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Abstract. The cost of data acquisition and analysis is becoming prohibitively expensive for many research groups across dis-
ciplines. And yet, as more data are available, more researchers desire to investigate it, often to answer previously
unconceived questions. How can one optimally acquire and analyze data to answer many different questions posed
by many different investigators? We propose an approach to experimental design that leverages multiple measure-
ments for each distinct item. The key insight is that each measurement of the same item should be more similar
to other measurements of that item, as compared to measurements of any other item. In other words, we seek to
optimally discriminate one item from another. We formalize the notion of discriminability, and introduce both a non-
parameteric and parametric statistic to quantify the discriminability of potentially multivariate and/or non-Euclidean
data. With this notion, one can make optimal decisions—either with regard to acquisition or analysis of data—by
maximizing discriminability. Crucially, this optimization can be performed in the absence of any task-specific (or
supervised) information. Optimizing decisions with respect to discriminability provably bounds performance on
subsequent inference tasks. Simulations corroborate and extend this theory by demonstrating improved predictive
accuracy with improved discriminability. We then apply this strategy to a brain imaging dataset built by the “Con-
sortium for Reliability and Reproducability” which consists of 28 disparate magnetic resonance imaging datasets,
each with tens to to hundreds of individuals that were imaged multiple times. Optimizing pipelines with respect to
discriminability improves performance on multiple subsequent inference tasks, even though discriminability does
not consider the tasks whatsoever.

1 Introduction As the size of data increases, scientists face two questions, in what manner should
data be (i) acquired/collected and (ii) analyzed/processed. When the data will be used to answer multi-
ple different questions, there is a conflict: if one optimizes for a single question, information required to
answer other questions could be lost. This problem is exacerbated when the data will be used to answer
unknown future questions, which is common for expensive data. In such scenarios, how can one make
decisions that yield satisfactory answers for many questions? In other words, which experimental and
analytical properties of the measurements should one optimize?

One goal would be to maximize aspects of measurement validity, such as, the degree to which
the measurements corresponds to what it is purporting to measure. However, measurement validity
often cannot be observed directly [1, 2]. Even when it can be observed, increased validity often comes
with a cost of increased variance. To give a simple example, a broken clock is typically not valid: its
measurement does not correspond accurately to the true time very frequently (only twice per day). Yet,
it has zero variance. Thus, if one were to increase variance, validity could also increase [3].

To complicate matters, in scientific measurement, only some sources of variability are of interest.
For example, quantifying veridical biological heterogeneity is a typical goal in biomedical studies. On
the other hand, many sources of variability are a nuisance, such as measurement noise. So, it is not
all variability that one would desire to reduce, just the undesirable variability. Thus, a natural quantity to
optimize would be a function that preserves biological variability while mitigating extraneous variability.

If one has acquired multiple measurements per item (e.g., an individual), then the intra-class corre-
lation coefficient (ICC) is a possible quantity to optimize. ICC is the fraction of the total variability that is
across-subject variability, that is, it is across subject variability divided by within subject plus across sub-
ject variability. ICC provides an index that can be naturally compared across datasets. ICC is therefore
a useful quantity to optimize in experimental design. However, optimizing ICC has, to our knowledge,
not previously been proposed, perhaps because it requires acquiring multiple measurements per item.
This is despite the fact that ICC is the de facto standard metric for evaluating the reliability of an experi-
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ment. That said, ICC has several limitations if one were to use it to optimize experimental design. First,
it is a univariate measure, meaning if the data are multidimensional, they must first be represented by
univariate statistics, thereby discarding multivariate information. Second, ICC is based on a overly sim-
plistic Gaussian assumption characterizing the data. Thus, any deviations from this assumption render
the interpretation of the magnitude of ICC questionable, because non-Gaussian measurements that
are highly reliable could yield quite low ICC.

We therefore generalize ICC in two ways. First, we introduce a multivariate parametric general-
ization, PICC, in which we compute ICC on the the first principle component of the data. Second, we
introduce discriminability (abbreviated Discr throughout), a multivariate non-parametric generalization
of ICC, replacing the variance computation with a rank-based distance computation. For both gener-
alizations, we introduce a permutation procedure to obtain confidence intervals and p-values. This
non-parametric Discr statistic and test enables comparing experiments and analyses for the study
of repeatability and reliability without making strong assumptions or reducing the data to univariate
statistics. We provide both theory and extensive simulations to illustrate the value of Discr for optimal
experimental design.

The motivation of this work is a brain imaging dataset generated by the Consortium for Reliability
and Reproducibility (CoRR) [4]. This dataset is an amalgamation of over 28 different studies, many of
which were collected using different scanners, manufactured by different companies, run by different
people, using different settings. Moreover, the scanned individuals span various age ranges, sexes,
and ethnicities. Nonetheless, we are interested in finding a pipeline to process the data such that
they can be used for many different inference tasks. After evaluating nearly 200 different pipelines on
over 3000 scans, we determined the optimal pipeline, that is, the pipeline with the highest Discr. We
then demonstrate that for every single dataset, on average, pipelines that achieve higher Discr also
yield data with more information about multiple phenotypes. This is despite the fact that no phenotypic
information whatsoever was incorporated into the optimal design criterion. This is in contrast with other
potential design criteria, which did not exhibit this property. We therefore believe this approach to
optimal experimental design will be useful for a wide range of disciplines and sectors. To facilitate its
use, we make all of our code and data derivatives open access at https://neurodata.io/mgc.

2 Computing the Non-Parametric Discriminability Statistic Consider n items, where each item
has s measurements, resulting in N = n × s total measurements across items. The non-parametric
discriminability statistic is computed as follows:

1. Compute the distance between all pairs of samples (resulting in an N ×N matrix).
2. For all samples of all items, compute the fraction of times that a within-item distance is smaller

than an across-item distance.
3. The Discr of the dataset is the average of the above mentioned fraction.

A high Discr indicates that within-item measurements are more similar to one another than across-
item measurements. For more algorithmic details, see Algorithm 9. For formal definition of terms, see
Appendix A.

3 Theoretical properties of discriminability Under reasonably general assumptions, if within-item
variability increases, predictive accuracy will subsequently decrease. Therefore, a statistic that is sen-
sitive to within-item variance is desirable to select amongst datasets and pipelines, regardless of the
distribution of the data. Carmines and Zeller [5] introduces a univariate parametric framework in which
predictive accuracy can be lower-bounded by a decreasing function of ICC; as a direct consequence,
a strategy with a higher ICC can, on average, have higher predictive performance on subsequent infer-
ence tasks. Unfortunately, this valuable theoretical result is limited in its applicability, as it is restricted
to univariate data, whereas big data processing strategies often produce data in high dimensions. We
therefore prove the following generalization of this theorem (see Appendix B for proof):
Theorem 3.1. Under the multivariate additive noise setting, Discr provides a lower bound on the
predictive accuracy of a subsequent classification task. Consequently, a strategy with a higher Discr
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provably provides higher bound on predictive accuracy than a strategy with a lower Discr.
Thus, Discr provides a theoretical extension of ICC to a general multivariate model, and corre-

spondingly, motivates the theoretical desirability of strategies with higher Discr than competing strate-
gies.

