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1 Main

Spatial transcriptomics and single cell RNA-sequencing offer complementary insights into the tran-
scriptional expression landscape. We here present a probabilistic method that integrates data from
both techniques, leveraging their respective strengths in such a way that we are able to spatially
map cell types to a tissue. The method is applied to several different types of tissue where the
spatial cell type topographies are successfully delineated.

Techniques for spatial transcriptomics have advanced to a state where the entire transcriptome now can be
spatially resolved, however methods providing an exhaustive portrait of the expression with deep coverage do not
yet guarantee resolution at the single cell level. [1–3] Thus transcripts captured at a given position may stem
from a heterogeneous set of cells, not all necessarily of the same type. Hence the observed expression profile at
any location can be considered a mixture of transcripts originating from multiple distinct sources. Implicitly this
means that even though the transcriptional landscape can be thoroughly charted, the biological identity and spatial
distribution of the cells generating this remains largely unknown.

Spatial transcriptomics techniques face a dilemma of knowing the location of transcripts but not which cell that
produced them, while the opposite is true for data retrieved from single cell RNA-sequencing experiments; where
each transcript is associated to an individual cell but information regarding their position within the tissue is lost.
Given this set of complementary strengths and weaknesses, the idea of combining data from the two techniques to
delineate the spatial topography of cell type populations is compelling.

The method we present integrates single cell and spatial transcriptomics data, the latter originating from
the technique presented by St̊ahl et.al and referred to as ST, allowing cell types to be spatially mapped onto a
tissue. [3,4] More explicitly, the proportion of each cell type at a capture location (hereafter; spot) is determined by a
probabilistic model informed by both types of data. In short, we first define expression profiles that are characteristic
of the cell types and then find the combination that best reconstruct the observed spatial data, eliminating any
need for interpretation of abstract concepts like factors or clusters. [5] Although methods to deconvolve (bulk)
RNA-seq data have already been presented and could theoretically be applied to ST data, these tend to exhibit
certain limitations such as: only certain cell types can be assessed, manual curation of data is required to form
representative cell type ”signatures”, no clear theoretical foundation behind the method exists or (as mentioned
above) the components into which the data is decomposed lack a clear biological interpretation. [5–8]

Raw count matrices for the single cell and ST data together with annotations of the former are the only three
items necessary to conduct our analysis, no normalization or other transformations are applied. Any combination
of single cell and ST data sets of similar composition can be used, without the need for them to be paired (i.e.
from the same tissue specimen), allowing publicly available resources to be fully utilized. The method rests on the
primary assumption that both ST and single cell data follow a negative binomial distribution, commonly used to
model expression count data. [5, 9] Technical bias is taken as independent of cell type, and the types’ underlying
expression profiles are seen as inherent biological properties unaffected by the method of choice to study them.
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Two distinct steps constitute the actual implementation; first parameters of the negative binomial distribution
are estimated from the single cell data, for all genes within each cell type. Equivalent parameters for a distribution
describing the expression from a mixture of these types, like that in a spot, can be obtained by a weighted
combination of the single cell parameters. In the second step such weights are estimated with a condition that the
resulting distribution should provide the best possible explanation of the provided ST data. Cell type proportions
are obtained by normalizing the weights to make them sum to unity (Methods). Partitioning the process into two
distinct steps has the advantage that once single cell parameters have been estimated, they can be applied to any
ST data set of choice without the need to be re-estimated. Fig. 1 displays a schematic overview of the workflow
upon using the implemented method.

Figure 1: Schematic Overview of method workflow - (1) Annotated single cell data and a set of ST data with
similar cell type content are selected for analysis. (2) Parameters of the negative binomial distributions character-
izing the expression are estimated from the single cell data - with the first parameter (the rate) being conditioned
on both gene and cell type whilst the second (the success probability) is only conditioned on gene (Methods). (3)
Estimated parameters are used to infer cell type proportions in each spot. (4) The spatial organization of cell types
are visualized by letting the opacity of each spot’s face color represent the proportion values.

