We sequenced each 
quadruplet together to obtain their identical genome sequence. We pooled DNA from all four 
individuals of a quadruplet, except in the case of quadruplet 16-30 where we could not get 
enough DNA from individual 16-301. An average of 2.3µg of DNA per quadruplet were sent for 
whole genome sequencing at the New York Genome Centre (NYGC). Library preparation was 
Illumina TruSeq Nano DNA, 450bp. Sequencing was done on the NovaSeq with 2x150bp. 
Coverage depth was 30X. Reads filtered on quality and were aligned to the DasNov3.0 genome 
from NCBI using BWA (18). Variants were called from the BAM files using the GATK Unified 
Genotyper (19) following best practices for DNA variant calling (20).   

Armadillo personal genome generation  

We used g2gtools (unpublished, https://github.com/churchill-lab/g2gtools v0.2.0) to generate a 
personal quadruplet genome for each quadruplet set. We first created VCI files of the SNPs and 
INDELs using the g2gtools vcf2vci with the –pass and –quality tags. This is an indexed version 
of the VCF file required by g2gtools. Homozygous (alternate) SNPs and INDELs that passed 
quality control were kept. SNPs were incorporated into reference genome FASTA file using the 
g2gtools patch command. INDELs were then incorporated into the patched genome with the 
g3gtools transform command. A chain file was generated using the g2gtools vcf2chain 
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command. We updated the genome annotation file (liftover) using the new genome with the 
g2gtools convert command. As the genome of the armadillo is not assembled beyond a large 
number of scaffolds, the patches and transformations were done per scaffold. Once completed, 
we concatenated all the scaffold FASTA files back into one. With these five personal genomes, 
we generated individual STAR indices. Using samtools (v.1.9), we generated index files for the 
new genomes, and dictionary files with picard from GATK (v3.6.0) (19).   

Armadillo personal genome mapping and allele specific expression analysis 

Following quality control, we mapped reads from each quadruplet to their personal genome with 
STAR (v2.7) (17). The resulting bam files were then run through GATK’s v3 best practices 
pipeline (20) to filter for quality alignments. Briefly, the pipeline involves adding read groups, 
marking duplicates, and then splitting and trimming based on CIGAR. A WIG file was then built 
using the count command in IGVTools (v2.3.80) (21). We then generated a VCF file with the 
heterozygous and homozygous (alternate) SNPs for each quadruplet. This VCF file was 
converted to a BED file, and then liftover to update the coordinates to the personal genome. 
This was then converted back to a VCF file. The SNPs (VCF) and counts (WIG) were then 
overlapped to obtain allele specific counts. Once again these were all performed on individual 
scaffolds, and recombined at the end of the analysis, which allowed for parallelization of the 
pipeline.   

Defining the armadillo X-chromosome  

As the genome of the armadillo is unassembled, we constructed the X-chromosome by 
identifying which scaffolds were most syntenic to mammalian X-chromosomes. As the X-
chromosome has high synteny between mammalian species (e.g., mouse and humans 95%), 
we used alignments of armadillo scaffolds to the X-chromosome of both human and mouse. We 
used the UCSC (22) chain/liftover files between the armadillo genome and the human (hg38) 
and mouse (mm10) genomes. We extracted the scaffolds from these files that align to the 
respective Xs of the species. There were over a million human alignments (1,231,264) to 
around 2K armadillo scaffolds. The largest and most overlapping to the human X was scaffold 
JH573670.1, but holds no annotated human X homologs. To the mouse, there were less than a 
million alignments (873,607) to around 1.6K armadillo scaffolds. The largest is once again 
scaffold JH573670.1. We included smaller scaffolds with a high overlap (90% alignment) with 
the human and mouse X as the remaining potential X scaffolds. We consider these scaffolds to 
represent most of the X-chromosome of the armadillo. As a final X identifier, we located an XIST 
homolog which is not annotated in the current annotation. Using the human XIST sequence 
(NC_000023.11), we performed a BLAST (23) search on the armadillo genome. Of the 16 hits 
that were to annotated armadillo genes, we then performed a reverse BLAST on the human 
genome to find the reciprocal top hits. The two genes (ENSDNOG00000033080 and 
ENSDNOG00000047775) match to two XIST exons, and both these genes belong on the same 
armadillo scaffold (JH583104.1) and are within a few 100Kbp. These two genes were also hits 
using the mouse Xist (NC_000086.7). Using these genes as placeholders, we could derive the 
rest of XIST from the read pileups. The locus is JH583104.1:145,010-175,550.  
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Building functional annotation sets for the armadillo  