4 Empirical properties of discriminability on simulated data

4.1 Simulation settings To develop insight into the performance of Discr, we consider four differ-
ent simulation settings. Each includes between 2 and 20 items, with s measurements per item, in 2
dimensions. Figure 1A shows a two-dimensional scatterplot of each setting, and Figure 1B shows the
Euclidean distance matrix between samples, ordered by item. The four settings are (see Appendix D
for details):

1. Gaussian Each item is distributed according to a spherically symmetric Gaussian, therefore
respecting the assumptions ICC.

2. Cross Both items have Gaussian distributions with the same mean, but they are no longer
spherically symmetric and have different covariances: the different dimensions of each subject
have different distributions.

3. Ball/Circle One item is distributed in the unit ball, the other on the unit circle, so that neither
item is entirely characterized by a Gaussian.

4. No Signal Both items have the same Gaussian distribution.
These settings were selected to illustrate the relative merits and demerits of three different statistics

that one could use to evaluate the reliability of data. I2C2, a previously proposed multivariate method
to quantify reliability of data [6]. I2C2 is based on a particular multivariate Gaussian assumption on
the data, and could therefore be appropriate in such settings. PICC, which computes ICC on the first
principal component of the data, could be appropriate for more general Gaussian settings. Discr,
which is a non-parametric statistic, should be robust to distributional settings entirely.

4.2 Discr empirically predicts performance on subsequent inference tasks We compare the
empirical performance of Discr to and I2C2 by investigating the sensitivity of each statistic to changes
in within-item variability. Figure 1C shows the impact of increasing within-item variance on the four dif-
ferent simulation settings. For the three with predictive information, increasing variance decreases
predictive accuracy (green line). As desired, Discr also decreases nearly perfectly proportionally.
However, only in the first setting, where each item has a spherically symmetric Gasussian distribution,
do I2C2 and drop proportionally. Even in the second (Gaussian) setting, I2C2 and are effectively
uninformative about the within-subject variance. And in the third (non-Gaussian) setting, they are sim-
ilarly useless. This suggests that of these statistics, only Discr can serve as a satisfactory surrogate
for predictive accuracy under these general settings.

4.3 Discr provides a one-sample test for whether items are discriminable A prerequisite for
making subject-specific predictions is that subjects are different from one another in predictable ways,
that is, are discriminable. If not, the same assay applied to the same individual on multiple trials could
result in unacceptably highly variable results. Thus, prior to embarking on a machine learning search
for predictive accuracy using some data, one can simply test whether the data are discriminable at all.
If not, predictive accuracy will be hopeless. Letting D denote the Discr of a dataset with n items and s
measurements per item, and D0 denote the Discr of the same size dataset with zero subject specific
information, the formal hypothesis test for Discr is

H0 : D = D0, HA : D > D0.(4.1)

One could replace D for Discr with some other test statistic, such as PICC or I2C2. For each
test statistic, we devised a permutation test to obtain a confidence interval around the null, and a
corresponding p-value. To evaluate the different procedures, we compute the power of each, that is,
the probability of correctly rejecting the null when it is false (which is one minus type II error; see
Appendix C.1 for details).
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Figure 1: Four simulations demonstrate the value of Discr for optimal experimental design. All simulations
are two-dimensional, with 128 samples, and α = 0.05, with 500 iterations per setting. (i) Gaussian K = 16
individuals, with the item-specific and measurement-specific effects spherically Gaussian distributed. (ii) Cross
K = 2 items, where each item is still Gaussian distributed, but the different items have different variances for
the difference dimensions. (iii) Annulus/Disc K = 2 individuals, where one is a distributed in an annulus, and
the other within the unit disc, and white Gaussian noise is added to both. (iv) No Signal A simulation where
the two individuals have equal distribution. For each, class label is indicated by shape, and color indicates item.
(B) The Euclidean distance matrix between samples within each simulation setting. Samples are organized by
item. Simulation settings in which items are discriminable tend to have a block structure in which samples from
the same item are relatively similar to one another. (C) A comparison of the observed statistics to 1− Bayes
error. Only Discr correctly tracks changes in within-subject variance. (D) One-sample test of whether data are
discriminable, Discr achieves nearly as high or higher power than I2C2 and ICC for all settings and variances.
(E) Two-sample test of which approach is more discriminable. Discr achieves highest power for all settings and
variances. For all simulations, the variance is normalized (Appendix ?? for details).

Figure 1D shows that Discr achieves as high power as I2C2, and higher power than PICC, in
the spherical Gaussian setting. This result demonstrates that despite the fact that Discr does not rely
on Gaussian assumptions, it still performs as well or better than parametric methods when the data
satisfy these assumptions. In the cross setting, only Discr correctly identifies that items differ from
one another, despite the fact that the data are Gaussian. In the annulus/disc setting, both Discr and
I2C2 perform comparably. And when there is no signal, all tests are valid, achieving power less than
or equal to the critical value. Non-parametric Discr therefore has the power of parametric approaches
for data at which those assumptions are appropriate, and much higher power for other data.

4.4 Discr provides two- and multi-sample tests for optimal experimental design Given two
approaches for obtaining a given dataset—which can differ either by experimental protocols and/or
processing pipelines—are the measurements produced by one approach more discriminable than the
other? Formally, letting D(1) be the Discr of the first approach, and D(2) be the Discr of the second
approach, we have the following hypothesis:

H0 : D(1) = D(2), HA : D(1) > D(2).(4.2)
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Again, one could replace Discr with other test statistics, and we devised a permutation test to obtain
confidence intervals and p-values (see Appendix C.2 for details).

Figure 1D shows Discr achieves nearly as high or higher power than both I2C2 and ICC for
all three settings with across-subject differences, and all tests are valid. The fact that Discr achieves
nearly equal or higher power than the Gaussian methods, even under Gaussian assumptions, suggests
that Discr will be a superior metric for optimal experimental design.

5 Empirical properties of discriminability on real data

5.1 Real data collection and processing Consortium for Reliability and Reproducibility (CoRR) [7]
has generated functional MRI (fMRI) and diffusion MRI (dMRI) scans from >1,600 participants, often
with multiple measurements, collected through 28 different studies spanning over 20 sites. Each of the
sites use different scanners, technicians, and scanning protocols, thereby representing a wide variety
of different settings with which one can test different processing pipelines. Figure 2A shows the six
stage sequence of pre-processing steps for converting the raw fMRI data into connectomes, that is,
estimates of the strength of connections between all pairs of brain regions. At each stage of the pipeline,
we consider several different “standard” approaches, that is, approaches that have previously been
proposed in the literature, typically with hundreds or thousands of citations [8]. Moreover, they have
all been collected into a pre-processing pipeline engine, called Configurable Pipeline for the Analysis of
Connectomes (C-PAC) [9]. In total, for the six stages together, we consider 2× 2× 2× 2× 4× 3 = 192
different processing pipelines. Because each stage is nonlinear, it is possible that the best sequence
of choices is not equivalent to the best choices on their own. For this reason, publications that evaluate
a given stage using any metric, could result in misleading conclusions if one is searching for the best
sequence of steps. The dMRI connectomes were acquired via 48 preprocessing pipelines using the
Neurodata MRI Graphs (ndmg) pipeline [10]. Appendix E provides specific details for both fMRI and
dMRI preprocessing, as well as the options attempted.