In order to show the utility of the method we apply it to two different tissues: human developmental heart (6.5
post conceptional weeks, PCW) and mouse brain. Furthermore, we only use ST and single cell sets derived from
disparate sources to illustrate how paired data is not required to render factual results. See Methods for complete
specifications.

We consider the developmental heart and mouse brain tissues as good candidates to evaluate the method. The
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developmental heart’s anatomy has been thoroughly explored and previous studies provide insights into the expected
location of certain cell types. As for the mouse brain, it has also been extensively studied; resulting in plenty of
resources describing its anatomical and molecular properties, one of them being the Allen Brain Atlas (ABA). [10]
By combining information of known cell type marker genes with the available ISH (In Situ Hybridization) data
in ABA, the expected spatial distribution of these types can be deduced and used as a reference to compare our
results with. Figure 2 displays a subset of the results obtained upon mapping the single cell data onto the mouse
brain ST data sets (complete analysis in Supplementary Section 1.2.2). Each spot is represented by a circle where
the alpha-level of the facecolor indicates how abundant a certain cell type is at the given location, i.e. the higher
the opacity, the higher the estimated proportion of the studied cell type (Methods). As shown in Figure 2A,
single cell clusters can be mapped onto the tissue, informing us of what spatial patterns they exhibit and how
these clusters physically relate to each other — the spatial context may also aid in assigning more distinct and
descriptive identities to the clusters.

Figure 2: A) Visualization of the single cell hippocampus data by using its gt-SNE embedding (inner region),
with spatial proportion estimates of several clusters overlaid on the H&E-image (outer region) of sample mb-B (10x
Visium array, 55 micron spots). The cluster labels are derived from the original single cell data set (Methods). [11,12]
B) Estimated proportions for three of the 56 clusters, (here taken as cell types), defined in the mouse brain single
cell data set. Two different sections are used mb-A (ST array, 100 micron spots) and mb-B, to illustrate the
consistency between different array resolutions. Marker gene expression patterns are obtained by ISH are found
in the bottom row, taken from the Allen Brain Atlas. Rarres2 is a marker gene of Ependymal cells, Prox1 for
Dentate Granule Neurons and Wfs1 for Pyramidal Neurons (the latter two both being subtypes of neurons).

When assessing our results for the mouse brain, Rarres2 is taken as a marker gene for Ependymal cells (cluster
47), Prox1 for Dentate Granule Neurons (cluster 59) and Wfs1 for Pyramidal Neurons (cluster 27); only broad
classes like ”Neurons” are provided in the single cell data annotations, but observing their spatial arrangement
enables us to assign more granular types of these classes to the clusters. [13–15] It’s evident how the estimated
proportions agree with the signals observed in the ISH experiments, confirming the proposed locations of these
cell types. There is a high degree of consistency of the mapping between the different sections that are analyzed,
speaking in favor of the method’s robustness. In addition to coinciding with marker gene expression, the suggested
spatial organization is further supported by already established knowledge regarding these types. Ependymal cells
line the ventricular system, forming an epithelial sheet known as the ependyma, thus observing strong signals for
this cell type in the lateral ventricular region is affirmative. [16] Dentate Granule Neurons reside within the dentate
gyrus, as implied by their name, a feature that our mapping manages to reproduce. [17] Pyramidal Neurons belong
to the broad class of excitatory neurons and populate regions such as the amygdala, cerebral cortex and parts of
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Ammon’s horn in the hippocampus, again in line with our results. [18] The usefulness of our method might be
argued in a scenario where the marker gene(s) of types are known, since in theory expression levels could simply be
visualized and used to infer the types’ presence. However, due to the sparsity and variance in ST data this single
gene approach does not always manage to recreate the patterns observed in ABA (see Supplementary section 1.2.2,
Supplementary Figure 16,17 and 18), attesting to how using the full expression profiles of cell types is preferable
to relying on a few genes when working with this kind of data.

