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Abstract 
 
Genome-wide association studies (GWAS) have discovered hundreds of loci associated with complex 
brain disorders, and provide the best current insights into the etiology of these idiopathic traits. 
However, it remains unclear in which cell types these variants are active, which is essential for 
understanding etiology and subsequent experimental modeling. Here we integrate GWAS results with 
single-cell transcriptomic data from the entire mouse nervous system to systematically identify cell 
types underlying psychiatric disorders, neurological diseases, and brain complex traits. We show that 
psychiatric disorders are predominantly associated with cortical and hippocampal excitatory neurons, 
as well as medium spiny neurons from the striatum. Cognitive traits were generally associated with 
similar cell types but their associations were driven by different genes. Neurological diseases were 
associated with different cell types, which is consistent with other lines of evidence. Notably, we found 
that Parkinson’s disease is not only genetically associated with cholinergic and monoaminergic 
neurons (which include dopaminergic neurons from the substantia nigra) but also with neurons from 
the enteric system and oligodendrocytes. Using post-mortem brain transcriptomic data, we confirmed 
alterations in these cells, even at the earliest stages of disease progression. Our study provides an 
important framework for understanding the cellular basis of complex brain maladies, and reveals an 
unexpected role of oligodendrocytes in Parkinson’s disease.  
 
Introduction 
 
Understanding the genetic basis of complex brain disorders is critical for identifying individuals at risk, 
designing prevention strategies, and developing rational therapeutics. In the last 50 years, twin 
studies have shown that psychiatric disorders, neurological diseases, and cognitive traits are strongly 
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influenced by genetic factors, explaining a mean of ~50% of the variance in liability 1, and GWAS 
have identified thousands of highly significant loci 2–5. However, interpretation of GWAS results 
remains challenging. First, >90% of the identified variants are located in non-coding regions 6, 
complicating precise identification of risk genes and mechanisms. Second, extensive linkage 
disequilibrium present in the human genome confounds efforts to pinpoint causal variants and the 
genes they influence . Finally, it remains unclear in which tissues and cell types these variants are 
active, and how they disrupt specific biological networks to impact disease risk.  
 
Functional genomic studies from brain are now seen as critical for interpretation of GWAS findings as 
they can identify functional regions (e.g., open chromatin, enhancers, transcription factor binding 
sites) and target genes (via chromatin interactions and eQTLs) 7. Gene regulation varies substantially 
across tissues and cell types 8,9, and hence it is critical to perform functional genomic studies in 
empirically identified cell types or tissues.  
 
Multiple groups have developed strategies to identify tissues associated with complex traits 10–14, but 
few have focused on the identification of salient cell types within a tissue. Furthermore, studies aiming 
to identify relevant cell types often used only a small number of cell types derived from one or few 
different brain regions 4,12–18. For example, we recently showed that, among 24 brain cell types, four 
types of neurons were consistently associated with schizophrenia 12. We were explicit that this 
conclusion was limited by the relatively few brain regions we studied; other cell types from unsampled 
regions could conceivably contribute to the disorder.  
 
Here, we integrate a wider range of gene expression data – tissues across the human body and 
single-cell gene expression data from an entire nervous system – to identify tissues and cell types 
underlying a large number of complex traits (Figure 1A,B). We expand on our prior work by showing 
that additional cell types are associated with schizophrenia. We also find that psychiatric and cognitive 
traits are generally associated with similar cell types whereas neurological disorders are associated 
with different cell types. Notably, we show that Parkinson’s disease is associated with cholinergic and 
monoaminergic neurons (as expected as these include dopaminergic neurons from the substantia 
nigra), but also with enteric neurons and oligodendrocytes, providing new clues into its etiology.  
 
Results 
 
Genetic correlations among complex traits 
 
Our goal was to use GWAS results to identify relevant tissues and cell types. Our primary focus was 
human phenotypes whose etiopathology is based in the central nervous system. We thus obtained 
18 sets of GWAS summary statistics from European samples for brain-related complex traits. These 
were selected because they had at least one genome-wide significant association (as of 2018; e.g., 
Parkinson’s disease, schizophrenia, and IQ). For comparison, we included GWAS summary statistics 
for 8 diseases and traits with large sample sizes whose etiopathology is not rooted in the central 
nervous system (e.g., type 2 diabetes). The selection of these conditions allowed contrasts of tissues 
and cells highlighted by our primary interest in brain phenotypes with non-brain traits. For Parkinson’s 
disease, we meta-analyzed summary statistics from a published GWAS 19 (9,581 cases, 33,245 
controls) with self-reported Parkinson’s disease from 23andMe (12,657 cases, 941,588 controls) after 
finding a high genetic correlation (𝑟") 20 between the samples (𝑟"=0.87, s.e=0.068). In this new meta-
analysis, we identified 61 independent loci associated with Parkinson’s disease (49 reported 
previously 18 and 12 novel) (Figure S1).  
 
We estimated the genetic correlations (𝑟") between these 26 traits. We confirmed prior reports 21,22 
that psychiatric disorders were strongly inter-correlated (e.g., high positive correlations for 
schizophrenia, bipolar disorder, and MDD) and shared little overlap with neurological disorders 
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(Figure S2 and Table S1). Parkinson’s disease was genetically correlated with intracranial volume 18 
(𝑟"=0.29, s.e=0.05) and amyotrophic lateral sclerosis (ALS, 𝑟"=0.19, s.e=0.08), while ALS was 
negatively correlated with intelligence (𝑟"=-0.24, s.e=0.06) and hippocampal volume (𝑟"=-0.24, 
s.e=0.12). These results indicate that there is substantial genetic heterogeneity across traits, which 
is a necessary (but not sufficient) condition for trait associations with different tissues or cell types.  
 