5.2 Different processing strategies yield widely disparate discriminabilities Figure 2B shows
the preprocessing strategy has a large impact on the Discr of the resulting fMRI connectomes. Each
column shows one of 64 different preprocessing strategies, ordered by how significantly different they
are from the pipeline with greatest Discr (averaged over all datasets, tested using the above two-
sample test). Interestingly, pipelines with worse average Discr also tend to have higher variance
across datasets. The best pipeline, FNNNCP, uses FSL registration, no frequency filtering, no scrubbing,
no global signal regression, CC200 parcellation, and converts edges weights to ranks. The majority of
the strategies (51/64 = 79.6%) show significantly worse Discr than the optimal strategy at α =
0.05 (Discr 1-sample test). In other words, several standard procedures for processing these data
reduce Discr on average, calling into question whether they should be used in resting state fMRI
connectomics.

5.3 Discr identifies which acquisition and analysis decision are most important for improving
performance While the above analysis provides evidence for which sequence of processing steps is
best, it does not provide information about which choices individually have the largest impact on overall
Discr. To do so, it is inadequate to simply fix a pipeline and only swap out algorithms for a single stage,
as such an analysis will only provide information about that fixed pipeline. Therefore, we evaluate each
choice in the context of all 192 considered pipelines in Figure 3A. If one were to independently select the
best option for each pre-processing stage (FNNGCP), although it is not exactly the same as the pipeline
with highest Discr (FNNNCP), it is also not significantly worse (Discr 2-sample test, p-value = 0.14).
Moreover, except for no scrubbing, each stage has a significant impact on Discr after correction for
multiple hypotheses (Wilcoxon signed-rank statistic, p-values all < 0.001).

Another choice is whether to estimate connectomes using functional or diffusion MRI. Whereas both
data acquisition strategies have known problems [11], the Discr of the two experimental modalities has
not been directly compared. Using four datasets from CoRR that acquired both fMRI and dMRI on the
same subjects, and have quite similar demographic profiles, we tested whether fMRI or dMRI derived
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Figure 2: Different processing strategies yield widely disparate discriminabilities. (A) a schematic illus-
trating the preprocessing options for the 192 fMRI pipelines under consideration (described in Appendix E). The
optimal choices are green. (B) Discr of fMRI Connectomes Processed 64 ways. Functional correlation matrices
are estimated from 28 multi-session studies from the CoRR dataset using each pipeline. The preprocessing strat-
egy codes are assigned sequentially according to the abbreviations listed for each step in (A). The mean Discr
per pipeline is a weighted sum of its discriminabilities across datasets. Each pipeline is compared to the optimal
pipeline with the highest mean Discr, FNNNCP, using the above two-sample hypothesis test. The remaining
strategies are arranged according to p-value, indicated in the top row.

connectomes were more discriminable. For three of the four datasets, dMRI connectomes were more
discriminable. This is not particularly surprising, given the suseptibility of fMRI data to changes in state
rather than trait (e.g., amount of caffeine prior to scan [9]).

The above results motivate investigating which aspects of the dMRI processing strategy were most
effective. We focus on two criteria: how to scale the weights of connections, and how many regions
of interest (ROIs) to use. Figure 3C.i shows that the log transform tends to yield more discriminable
connectomes, though not significantly so (Wilcoxon signed-rank statistic= 891, p-value= 0.42). Both
rank and log transform significantly exceed raw edge weights (Wilcoxon signed-rank statistic, p-value<
0.001).

Figure 3C.ii shows that parcellations with larger numbers of ROIs tend to have larger discriminabil-
6

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 14, 2019. ; https://doi.org/10.1101/802629doi: bioRxiv preprint 

https://doi.org/10.1101/802629
http://creativecommons.org/licenses/by-nc-nd/4.0/


ities. Unfortunately, most parcellations with semantic labels (e.g., visual cortex) have hundreds not
thousands of parcels. This result therefore motivates the development of more refined semantic labels.
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Figure 3: Parsing the relative impact on Discr of various acquisition and analytic choices. (A) The
pipelines are aggregated for a particular preprocessing step, with pairwise comparisons with the remaining pre-
processing options held fixed. The beeswarm plot shows the difference between the overall best performing
option and the second best option for each stage (mean in bigger black dot); the x-axis label indicates the best
performing strategy. The best strategies are FNIRT, no frequency filtering, no scrubbing, global signal regres-
sion, the CC200 parcellation, and ranks edge transformation. A Wilcoxon signed-rank test is used to determine
whether the mean for the best strategy exceeds the second best strategy: a ∗ indicates that the p-value is at most
0.001 after Bonferroni correction. Of the best options, only no scrubbing is not significantly better than alternative
strategies. Note that the options that perform marginally the best are not significantly different than the best per-
forming strategy overall, as shown in Figure 2. (B) A comparison of the discriminabilities for the 4 datasets with
both fMRI and dMRI connectomes. dMRI connectomes tend to be more discriminable, in 14 of 20 total compar-
isons. (C.i) Comparing raw edge weights (Raw), ranking (Rank), and log-transforming the edge-weights (Log) for
the diffusion connectomes, the Log and Rank transformed edge-weights tend to show higher Discr than Raw.
(C.ii) As the number of ROIs increases, the Discr tends to increase.

5.4 Optimizing Discr improves downstream inference performance We next examined the re-
lationship between the Discr of each pipeline, and the amount of information it preserves about two
properties of interest: sex and age. Based on the simulations above, we expect that pipelines with
higher Discr will yield connectomes with more information about covariates. Indeed, Figure 4 shows
that, for every single one of the 28 datasets, a pipeline with higher Discr tends to preserve more infor-
mation about both covariates. The amount of information is quantified by the effect size of the multiscale
graph correlation statistic MGC [12, 13], a statistic that quantifies the magnitude of association for both
linear and nonlinear dependence structures. In contrast, if one were to use either PICC or I2C2 to se-
lect the optimal pipeline, for many datasets, subsequent predictive performance would degrade. These
results are highly statistically significant: the slopes of effect size versus Discr are positive (Fisher’s
corrected [14] t-test, p-value < 0.001 for both sex and age), but not so for the other test statistics.