In the developmental heart (Supplementary Section 1.2.1) we observe how ventricular and atrial cardiomyocytes
have the highest proportion values in the ventricular body respectively the atria. From the H&E images (Hema-
toxylin and Eosin), blood cells are visible within the hollow cavities, the same areas as they are mainly estimated to
reside within. Smooth muscle cells are almost exclusively mapped to the outflow tract, again, in concordance with
their expected location. [19] Epicardial cells form a thin outer layer of the heart known as the epicardium, and this
type is mainly assigned high proportion values in spots covering the edges of the heart. [20] Epicardium-derived
cells arrange themselves adjacent to the epicardial cells on the inner side of the heart in a somewhat thicker layer
than the epicardium, and they are also known to be present in the outflow tract during its formation, a pattern
recapitulated by our results. [21]

Finally we generated synthetic ST data from single cell data (Methods), providing us with a ”ground truth”
for the proportion values. The synthetic data enabled a comparison with two other recently published methods
designed to deconvolve bulk data with the help of single cell data (DWLS and deconvseq); where our implementation
performed better than both of the other methods (Supplementary section 1.2.3). [8, 22]

Once the proportions have been estimated, subsequent analysis supplementary to visualization can be conducted.
To give one example, by looking at the spatial correlation between cell types (Pearson correlation on a spot basis,
Methods) we can investigate which cell types that tend to co-localize together and potentially interact with each
other. This is a complementary approach to that of using receptor-ligand pairs to assess cell type interactions in a
sample, without the need for curation of lists describing receptors, ligands and their interactions. [23]

To summarize, we present both a method and implementation to map cell types found in single cell data
spatially onto a tissue. Our implementation is released as a python package named Stereoscope available at
github.com/almaan/stereoscope. The procedure is seamless and compatible with any two data sets, does not require
any processing of the data and, albeit we focus on ST data here, the method is applicable to any method where the
observed transcriptomics data can be considered a mixture of contributions from multiple individual cells added
together in a linear manner.

References

[1] Samuel G. Rodriques, Robert R. Stickels, Aleksandrina Goeva, Carly A. Martin, Evan Murray, Charles R.
Vanderburg, Joshua Welch, Linlin M. Chen, Fei Chen, and Evan Z. Macosko. Slide-seq: A scalable technology
for measuring genome-wide expression at high spatial resolution. Science, 363(6434):1463–1467, March 2019.

[2] Sanja Vickovic, Gökcen Eraslan, Fredrik Salmén, Johanna Klughammer, Linnea Stenbeck, Denis Schapiro,
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2 Methods

2.1 Code Availability

The method is released as a tool named Stereoscope avail-
able at: https://github.com/almaan/stereoscope.
Documentation for Stereoscope, a tutorial, scripts used
for visualization and further analyses are also found within
the repository. In the tutorial we provide walk-throughs
to reproduce some of the analyses presented in this pa-
per, from the very first step of downloading data to vi-
sualizing the results.

2.2 Model

The following notations will be used upon describing the
model

• G - the set of all genes

• S - the set of all spots

• Z - the set of all cell types

• Cs - the set of all cells contributing to spot s

• nsz - number of cells from cell type z at spot s

• xsg - counts of gene g at spot s

• xsgc - counts of gene g at spot s from cell c

• zc - cell type of cell c

• αs - scaling factor at spot s

• βg - technique based gene bias for gene g

• rgz - rate parameter for cell type z and gene g

• pg - success probability parameter for gene g

• | · | - cardinality of a given set

• a - vector notation

Transcripts of a given gene (g) within a single cell (c)
are taken as negative binomially distributed - with the
rate (rgzc) being conditioned on a cell’s type (zc) and
gene g, whilst the success probability is only dependent
on the gene in question (a common postulation). [9, 24]
To account for certain technical biases, we also include
a cell specific scaling factor sc, taken as the reciprocal of
each cell’s library size. Thus we have

ygc ∼ NB(scrgzc , pg), s−1c =
∑
g∈G

ygc (1)

Values for the cell type specific parameters are then ob-
tained by finding the MLE (maximum likelihood esti-
mates), given the provided single cell data. In the im-
plementation this is achieved by taking the negative log-
likelihood as an objective function to be minimized w.r.t

the parameters. PyTorch is used for the optimization.
[25]
In ST data, the observable transcripts (xsgc) of a given
gene (g) from a cell (c) contributing to a specific spot (s)
are also taken as negative binomially distributed, with
the same conditioning as for the single cell data. We as-
sume that the efficiency by which certain genes are cap-
tured differs between the two techniques (ST and single
cell RNA-seq), what would be referred to as technique
based bias, and thus introduce a variable (βg) to cor-
rect for this. A scaling factor (αs) for each spot is also
included to account for technical variation between the
spots. The distribution used to model the ST data thus
takes the form

xsgc ∼ NB(αsβgrgzc , pg) (2)