Currently, no gene functional annotations exist for the armadillo. We used the gene annotations 
from Ensembl (16) to generate a gene ID map between human and armadillo homologs. From 
the total of 33,374 coding and non-coding genes and transcripts annotated for the armadillo, 
there are 13,492 human homologs. In close parallel to the GO(24) annotation project’s own 
process, we built an armadillo ontology using human gene-GO annotations(25). Within our 
current mapping, on average, each armadillo gene belongs to ~85 GO groups, and each GO 
group has on average ~56 genes.   

Measuring transcriptional stochasticity   

We performed a transcriptome wide cluster analysis of the samples using Spearman’s rank 
correlation as a measure of sample-sample similarity. To find highly variable genes (HVGs) 
within each quadruplet set, we performed variance analyses and ranked genes based on their 
coefficient of variation and mean expression levels. We measured similarity of these variable 
genes for recurrence across the quadruplet sets. Using the set of top 100 HVGs of a quadruplet 
sets at a given time point, we calculated their AUROCs in cross-quad comparisons. Additionally, 
we ran an ANOVA across all the samples of a quadruplet to identify genes that were most 
variable within a quadruplet.   

X-chromosome inactivation analysis and cell number estimates  

For every female armadillo, we estimated the X inactivation ratios of genes with alleles. For this, 
we took the variants called on the X scaffolds. For each gene, we combined the three timepoints 
by adding the count data. Since we do not have phasing information but wished to summarize 
the allelic ratios to a single gene, we took the most powered SNP (that with the most reads) as 
the representative SNP and calculated the allelic ratio as that of the reference to total count. 
These gene ratios were then used to estimate the X skewing ratio for the individual female 
armadillos. There, we fitted a folded normal to the ratios and used the maximum log likelihood 
estimate to obtain the estimated overall skew. Finally, we took the variance of the extremal 
estimated skew values to estimate the number of cells (N) in the original starting pool(26). The 
formula for the variance of a binomial distribution was used. Since we assume that the 
probability of a cell inactivating either X is 0.5, p = q = 0.5 so the formula becomes:  

𝑁
𝑝𝑞

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒
 

𝑁 
1
4

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 

Measuring identity  

As a test for individuality, we developed a machine-learning method that tests for the relative 
consistency of expression across an armadillo quadruplet across time. This is equivalent to 
identifying differentially expressed genes, but rather than looking between two conditions or two 
individuals, it is across four. The idea here is that differentially expressed genes in this way are 
indicators of identity. We first select a feature set of genes based on correlations between two 
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time points. For each gene, we calculate the Spearman rank correlation between the values 
across a quadruplet for one time point and a second time point. If the rank ordering is consistent 
(i.e., the correlation is 1), then this gene is selected as a feature gene. We then test for 
consistency in the third time point. As the first two time points are perfectly correlated, these 
genes form the training set, and the left out time point is the test set. A gene scoring matrix (4 by 
4) is built per gene by comparing the ordering of the test and training data. Each individual gives 
a score of 1 to the test data individual it thinks it is (i.e., which rank it matches), and a 0 
otherwise. We then sum all the feature gene scoring matrices to produce an aggregate scoring 
matrix. Then, in a winner takes all strategy, we calculate a score which represents the number 
of armadillos that correctly predict themselves. The final score is between 0 and 4, with 4 as 
perfect predictability i.e., each armadillo correctly identifies its future (or past) self. We repeat 
this three times, using the first and second time points as training, the first and third, and finally 
the second and third, and then testing in the left out time point. We average this across time 
points to get quadruplet specific scores, and also across all to get a final overall score for the 
analysis. We calculate an analytic p-value for this score by convolution of the expected 
distributions. We calculate an empirical p-value by repeating the learning task on randomly 
selected genes.  