6 Discussion We propose the use of the Discr as a simple and intuitive measure for experimental
design featuring multiple measurements. Numerous efforts have established the value of quantifying
reliability, repeatability, and replicability (or more generally, stability) using parametric measures such
as ICC and I2C2. However, they have not been used to optimize stability—that is, they are only used
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Figure 4: Optimizing Discr improves downstream inference performance. Using the connectomes from
the 64 pipelines with raw edge-weights, we examine the relationship between connectomes vs (A) sex and (B)
age. The columns evaluate difference approaches for computing effect size, including (i) Discr, (ii) PICC, and
(iii) I2C2. Each panel shows effect size (x axis) versus MGC (y axis). Both the x and y axes are normalized
by the minimum and maximum statistic. For each study, the effect size is regressed onto . Color and line width
correspond to the study and number of scans, respectively (see Figure 2B). The solid black line is the weighted
mean over all studies. Discr is the only statistic in which all slopes exceed zero. Moreover, we find that the
corrected p-value [14] is significant across datasets for both covariates (med. p-value < .001). This indicates that
pipelines with higher Discr correspond to larger effect sizes for the covariate of interest, and that this relationship
is stronger for Discr than other statistics. Appendix E.2 details the methodologies employed.

post-hoc to determine stability, not used as criteria for searching over the design space—nor have
non-parametric multivariate generalizations of these statistics been available. We derive one-sample
(goodness-of-fit) and two-sample (equality) tests for Discr, and demonstrate via theory and simula-
tion that Discr provides numerous advantages over existing techniques across a range of simulated
settings. Our neuroimaging use-case exemplifies the utility of these features of the Discr framework
for optimal experimental design.

Discr provides a number of connections with related statistical algorithms worth further consider-
ation. Discr is related to energy statistics [15], in which the statistic is a function of distances between
observations [16]. Energy statistics provide approaches for goodness-of-fit (one-sample) and equality
testing (two-sample), and multi-sample testing [17]. Similar to Discr, energy statistics make relatively
few assumptions. However, energy statistics requires a large number of measurements per item, which
is often unsuitable for biological data where we frequently have only a small number of repeated mea-
surements. Discr is most closely related to multiscale generalized correlation (MGC) [12, 13], which
combines energy statistics with nearest neighbors, as does Discr.

While Discr provides experimental design guidance for big data, other considerations may play
a role in a final determination. For example, the connectomes analyzed here are resting-state, as
opposed to task-based fMRI connectomes. Recent literature suggests that the global signal in a rs-
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fMRI scan may be a nuisance variable for task-based approaches [18, 19]. Thus, while Discr is an
effective tool for experimental design, knowledge of the techniques in conjunction with the inference
task is still a necessary component of any investigation.

On this note, it is important to emphasize that Discr, as well the related statistics, are neither nec-
essary, nor sufficient, for a measurement to be practically useful. For example, categorical covariates,
such as sex, are often meaningful in an analysis, but not discriminable. Human fingerprints are discrim-
inable, but typically not biologically useful. In addition, none of the statistics studied here are immune to
sample characteristics, thus interpreting results across studies deserves careful scrutiny. For example,
having a sample with variable ages will increase the inter-subject dissimilarity of any metric dependent
on age (such as the connectome). With these caveats in mind, Discr remains as a key experimental
design consideration a wide variety of settings.

Due to the high volume of open-access data with informative downstream inferential covariates, as
well as the large number of open-source libraries for analyzing data, the connectomics use-case pro-
vided herein serves to illustrate how Discr can be used to facilitate experimental design. We envision
that Discr will find substantial applicability across disciplines and sectors beyond brain imaging, such
as genomics, pharmaceutical research, and many other aspects of big data science and industry. To
this end, we provide open-source implementations of Discr for both Python and R [20, 21]. Code for
reproducing all the figures in this manuscript is available at https://neurodata.io/mgc.
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Appendix A. Population and Sample Discriminability.
Suppose that θi ∈ Θ represents a physical property of interest for a particular item i. In a biological

context, for instance, an item could be a participant in a study, and the property of interest could be the
individual’s true brain network, or connectome. We cannot directly observe the physical property, but
rather, we must first measure θi and then “wrangle” (or pre-process) it. Call the measurement function,
f ∈ F for a family of possible measurement functions F That is, f : Θ → WWW . So, measurements
of θi are observed as f(θi) = wi. However, wi may be a noisy, with measurement artefacts. Al-
ternately, wi might not be the property of interest, for example, if the property is a network, perhaps
wi is a multivariate time-series, from which we can estimate a network. We therefore have another
function, g ∈ G : WWW → XXX , which represents the data wrangling procedure to take the measurement
and produce an informative derivative (for instance, confound removal). The family of possible data
wrangling procedures to produce the informative derivative is G. In this fashion, the output of interest is
xi = g(f(θi)).

The goal of experimental design is to choose an f and g that yield high-quality and useful infer-
ences, that is, that yield x’s that we can use for various inferential purposes. When we have repeated
measurements of the same items, we can use those samples to our advantage. Given xxxji , which is the
jth measurement of sample i, we would expect xxxji to be more similar to xxxj

′

i (another measurement of
the same item), than to any measurement of a different item xxxj

′′

i′ . Formally, let δ : XXX ×XXX → [0,∞) be
a distance metric, we define the population discriminability:

Dδ,f,g = P
(
δ(xxxji ,xxx

j′

i ) < δ(xxxji ,xxx
j′′

i′ )
)

That is, “population discriminability” D represents the average probability that the within-item distance
δ(xxxji ,xxx

j′

i ) is less than the between-item distance δ(xxxji ,xxx
j′′

i′ ). Discriminability depends on the choice of
distance δ, as well as the measurement process f and the analysis choices g.

The population discriminability represents a property of the distribution of θi. In real data since we
do not observe the true distribution, we instead rely on the sample discriminability. Suppose a dataset
consists of i ∈ {1, . . . , n} subjects, where each subject i has Ji repeat measurements. The sample
discriminability is defined:

Discr
{
xxxji

}
j∈[Ji],i∈[n]

=

∑
i∈[n]

∑
j∈[Ji]

∑
j′ 6=j

∑
i′ 6=i

∑
j′′∈[Ji′ ]

I
{
δ(xxxji ,xxx

j′

i ) < δ(xxxji ,xxx
j′′

i′ )
}

∑
i∈[n]

∑
j∈[Ji]

∑
j′ 6=j

∑
i′ 6=i

∑
j′′∈[Ji′ ]

1
.

It can be shown [22] that the under the multivariate additive noise model; that is, xxxji = θi + εεεji where

εεεji
ind∼ fε, var

(
εεεji

)
< ∞, and E

[
εεεji

]
= ccc, that the sample discriminability, Discr is both a consistent

and unbiased estimator for population discriminability.