The total number of transcripts (xsg) for a certain gene
(g) at each spot (s) is simply the sum of observed tran-
scripts from each cell (c) contributing to that spot, that
is

xsg =
∑
c

xsgc, (3)

With a shared second parameter (pg) between all types
(z), the first parameter exhibit an additive property and
the total number of transcripts can be taken as negative
binomially distributed as well

xsg ∼ NB(
∑
c∈C

αsβgrgzc , pg) (4)

By introducing a quantity coefficient nsz representing
the number of cells from a certain type (z) present at
spot s, a change of index from cells to types is possible

xsg ∼ NB(
∑
z∈Z

αsβgnszrgz, pg) (5)

We then bundle the spot specific parameters together in
a scaled quantity coefficient (vsz)

xsg ∼ NB(
∑
z∈Z

βgvszrgz, pg), vsz = αsnsz (6)

Using vector notation this expression can be rewritten
as

xsg ∼ NB(βgv
T
s rg, pg), vs, rg ∈ R|Z| (7)

To account for asymmetric data sets (where the cell types
in ST and single cell data do not overlap perfectly) and
noise we also include a form of ”dummy” cell type, with
gene specific rates (εg) and a scaled quantity coefficient
γs.

xsg ∼ NB(βgv
T
s rg + γsεg, pg) (8)

If we define wsz as the normalized scaled quantity coef-
ficients, excluding the noise capturing dummy cell type,
that is

wsz =
vsz∑

z∈Z vsz
=

αsnsz
αs

∑
z∈Z nsz

=
nsz∑

z∈Z nsz
(9)
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this results in an expression which can be recognized as
the proportion of each cell type within a given spot.

To avoid promiscuous assignment of explanatory power
to the dummy cell type, we place a standard normal prior
on all of its rates, i.e.

εg ∼ N (0, 1) (10)

Cell type proportions (wsz) are then taken as the MAP
(maximum a posteriori) estimate of the distribution in
Eq. 8 using the prior in Eq. 10, given the observed ST
data. Uniform priors are assigned to all other variables.
More precisely this is implemented by minimizing the
negative logarithm of the posterior w.r.t. to the scaled
quantities ({vs}s∈S), the gene specific bias (β) and pa-
rameters related to the dummy cell type (γ respectively
ε). Similar to the procedure for single cell data, the op-
timization is performed using PyTorch.

2.3 Processing Data

Here we give a description of how the data was processed;
note that our ”starting material” are raw count matrices
of single cell and ST data, in formats [cells]x[genes] re-
spectively [spots]x[genes] where the single cell set has
some form of meta-data containing type annotations.
For exact details regarding how these count matrices
were obtained from the raw sequencing data, we refer
to their original publications.

2.3.1 Human Developmental Heart

The complete single cell data set provided in the paper
”A spatiotemporal organ-wide gene expression and cell
atlas of the developing human heart”, was used to esti-
mate the type parameters hence resulting in a usage of
3717 cells distributed over 15 clusters. [20] Only the top
5000 highest expressed genes were used in the analysis.
For the exact composition of the single cell data set, see
Supplementary section 1.1.1.

ST data was taken from the same publication as the
single cell data, using the 8 sections from PCW 6.5. Only
those spots under the tissue were used. From the 5000
genes selected in the single cell data, the intersection of
these and the complete set of genes found in the ST data
was used.

2.3.2 Mouse Brain

The single cell data set was downloaded from mouse-
brain.org, where we used the data containing cells origi-
nating from Hippocampal tissue. [11] We first joined the
”Class” and ”Cluster” identifiers for each cell to form
type labels. A subset of 8449 cells were sampled from
the 29519 cells found within the set. This subset was as-
sembled by specifying both a global lower (l) and upper

(u) bound for the number of cells to be included from
each type, and then applying the procedure given in Eq
11 (nz representing the total number of cells from type
z). We use an upper bound to reduce run time.