Co-expression network analysis and functional enrichment using machine-learning  

For each quadruplet at each time point, we constructed a co-expression network(27). Briefly, we 
calculated the spearman correlation coefficient for each gene-pair across the four individuals 
within a quadruplet. These values are used as weights for a gene-gene co-expression network, 
which is then rank standardized. The individual networks (a total of 15) were then summed to 
generate a final aggregate co-expression network. For all networks, we first applied 
unsupervised clustering analyses and tested for functional enrichment of the network modules 
identified by using our supervised machine learning tool (EGAD(28)) on the aggregate network 
and the individual networks. In EGAD, we report performance using AUROCs, as is typical 
within machine learning.  An AUROC is the area under the receiver operator characteristic 
curve, and is the probability that a positive result is ranked higher than negative result by the 
algorithm (e.g., does this list of DE genes rank genes involved with “function X” higher than 
other genes). We used the functional annotations we mapped from GO for this assessment. As 
a test for cross-quad predictability, we aggregated the individual networks leaving one 
quadruplet out (LOQO). Then, with the modules identified as predictive of identity for each 
quadruplet, we measured the performance using EGAD within the aggregate with that 
quadruplet left out, as per typical cross-validation.   

Empirical models to estimate genes and lineage 

From the identity analysis, we estimate the number of genes that could drive the signal through 
a series of empirical models. In our first model, we simulate our allelic identity experiment. We 
took the underlying allelic expression data and added a proportion of variance to a fraction of 
the genes. We then calculated the average identity performance. We then convert the variance 
of the underlying data to a number of cells estimate by extending the analysis from the X 
inactivation estimate. To summarize, we assume that autosomal genes that display allelic 
imbalances are under regulatory control and are being expressed either monoallelically (some 
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cells express one or the other), or differentially (one allele is expressed at a higher or lower 
amount). We also assume that this is persistent across time, such that once a cell is committed 
to expressing an allele, its lineage will continue to express this allele at a similar or equal 
amount. We also assume that this choice is random in a pool of cells at the same time. With 
these in mind, we can estimate the number of cells and the fraction of the genome that gives 
rise to the performance observed.  

For the gene expression model, we simulate two potential models. In the first, we assume the 
signal is localized. There, we take the underlying expression data and add a perfect signal to a 
fraction of the genes. We then measure the average identity performance and estimate the 
number of genes necessary for our measured signal. In a second model, we assume the signal 
is distributed. As in the allelic model, we simulate the expression identity analysis by adding a M 
proportion of variance (signal) to N number of genes. We then calculated the average identity 
performance that this signal would generate. We then converted the fraction proportion of 
variance to a log2 fold change (|log2FC|).  

Co-expression relationships shared across species due to conserved stochasticity 

We constructed an aggregate human network across all extant blood data available within 
recount2(29). The human data is across 60 experiments (a total of 3,174 samples). We use 
“experiment” to refer to an entire expression dataset, across all its samples. After constructing 
the aggregate network, we used EGAD (28) to measure the networks performance with GO 
(24). We compared the AUROC GO performances across the species.  

Fold changes to measure phenotypic variation  

As a measure of transcriptional (and phenotypic) variation between samples, we calculated 
pairwise log2 fold changes (|log2FC|) of gene expression values. We normalized each sample 
to CPM, and then took the absolute value of log2 of the ratio of each genes CPM (gi is a gene, n 
and m are individual samples). We calculated these for armadillos within a quadruplet and for 
armadillos across quadruplets. We repeated this with the monozygotic and dizygotic human twin 
data, and also pairwise across different pairs of individuals. To ensure that we are comparing 
similar genes, we restricted our analysis to approximately 7500 genes that were homologs and 
were in both expression data sets.  

𝑓𝑐 | log
𝑔 ,

𝑔 ,
| 

Fold change comparisons to known transcriptional variation properties  

A property of transcriptional variation of interest is the null/prior, i.e., genes commonly 
differentially expressed (DE). We wished to assess whether the genes fold changes are also 
influenced by cryptic genetic variation and compare this property (the DE prior rank(30)) to the 
fold changes calculated. We looked at fold changes due to non-genetic effects (i.e., the within 
quadruplet and human MZ twins). We also assessed the correlation of these DE prior properties 
to the fold changes that arise due to both genetic and non-genetic differences by comparing to 
cross-quad and cross-twin fold changes. Similarly, genes known to be influenced by eQTLs 
(eGenes) are of interest as they reflect transcriptional variation due to allelic differences. To this 
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end, we collected 7 independent human studies (Table S6) and used the frequency of the 
eGenes across the studies as a measure of the likelihood that the gene is reproducibly an 
eGene. Once again, we compare these metrics to the fold changes for both human and 
armadillos.  
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