Appendix B. Discriminability Provides an Informative Bound for Inference.
During experimental design, the extent of subsequent inference tasks may be unknown. A natural

question may be, what are the implications of the selection of a discriminable experimental design?
Formally, assume the task of interest is binary classification: that is, Y = {0, 1}, and we seek a

classifier h : X → Y . The goal of experimental design in this context is to choose the options (f∗, g∗)
that will minimize the classification loss:

(f∗, g∗) = argmin
(f,g)∈F×G

P(h(f(g(θ))) 6= y)

For a fixed (f, g), the minimal prediction error is achieved by the Bayes classifier [23]:

h∗f,g(θi) , argmax
y∈{0,1}

P
(
yi = y

∣∣f(g(θi))
)
,

and let L∗f,g denote Bayes error, that is, the error achieved by h∗f,g.
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Theorem B.1. Assume the multivariate gaussian additive noise setting; that is:

xxxji = θi + εεεji(B.1)

where θi
iid∼ Pv, var(θi) = ΣΣΣθ, εεε

j
i
iid∼ Pε, and var

(
εεεji

)
= ΣΣΣε with E

[
εεεji

]
= ccc. There exists a decreasing

function γ(·) which depends only on θ and y s.t.:

L∗f,g ≤ γ(Df,g)

That is, the Bayes error can, in fact, be upper bounded by a decreasing function of discriminability,
as shown in the proof below. As a direct consequence of this theorem, we see:
Corollary B.1. Assume (f1, g1) and (f2, g2) are two processing strategies, and suppose that Df1,g1 >
Df2,g2 . Then:

L∗f1,g1 ≤ L
∗
f2,g2 .

In other words, the Bayes error achieved by strategy (f1, g2) can, in fact, be upper bounded by the
Bayes error achieveable by strategy (f2, g2). Consequently, under the described setting, the pipeline
that achieves a higher Discr can facilitate improved inference than competing strategies, despite the
fact that the task is unknown during data collection and processing. Complementarily, note that if we
were to instead consider the predictive accuracy 1 − L∗f,g, we can obtain a similar result to obtain a
lower bound on the predictive accuracy via an increasing function of Discr. That is, in the context of
the corollary, a more discriminable pipeline will tend to have a higher accuracy on an arbitrary predictive
task.

Proof of Theorem (B.1).
Consider the additive noise setting, that is xxxji = θi + εεεji ,

D = P
(
δi,t,t′ < δi,i′,t,t′′

)
= P(‖xxxji − xxx

j′

i ‖ < ‖xxx
j
i − xxx

j′′

i′ ‖)

= P(‖εεεji − εεε
j′

i ‖ < ‖θi + εεεji − θi′ − εεε
j′′

i′ ‖)

≤ P(‖εεεji − εεε
j′

i ‖ < ‖θi − θi′‖+ ‖εεεji − εεε
j′′

i′ ‖)

= P(‖εεεji − εεε
j′

i ‖ − ‖εεε
j
i − εεε

j′′

i′ ‖ < ‖θi − θi′‖)

=
1

2
P(‖εεεji − εεε

j′

i ‖ − ‖εεε
j
i − εεε

j′′

i′ ‖ < ‖θi − θi′‖|‖εεε
j
i − εεε

j′

i ‖ − ‖εεε
j
i − εεε

j′′

i′ ‖ < 0) +

1

2
P(‖εεεji − εεε

j′

i ‖ − ‖εεε
j
i − εεε

j′′

i′ ‖ < ‖θi − θi′‖|‖εεε
j
i − εεε

j′

i ‖ − ‖εεε
j
i − εεε

j′′

i′ ‖ > 0)

=
1

2
+

1

2
P(‖εεεji − εεε

j′

i ‖ − ‖εεε
j
i − εεε

j′′

i′ ‖ < ‖θi − θi′‖|‖εεε
j
i − εεε

j′

i ‖ − ‖εεε
j
i − εεε

j′′

i′ ‖ > 0)

=
1

2
+

1

2
P(
∣∣‖εεεji − εεεj′i ‖ − ‖εεεji − εεεj′′i′ ‖∣∣ < ‖θi − θi′‖)

= 1− 1

2
P(
∣∣‖εεεji − εεεj′i ‖ − ‖εεεji − εεεj′′i′ ‖∣∣ > ‖θi − θi′‖).

To bound the probability above, we bound the ‖θi − θi′‖ and
∣∣‖εεεji − εεεj′i ‖ − ‖εεεji − εεεj′′i′ ‖∣∣ separately. We

start with the first term

E(‖θi − θi′‖2) = E(θTi θi + θTi′θi′ − 2θTi θi′) = 2σ22.
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Here, σ22 = tr(ΣΣΣθ) is the trace of covariance matrix of θi. We can apply Markov’s Inequality for any
t > 0:

P(‖θi − θi′‖ < t) ≥ 1− 2σ22
t2
.(B.2)

Let σ21 = tr(ΣΣΣε) denote the trace of covariance matrix of εji , and let a and b be two constants satisfy

E(
∣∣‖εεεji − εεεj′i ‖ − ‖εεεji − εεεj′′i′ ‖∣∣2) ≥ a2σ21,

E2(
∣∣‖εεεji − εεεj′i ‖ − ‖εεεji − εεεj′′i′ ‖∣∣2)

E(
∣∣‖εεεji − εεεj′i ‖ − ‖εεεji − εεεj′′i′ ‖∣∣)4 ≥ b

Furthermore, we let t2 =
√

2aσ1σ2, and let

θ =
t2

E(
∣∣‖εεεji − εεεj′i ‖ − ‖εεεji − εεεj′′i′ ‖∣∣2) ≤

√
2aσ1σ2
a2σ21

=

√
2σ2
aσ1

.

If a2σ21 ≥ 2σ22 , then θ ≤ 1. According to the Paley-Zygmund Inequality [24], that is,

P(Z > θE[Z]) ≥ (1− θ)2E[Z]2

E[Z2]

for all 0 ≤ θ ≤ 1 and Z ≥ 0, we can plug in the θ above to achieve

P(
∣∣‖εεεji − εεεj′i ‖ − ‖εεεji − εεεj′′i′ ‖∣∣2 > t2) ≥ b

(
1− t2

a2σ21

)2

= b

(
1−
√

2σ2
aσ1

)2

.

Also plug in the t2 for the inequality B.2, we have

P(‖θi − θi′‖2 < t2) ≥ 1− 2σ22
t2

= 1−
√

2σ2
aσ1

.

Understand the fact that θ’s and εεε’s are independent, we can combine the two inequalities

D = P(δi,t,t′ < δi,i′,t,t′′)

= P(‖xxxji − xxx
j′

i ‖ < ‖xxx
j
i − xxx

j′′

i′ ‖)

≤ 1− 1

2
P(
∣∣‖εεεji − εεεj′i ‖ − ‖εεεji − εεεj′′i′ ‖∣∣ > ‖θi − θi′‖)

≤ 1− 1

2
P(
∣∣‖εεεji − εεεj′i ‖ − ‖εεεji − εεεj′′i′ ‖∣∣2 > t2)P (‖θi − θi′‖2 < t2)

≤ 1− 1

2
b

(
1−
√

2σ2
aσ1

)3

Note that the resulted bound holds true even if a2σ21 < 2σ22 , as the right hand side becomes greater
than 1. So we can have a bound on σ2

σ1
,

(B.3)
σ2
σ1
≥ a√

2

(
1−

(
2− 2D

b

)1/3
)

To obtain a bound on Bayes error, we apply Devijver and Kittler’s result [25], which is

L ≤ 2π0π1
1 + π0π1∆µµµTΣΣΣ−1∆µµµ

.
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Here, π0 and π1 are prior probabilities for two classes. ∆µ is the difference between means of two
classes. Since εεε is assumed to be independent of xxx and yyy,

∆µµµ = E(xxx|yyy = 0)− E(xxx|yyy = 1) = E(θ|yyy = 0)− E(θ|yyy = 1).