Exclude cell type z nz < l
Use all nz cells from z l ≤ nz ≤ u
Sample u cells from z u < nz

(11)

The lower and upper bounds were set to 25 respectively
250 cells, giving the subset a total of 56 clusters. Only
the top 5000 highest expressed genes were used in the
analysis. See Supplementary section 1.1.2 for a more de-
tailed description of the set composition.

From the ST data, only those spots under the tissue
were used. Three sections (mb-A, mb-α and mb-B) are
used in the analysis. From the 5000 genes selected in
the single cell data, the intersection of these and the
complete set of genes found in the ST data were used.
mb-A and mb-α were analyzed together whilst mb-B was
analyzed separately.

2.3.3 ISH Images

ISH images were downloaded from the Allen Brain At-
las. No modifications except for cropping were applied.
References for the used images are :

• Rarres2 [26]

• Prox1 [27]

• Wfs1 [28]

2.4 Synthetic ST Data and Comparison

2.4.1 Method

To allow for comparison of performance between meth-
ods we devised a method for generation of synthetic data.
We refrain from using any approach based on a nega-
tive binomial model, as this potentially could favour our
model in an unfair way. Thus we decided to rather use
a ”semi-synthetic’ approach not based on a negative bi-
nomial model, where we use single cell data to produce
synthetic ST data. The procedure is described in Algo-
rithm 1.
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Algorithm 1: Synthetic data generation

Let D be an annotated single cell data set ;
Let Idx(z) be the indices of cells of type z in D
for s in 1..S do
Cs ∼ Unif(10, 30) ;
Zs ∼ Unif(1, Z) ;

psz ∼ Dir(1s), 1s ∈ RZs ;
nsz = dpsz · Csc ;

wsz = nsz/
S∑
k

nkz;

Let Isz be nsz samples taken from Idx(z)
with equal probability and without
replacement ;
xsg =

∑
z∈Zs

∑
c∈Isz
dα · ycgc ;

end

Meaning that for every spot (s) we first sample the
number of cells (Cs) contributing to this, and the num-
ber of types (Zs) which these cell may belong to. We
then draw unadjusted proportions from the probability
simplex using a Dirichlet distribution (concentration set
to 1 for all present types). The actual number of cells
from each type (nsz) are then set to the nearest inte-
ger number for the corresponding proportion of cells in
the spot. The adjusted proportions (wsz) are given as
the actual proportion based on the number of cells af-
ter the nearest integer rounding. From each cell type (z)
we then sample (without replacement) indices (Isz) from
cells in the single cell data set that are labeled as this
type (Idx(z)). To generate the expression value for each
gene (xsg) we sum the the nearest integer approximation
of the product between the single cell expression values
(ysg ) and a scaling factor (αs), a constant specified by
the user, over all selected types and the sampled indices.
By applying this procedure one obtains an ST data set
where the ”ground truth” regarding the proportions is
known (the adjusted proportions).

2.4.2 Generated Set

The single cell data set we used was that of hippocam-
pus taken from mousebrain.org (same as for the mouse
brain analysis), where the annotations used were those
labels given as ”Subclass”. We first subsampled the set
according to the procedure described above (using 60 as
lower respectively 500 as upper bound). The subsampled
set was then split into two equally sized and mutually ex-
clusive sets, i.e. sharing no cells. We refer to these as the
generation and validation set. A synthetic ST data set
was then generated according to the procedure outlined
in Algorithm 1 using the generation set as input. The
resulting ST data set contained 1000 spots and 500 genes
(the top 500 highest expressed). The purpose of the val-
idation set is to be used as the single cell data provided
together with the ST data as input to respective method.

2.4.3 Comparison and Evaluation

To compare the performance between methods, we pro-
vided each of them with the validation single cell data set
and the generated synthetic ST data to obtain propor-
tion estimates for each spot. For each method we then
computed the RMSE (Eq.12) between the estimated pro-
portions (w) and the ground truth (ŵ).