ΣΣΣ is the weighted covariance matrix of xxx,

ΣΣΣ = π0Var(xxx|yyy = 0) + π1Var(xxx|yyy = 1)

= π0Var(θ|yyy = 0) + π1Var(θ|yyy = 1) + Var(εεε).

If we further assume Var(εεε) = σ21ΣΣΣ
′ where the trace of ΣΣΣ′ is 1, then inequality B.3 implies σ21 ≤ σ21∗,

where

σ1∗ =

√
2σ2

a(1− (2−2Db )1/3)
.

Hence, ΣΣΣ ≤ ΣΣΣ∗ where

ΣΣΣ∗ = π0Var(θ|yyy = 0) + π1Var(θ|yyy = 1) + σ21∗ΣΣΣ
′.

Therefore, ΣΣΣ−1 ≥ ΣΣΣ−1∗ , and we have

L <
2π0π1

1 + π0π1∆µµµTΣΣΣ−1∆µµµ
<

2π0π1

1 + π0π1∆µµµTΣΣΣ−1∗ ∆µµµ
.

�

Appendix C. Hypothesis Testing.

C.1 One-Sample Test Recall the one-sample hypothesis test, shown in Equation (4.1). We approxi-
mate the distribution of D̂ under the null through a permutation approach. Yhe subject labels of our N
samples are first permutated randomly, and D̂0,N is computed each time given the observed data XXX
and the permuted labels. For a level α significance test, we compare D̂ to the (1 − α) quantile Q1−α
of the empirical null distribution D̂0,N , and reject the null hypothesis if D̂N < Q1−α. This approach
provides higher power than the former approach, under similar assumptions.

Note that the permutation-based approach requires r computations of the sample Discr. The
total computational complexity is then O

(
N2 max(p, rs)

)
. This approach is only linear in the number of

desired repetitions, and therefore is sensible for most settings in which the sample Discr can itself be
computed. Moreover, we can greatly speed this computation up through parallelization. With T cores,
the computational complexity is instead O

(
N2 max

(
p, rT s)

))
, as shown in Algorithm 9. We extend this

one-sample test to both PICC and I2C2 to provide a robust p-value associated with both statistics of
interest. Note that the permutation approach can be generalized to any statistic quantifying repeatability
based on repeated measurements.
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Algorithm 1 Discr One-Sample Permutation Test

Input: (1)
{
xxxji

}
j∈[Ji],i∈[n]

n items of data, each featuring Ji measurements.

(2) r an integer for the number of permutations.

Output: p ∈ [0, 1] the p-value associated with the test.
1: function p = ONESAMPLETEST({xxxji}j∈[Ji],i∈[n], r)
2: da = Discr

{
xxxji

}
j∈[Ji],i∈[n]

. compute observed sample discriminability

. Note that this for-loop can be parallelized over T cores, as the loops are independent processes
3: for i in 1, . . . , r do
4: π = Shuffle(n, {Ji}ni=1) . a random shuffling of the measurements
5: di = Discr

{
xxxπ(i,j)

}
j∈[Ji],i∈[n]

. Compute Discr with random order of sample ids
6: end for
7: p = 1

r+1

(∑r
i=1 I{da≥di} + 1

)
. p-value is fraction of times observed is more extreme than under

null
8: return p
9: end function

Figure 5: Discr One-Sample Test Overview. Our implementation of the permutation test for the one-sample
test of the hypothesis given in Equation (4.1) requires O

(
N2 max

(
p, r

T s
))

time, where r is the number of per-
mutations and T is the number of cores available for the permutation test. The Shuffle function is the function
which rearranges all of the data within the dataset, without regard to subject nor measurement index. The output
provides a new measurement index for each item i and measurement j.
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C.2 Two-Sample Test We implement two-sample testing using a permutation approach, similar to
the one-sample testing. First, compute the observed difference in Discr between two design choices.
The null distribution of the difference in Discr is constructed by first taking random convex combina-
tions of the observed data from each of the two methods choices (the "randomly combined datasets").
Discr is computed for each of the two randomly combined datasets for each permutation. Finally, for
each permutation, the all pairs of observed differences in Discr is computed. Finally, the observed
statistic is compared with the differences under the null of the randomly combined datasets. The p-
value is the fraction of times that the observed statistic is more extreme than the null. Note that we
can use this approach for both one and two-tailed hypotheses for an experimental design having higher
Discr, lower Discr, and equal Discr relative a second approach; we implement all three in the soft-
ware implementation of the two-sample test. The Algorithm for the two-sample test is shown in Figure
6, with the alternative hypothesis as specified in Equation (4.2). The computational complexity is then
O
(
r
TN

2 max(p,maxi(si))
)
. Note that for each permutation, the limiting step is the computation of the

Discr in O
(
N2 max(p, s)

)
. This is then offset through parallelization over T cores in the implemen-

tation. We extend this two-sample test to both PICC and I2C2 to provide a robust p-value associated
with both statistics of interest, for similar reasons to the above. Again, this permutation approach can
be generalized to any statistic quantifying repeatability based on repeated measurements.
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Algorithm 2 Discr Two-Sample Test

Input: (1)
{
xxxji

}
j∈[Ji],i∈[n]

n items of data, each featuring Ji measurements, from the first sample.

(2)
{
zzzji

}
j∈[Ji],i∈[n]

n the observed data, from the second sample.

(3) r an integer for the number of permutations.

Output: p ∈ [0, 1] the p-value associated with the test.
1: function p =TWOSAMPLETEST({xxxji}j∈[Ji],i∈[n], {zzz

j
i}j∈[Ji],i∈[n], r)

2: D̂(1) = Discr
{
xxxji

}
j∈[Ji],i∈[n]

. The Discr of the first sample.

3: D̂(2) = Discr
{
zzzji

}
j∈[Ji],i∈[n]

. The Discr of the second sample.

4: da = D̂(1) − D̂(2) . The observed difference in Discr between samples 1 and 2.
5: . The for-loop below can be parallelized over T cores, as each loop is an independent process
6: for i in 1 : r do
7: . Generate a synthetic null dataset for each of the 2 samples, using a convex combination

of the elements of each sample
8: for k in 1 : 2 do
9: π = Shuffle(n, {Ji}ni=1) . a random shuffle of the measurements

10: ψ = Shuffle(n, {Ji}ni=1)

11: λji
iid∼ Unif(0, 1) . for j = 1, . . . , n, where ΛΛΛ = (λj)

n
j=1

12: uuuji = λjixxxπ(i,j) + (1− λji )zzzψ(i,j) . Convex combination of random elements from each
sample

13: d
(k)
i = Discr

{
uuuji

}
j∈[Ji],i∈[n]

. Compute Discr of the convexly combined elements

14: end for
15: end for
16: . Compute all pairs differences in Discr using the convexly-combined samples
17: for i in 1, . . . , r − 1 do
18: for j in i+ 1, . . . , r do
19: dn ← c

(
dn, d

(1)
n,i − d

(2)
n,j , d

(2)
n,j − d

(1)
n,i

)
. Null distribution of the difference

20: end for
21: end for
22: . p-value is fraction of times that observed Discr is more extreme than synthetic datasets
23: p = 2

r(r−1)+1

(∑|dn|
i=1 I{da≤dn,i} + 1

)
24: return p
25: end function

Figure 6: Discr Two-Sample Test Overview Our implementation of the permutation test for the hypothesis
given in Equation (4.2) requires O

(
r
TN

2 max(p, s)
)

time, where r is the number of permutations and T is the
number of cores available for the permutation test. Above, the only alternative considered is that HA : da > 0;
our code-based implementation provides strategies for HA : da < 0 and HA : da = 0 as well.
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Appendix D. Simulations.
The following simulations were constructed, where σmin, σmax are the variance ranges, and settings

were run at 15 intervals in [σmin, σmax] for 500 repetitions per setting. For a simulation setting with
variance σ, the variance is reported as the normalized variance, σ = σ−σmin

σmax−σmin
. Dimensionality is 2,

the number of items is K, and the total number of measurements across all items is 128. Typically, i
indicates the individual identifier, and j the measurement index. Notationally, in the below descriptions,
we adopt the convention that zzzji obeys the true distribution for a single observation j of item i, and
xxxji incorporates the controlled error term εεεji , which is the term which is varied the simulation. Further,
measurements are simulated from each item randomly with probability πi = 1

K ; that is, the number of

measurements for each item ni is s.t. n1, . . . , nK
d∼Multinom

(
1
K , . . . ,

1
K , 128

)
.

D.1 One Sample Testing and Bayes Error
1. No Signal: K = 2 items, where the true distributions for class 1 and class 2 are the same.

• zzzji
iid∼ N (000, III), i = 1, . . . , 2, t = 1, . . . , 64. Note: 000 ∈ R2 is 000, and likewise for III

• εεεji
iid∼ N

(
000, σ2III

)
, σ ∈ [0, 20]

• xxxji = zzzji + εεεji
iid∼ N

(
000, (((1 + σ2)III

)
2. Cross: K = 2 items, where the true distributions for class 1 and class 2 are orthogonal.

• Σ1 =

[
2 0
0 0.1

]
, Σ2 =

[
0.1 0
0 2

]
• zzzji

iid∼ N (000,ΣΣΣi), i = 1, 2

• εεεji
iid∼ N

(
000, σ2III

)
, σ ∈ [0, 20]

• xxxji = zzzji + εεεji
3. Gaussian: K = 16 items, where the true distributions are each gaussian.

• µµµi
iid∼ π1N (000, 4III), i = 1, . . . , 16

• ΣΣΣ =

[
1 0.1

0.1 1

]
• zzzji

iid∼ N (µµµi,ΣΣΣ)

• εεεji
iid∼ N

(
000, σ2III

)
, σ ∈ [0, 20]

• xxxji = zzzji + εεεji
4. Ball/Circle: K = 2 items, where 1 item is uniformly distributed on the unit ball with gaussian

error, and the second item is uniformly distributed on the unit sphere with gaussian error.

• zzz1t
iid∼ B(r = 1) +N (000, 0.1III) samples uniformly on unit ball of radius 2 with Gaussian

error
• zzz2t

iid∼ S(r = 1.5) +N (000, 0.1III) samples uniformly on unit sphere of radius 2 with Gaus-
sian error
• εεεji

iid∼ N
(
000, σ2III

)
, σ ∈ [0, 10]

• xxxji = zzzji + εεεji
Bayes error was estimated by simulating n = 10,000 points according to the above simulation

settings, and approximating the Bayes error through numerical integration. The classification labels for
K = 2 simulations were consistent with the individual labels, and for theK = 16, the first class consists
of the 8 distributions whose means were leftmost, and the rest of the distributions were the other class.

D.2 Two Sample Testing Items are sampled with the same true distributions zzzji as before, with the
following augmentation:

xxxji,k =

{
zzzji k = 1

zzzji + εεεji k = 2
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That is, the observed data xxxji,k for item i, observation j, and sample k ∈ [2] is such that the first sample
is distributed according to the true item distribution, and the second sample is distributed according to

the true item distribution with an added noise term, where εεεji
iid∼ N

(
000, σ2III

)
:

1. No Signal: K = 2
• σ ∈ [0, 10]

2. Cross: K = 2
• σ ∈ [0, 2]

3. Gaussian: K = 16
• σ ∈ [0, 2]

4. Ball/Circle: K = 2
• σ ∈ [0, 10]

By construction, one would anticipate Discr of the first sample to exceed that of the second sam-
ple, as the second sample has additional error. Therefore, the natural hypothesis is:

H0 : D(1) = D(2), HA : D(1) > D(2)

Appendix E. Connectomics Application.

E.1 Data Collection and Processing

fMRI Preprocessing Pipelines The fMRI connectomes were acquired as follows. Motion correction is
performed via mcflirt to estimate the 6 motion parameters (x, y, z translation and rotations). Regis-
tration is performed by first performing a cross-modality registration from the functional to the anatomical
MRI using flirt-bbr, followed by registration to the anatomical template using either (1) FSL-fnirt
or (2) ANTs-SyN, two techniques for non-linear registration. Frequency filtering was performed by ei-
ther (1) not frequency filtering, or (2) bandpass filtering signal outside of the [.01, .1] Hz range. Volumes
were either (1) not scrubbed, or (2) scrubbed if motion exceeded 0.5 mm, in which case the preced-
ing volume and succeeding two volumes were removed. Global signal regression was either (1) not
performed, or (2) performed by removing the global mean signal across all voxels in the functional
timeseries. Moreover, across all preprocessing pipelines, the top 5 principal components (compcor),
Friston 24 parameters, and a quadratic polynomial were fit and regressed from the functional timeseries.
Finally, the voxelwise timeseries were spatially downsampled using (1) the CC200 parcellation, (2) the
AAL parcellation, (3) the Harvard-Oxford parcellation, or (4) the Desikan-Killany parcellation. Graphs
were estimated by (1) computing the rank of the raw absolute correlations, (2) log-transforming the raw
absolute correlations, or (3) computing the raw absolute correlation between pairs of regions of interest
in each parcellation. No mean centering was performed for functional connectivity estimates. Specific
data processing instructions for deployment in AWS can be found in the https://neurodata.io/m2g. All
data preprocessing was performed in the AWS cloud using CPAC version 3.9.2 [11]. All parcellations
are available in neuroparc human brain atlases [26].