RMSE(ws, ŵs) =

√√√√ 1

Z

Z∑
z

(wsz − ŵsz)2 (12)

Being interested in whether our method performed
better than the others, we conducted a one sided Wilcoxon
signed-rank test, to see whether the difference between
RMSE values in each spot are asymmetrically distributed
around zero - in favor of our method. This is done us-
ing the scipy implementation of the Wilcoxon signed-
rank test. [29] Two recently published methods were

selected for comparison: DWLS and deconvSeq. [8, 22]
Slight modifications had to be made to the code in DWLS,
though these changes did however not concern the actual
proportion estimation. All code used throughout the
comparison, including wrappers for the methods when
applying them to ST data, are found in the github repos-
itory. The aforementioned modifications are accounted
for in more detail at said repository. To put the RMSE

values into context, we compute the RMSE between prob-
abilities drawn from a Dirichlet distribution (all concen-
tration values set to 1) for an equal number of spots as
in the analyzed data sets. By repeating this for a se-
lect number of times, we obtain a ”null-distribution” of
RMSE values, to compare the other RMSE-distributions
to.

2.5 Reproducing the analysis

Below, we describe specific details for the analysis of each
pair of datasets, allowing the results to be properly re-
produced

Developmental
Heart

Mouse
Brain

Breast
Cancer

SC Epochs 50000 50000 50000
ST Epochs 50000 50000 50000
Learning Rate 0.01 0.01 0.01
Top N Genes 5000 5000 5000

3 Software

Code is written in Python 3.7, the core functions rely on
the following libraries (and built with versions): numpy
1.17.4, torch 1.3.1 and pandas 0.25.3. Additional libraries
for tasks such as parsing and logging are used for the CLI
application and visualization; the entire list is given at
the github repository and included in the installation file.
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4 Visualization and Further Anal-
ysis

All results for the proportion estimates are visualized by
the same procedures, modules and scripts for this are
provided at the github page.

Proportions - separate visualization
Upon visualizing the proportion of a single type within
a given spot the opacity for the red face color corre-
sponds to the estimated proportion. Proportion values
are scaled within each section and cell type, to emphasize
the spatial patterns of each cell type within the tissue.
Hence for the set of proportion values within each cell
type and section, all elements are divided by the largest
element found within said set, adjusting the range of the
values to the unit interval. No threshold or adjustment
of the values is applied. The spots coordinates are trans-
formed to pixel coordinates and overlaid on the H&E
image.

Proportions - joint visualization
We use a previous propsed method for visualization of
higher-dimensional spatial data. [30] This enables a joint
visualization of the cell type distributions to be pro-
duced, where regions of similar colors share similar com-
positions of cell types. The procedure consists of two
steps: (1) an embedding of high-dimensional data points
to a 3-dimensional manifold (f : R|Z| 7→ M3) and (2)
a transformation g : M3 7→ [0, 1]3 corresponding to a
mapping of values into the unit cube; Eq. 13 gives a
more explicit description.

us = g(f(zs)), zs ∈M|Z|, us ∈ [0, 1]3 (13)

We choose f to preserve some of the data’s internal struc-
ture, the resulting three dimensional vector us is then
used as RGB values, using the first element as the red
channel value, the second as green and third as blue. Ex-
amples of such ”structure preseving” mappings are pop-
ular dimensionality reduction techniques such as tSNE
and UMAP. [31,32] Due to our choice of f , colors are in-
dicative of cell type composition. It’s important to note
how a color does not necessarily correspond to a single
cell type. Whenever any of the terms ”compressed vi-
sualization” or ”joint visualization” are used, this is the
type of visualization we refer to.

Hippocampus Single Cell - Cluster Visualization
To generate the image presented in Figure 2A, we used
the coordinates obtained upon embedding the data within
a 2-dimensional manifold using gt-SNE. [11] These coor-
dinates were provided in the single cell data loom-file,
as attributes named ” X” and ” Y” respectively, and
hence were not generated by us. The cluster indices

are those obtained upon joining the ”Class” and ”Clus-
ter”identifiers for each cell. Clusters excluded from the
proportion estimate analysis are not visualized in the gt-
SNE plot. The proportion estimates are those obtained
upon analyzing the mb-B section together with the single
cell data set as described in Methods 2.3.2.