dMRI Preprocessing Pipelines The dMRI connectomes were acquired as follows. The dMRI scans
were pre-processed for eddy currents using FSL’s eddy-correct [27]. FSL’s "standard" linear regis-
tration pipeline was used to register the sMRI and dMRI images to the MNI152 atlas [27–30]. A tensor
model is fit using DiPy [31] to obtain an estimated tensor at each voxel. A deterministic tractography
algorithm is applied using DiPy’s EuDX [31, 32] to obtain streamlines, which indicate the voxels con-
nected by an axonal fiber tract. Graphs are formed by contracting voxels into graph vertices depending
on spatial [33], anatomical [34–37], or functional [38–41] similarity. Given a parcellation with vertices
V and a corresponding mapping P (vi) indicating the voxels within a region i, we contract our fiber
streamlines as follows. w(vi, vj) =

∑
u∈P (vi)

∑
w∈P (vj)

I {Fu,w} where Fu,w is true if a fiber tract ex-
ists between voxels u and w, and false if there is no fiber tract between voxels u and w. The specific
parcellations leveraged are detailed in Kiar et al. [10], consisting of parcellations defined in the MNI152
space [34–41]. All parcellations are available in neuroparc human brain atlases [26].
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E.2 Effect Size Investigation In this investigation, we are interested in learning how maximization
based on the observed notion of reliability correlates with real performance on a downstream inference
task. Recalling Corollary (B.1), we explore the implications of this corollary in a large neuroimaging
dataset provided by the Consortium for Reliability and Reproducibility [4], and demonstrate that se-
lection of the experimental design via Discr, in fact, facilitates improved downstream inference on
both a regression and classification task. This provides strong motivation for leveraging the Discr for
experimental design.

Ideally, for a particular summary statistic, a high value will generally correlate with a positive effect
size. For datasets i = 1, . . . ,M where M is the total number of datasets, a processing strategy
j = 1, . . . , 192 for 192 total processing strategies, and k = 1, . . . , 3 are our summary statistics of
interest (Discr, , and I2C2), we fit the standard linear regression model Y = βX + ε, where we model
the effect size Y estimated by MGC [42] via a linear relationship withX, the observed sample statistic for
approach k (Discr, PICC, or I2C2), with coefficient β. Note that the interpretation of β is the expected
change in the effect size Y due to a single unit change in the observed sample statistic X. Both Y and
X are uniformly normalized across all strategies within a single dataset to facilitate intuitive comparison
across methods. For each summary statistic k, we pose the following hypothesis:

H0 : β = 0; HA : β > 0

Acceptance of the alternative hypothesis would have the interpretation that an increase in the observed
sample statistic X would tend to correspond to an increase in the observed effect size Y , and the
relevant test is the one-way t-test. Acceptance of the alternative hypothesis against the null provides
evidence that an increase in the sample statistic corresponds to an increase in the observed effect size,
where the neither of the responses (age, sex) were known or considered at the time the data were
processed nor the sample statistics were computed. This provides evidence that the statistic is infor-
mative for experimental design within the context of this investigation. Model fitting for this investigation
is conducted using the lm package in the R programming language [43].

E.3 Dataset Descriptions

Useful Data Links All relevant analysis scripts and data for figure reproduction in this manuscript made
publicly available, and can be found at https://neurodata.io/mgc.
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Dataset Manuf. Model TE (ms) TR (ms) STC #Timepts #Sub #Ses #Scans Discr
KKI2009 NA NA NA NA NA NA 21 1 42 0.93
NKI24 Siemens TrioTim 30 645 inter. 900 24 2 47 0.98
BNU1 Siemens TrioTim 30 2000 inter. 200 50 2 100 0.97
BNU2 Siemens TrioTim 30 variable inter. variable 50 2 100 0.92
DC1 Philips NaN 35 2500 inter. 120 114 4 244 0.95
HNU1 GE MR750 30 2000 inter. 300 30 10 300 0.98
IACAS GE Signa 30 2000 inter. 240 28 3 59 0.83
IBATRT Siemens TrioTim 30 1750 seq. 220 36 2 50 0.95
IPCAS NA NA NA NA NA NA 78 2 156 0.99
IPCAS1 Siemens TrioTim 30 2000 inter. 205 30 2 60 1.00
IPCAS2 Siemens TrioTim 30 2500 inter. 212 35 2 70 0.98
IPCAS5 Siemens TrioTim 30 2000 inter. 170 22 2 44 0.96
IPCAS6 Siemens TrioTim 30 2500 inter. 242 2 15 30 1.00
IPCAS8 Siemens TrioTim 30 2000 inter. 240 13 2 26 0.96
JHNU Siemens TrioTim 30 2000 inter. 250 30 2 60 0.96
LMU3 Siemens TrioTim 30 3000 inter. 120 25 2 50 0.93
MRN1 NA NA NA NA NA NA 53 2 88 0.94
NYU1 Siemens Allegra 25 2000 NaN 197 25 3 75 0.98
NYU2 Siemens Allegra 15 2000 inter. 180 187 3 252 0.96
SWU1 Siemens TrioTim 30 2000 inter. 240 20 3 59 0.97
SWU2 Siemens TrioTim 30 2000 inter. 300 27 2 54 0.96
SWU3 Siemens TrioTim 30 2000 inter. 242 24 2 48 0.98
SWU4 Siemens TrioTim 30 2000 inter. 242 235 2 467 0.97
UM Siemens TrioTim 30 2000 seq. 150 80 2 160 0.99
UPSM1 Siemens TrioTim 29 1500 seq. 200 100 3 230 0.89
Utah1 Siemens TrioTim 28 2000 inter. 240 26 2 52 0.92
UWM GE MR750 25 2600 inter. 231 25 2 50 0.96
XHCUMS Siemens TrioTim 30 3000 inter. 124 24 5 120 0.91

Figure 7: fMRI Dataset Descriptions. In the above table, STC corresponds to slice timing correction. Rows with
NA entries do not have available metadata associated with the scanning protocol. The sample discriminabilities
correspond to the Discr of the best performing pipeline overall, FNNNCP.

Dataset Manuf. Model TE (ms) TR (ms) #Dir bval s
mm2 #Sub #Ses #Scans Discr

BNU1 Siemens TrioTim 89 8000 30 1000 57 2 113 1.00
HNU1 GE MR750 Min 8600 33 1000 30 10 300 0.99
KKI2009 NA NA NA NA NA NA 21 2 42 1.00
NKI24 Siemens TrioTim 95 2400 137 1500 20 2 40 1.00
SWU4 Siemens TrioTim NaN NaN 93 1000 227 2 454 0.88

Figure 8: dMRI Dataset Descriptions. In the above table, Dir corresponds to the number of diffusion direc-
tions. Rows with NA entries do not have available metadata associated with the scanning protocol. The sample
discriminabilities correspond to the Discr of the pipeline with the CPAC200 parcellation and the log-transformed
edges.
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