4.1 Correlation of cell type proportions

By computing the Pearson correlation (See Eq 14) be-
tween each pair of cell types, treating each spot as a
distinct data point, one obtains information regarding
which cell types that share a similar spatial distribution.

r(zi, zj) =

∑
s∈S

(wszi − w̄zi)(wszj − w̄zj )√∑
s∈S

(wszi − w̄zi)
2
√∑

s∈S
(wszj − w̄zj )2

(14)

In Eq. 14 zi represents cell type i, the bar indicates the
arithmetic mean, and S is the set of spots in the studied
data set. Where s represents a specific spot and wsz the
proportion of cell type z in said spot.

4.2 Acknowledgements

We want to thank Vilhelm Bohr, Tyler Demarest and
Deborah Croteau for providing us samples of the Mouse
Brain. Additional thanks are also given to The Knut and
Alice Wallenberg (KAW) Foundation, the Thon Founda-
tion, EU JPND INSTALZ, Foundation for Strategic Re-
search (SSF), Science for Life Laboratory and the Royal
Institute of Technology (KTH) who enabled this work to
be produced.

4.3 Contributions

A.A. formulated the model, implemented it in code and
wrote the manuscript. J.F.N. and A.J. contributed with
the mouse brain ST-data. M.A. provided early access to
the developmental heart single cell and ST data, aided
in assessing the results obtained for the same tissue and
commented on the manuscript. J.B., J.F.N. and L.B.
gave comments on the method and manuscript. J.L. su-
pervised the project, commented on the manuscript and
provided computational resources.

References

[24] M. D. Robinson, D. J. McCarthy, and G. K. Smyth.
edgeR: a bioconductor package for differential ex-
pression analysis of digital gene expression data.
Bioinformatics, 26(1):139–140, November 2009.

[25] Adam Paszke, Sam Gross, Soumith Chintala, Gre-
gory Chanan, Edward Yang, Zachary DeVito, Zem-
ing Lin, Alban Desmaison, Luca Antiga, and Adam

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 13, 2019. ; https://doi.org/10.1101/2019.12.13.874495doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.13.874495
http://creativecommons.org/licenses/by-nc-nd/4.0/


Lerer. Automatic differentiation in PyTorch. In
NIPS Autodiff Workshop, 2017.

[26] Allen Brain Atlas. Rarres2 coronal view.
https://mouse.brain-map.org/experiment/

siv?id=75077281&imageId=74982417. (Accessed :
2019-10-27).

[27] Allen Brain Atlas. Prox1 coronal view.
https://mouse.brain-map.org/experiment/

siv?id=73520980&imageId=73432862. (Accessed :
2019-10-27).

[28] Allen Brain Atlas. Wfs1 coronal view.
https://mouse.brain-map.org/experiment/

siv?id=74881161&imageId=74825019. (Accessed :
2019-10-27).

[29] The SciPy community. scipy.stats.wilcoxon. https:
//docs.scipy.org/doc/scipy/reference/

generated/scipy.stats.wilcoxon.html. (Ac-
cessed: 17.11.2019).

[30] Jonas Maaskola, Ludvig Bergenstrahle, Aleksan-
dra Jurek, Jose Fernandez Navarro, Jens Lager-
gren, and Joakim Lundeberg. Charting tis-
sue expression anatomy by spatial transcrip-
tome decomposition. July 2018. bioRxiv :
https://doi.org/10.1101/362624

[31] Geoffrey Hinton Laurens van der Maaten, Geoffrey
HintoniLaurens van der Maaten. Visualizing data
using t-sne. Journal of Machine Learning Research,
11 2008.

[32] Leland McInnes, John Healy, and James Melville.
Umap: Uniform manifold approximation and pro-
jection for dimension reduction, 2018. arXiv :
arXiv:1802.03426v2

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 13, 2019. ; https://doi.org/10.1101/2019.12.13.874495doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.13.874495
http://creativecommons.org/licenses/by-nc-nd/4.0/