Association of traits with tissues using bulk-tissue RNA-seq 
 
We first aimed to identify the human tissues showing enrichment for genetic associations using bulk-
tissue RNA-seq (37 tissues) from GTEx 8 (Figure 1). To robustly identify the tissues implied by these 
26 GWAS, we used two approaches (MAGMA 23 and LDSC 13,24) which employ different assumptions 
(Methods). For both methods, we tested whether the 10% most specific genes in each tissue were 
enriched in genetic associations with the different traits (Figure 1B). 
 
Examination of non-brain traits found, as expected, associations with salient tissues. For example, as 
shown in Figure 1D and Table S2, inflammatory bowel disease was strongly associated with immune 
tissues (blood, spleen) and alimentary tissues impacted by the disease (small intestine and colon). 
Lung and adipose tissue were also significantly associated with inflammatory bowel disease, possibly 
because of the high specificity of immune genes in these two tissues (Figure S3). Type 2 diabetes 
was associated with the pancreas, while hemoglobin A1C, which is used to diagnose type 2 diabetes 
and monitor glycemic controls in diabetic patients, was associated with the pancreas, liver and 
stomach (Figure 1D). Stroke and coronary artery disease were most associated with blood vessels 
(Figure 1D, Figure S4) and waist to hip ratio was most associated with adipose tissue (Figure S4). 
Thus, our approach can identify the expected tissue associations given the pathophysiology of the 
different traits.  
 
For brain-related traits (Figure 1C, S4 and Table S2), 13 of 18 traits were significantly associated 
with one or more GTEx brain regions. For example, schizophrenia, intelligence, educational 
attainment, neuroticism, BMI and MDD were most significantly associated with brain cortex, frontal 
cortex or anterior cingulate cortex, while Parkinson’s disease was most significantly associated with 
the substantia nigra (as expected) and spinal cord (Figure 1C). Alzheimer’s disease was associated 
with tissues with prominent roles in immunity (blood and spleen) consistent with other studies 25–27, 
but also with the substantia nigra and spinal cord. Stroke was associated with blood vessel (consistent 
with a role of arterial pathology in stroke) 28. Traits with no or unexpected associations could occur 
because the primary GWAS had insufficient sample size for its genetic architecture 29 or because the 
tissue RNA-seq data omitted the correct tissue or cell type.  
 
In conclusion, we show that tissue-level gene expression allows identification of relevant tissues for 
complex traits, indicating that our methodology is suitable to explore trait-gene expression 
associations at the cell type level. 
 
Association of brain phenotypes with cell types from the mouse central and peripheral nervous system 
 
We leveraged gene expression data from 39 broad categories of cell types from the mouse central 
and peripheral nervous system 30 to systematically map brain-related traits to cell types (Figures 2A, 
S5). Our use of mouse data to inform human genetic findings was carefully considered (see 
Discussion).  
 
As in our previous study of schizophrenia based on a small number of brain regions 12, we found the 
strongest signals for telencephalon projecting neurons (i.e. excitatory neurons from the cortex, 
hippocampus and amygdala), telencephalon projecting inhibitory neurons (i.e. medium spiny neurons 
from the striatum) and telencephalon inhibitory neurons (Figure 2A and Table S3). We also found 
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that other types of neurons were associated with schizophrenia albeit less significantly (e.g., dentate 
gyrus granule neurons or hindbrain neurons). Other psychiatric and cognitive traits had similar cellular 
association patterns to schizophrenia (Figures S5-6 and Table S3). We did not observe any 
significant associations with immune or vascular cells for any psychiatric disorder or cognitive traits.  
 
Neurological disorders generally implicated fewer cell types, possibly because neurological GWAS 
had lower signal than GWAS of cognitive, anthropometric, and psychiatric traits (Figure S7). 
Consistent with the genetic correlations reported above, the pattern of associations for neurological 
disorders was distinct from psychiatric disorders (Figures S5-6), again reflecting that neurological 
disorders have minimal functional overlap with psychiatric disorders 21 (Figure S2). 
 
Stroke was significantly associated with vascular smooth muscle cells (Figure 2A) consistent with an 
important role of vascular processes for this trait. Amyotrophic lateral sclerosis (a motor neuron 
disease) was significantly associated with peripheral sensory neurofilament neurons, possibly 
because of transcriptomic similarities between peripheral sensory and motor neurons (which were not 
sampled) (Figure S5). Alzheimer’s disease had the strongest signal in microglia, as reported 
previously11,17,31, but the association did not survive multiple testing correction. 
 
We found that Parkinson’s disease was significantly associated with cholinergic and monoaminergic 
neurons (Figure 2A and Table S3). This cluster consists of neurons (Table S4) that are known to 
degenerate in Parkinson’s disease 32–34, such as dopaminergic neurons from the substantia nigra (the 
hallmark of Parkinson’s disease), but also serotonergic and glutamatergic neurons from the raphe 
nucleus 35, noradrenergic neurons 36, as well as neurons from afferent nuclei in the pons 37 and the 
medulla (the brain region associated with the earliest lesions in Parkinson’s disease 32). In addition, 
hindbrain neurons and peptidergic neurons were also significantly associated with Parkinson’s 
disease (with LDSC only). Therefore, our results capture expected features of Parkinson’s disease 
and suggest that biological mechanisms intrinsic to these neuronal cell types lead to their selective 
loss. Interestingly, we also found that enteric neurons were significantly associated with Parkinson’s 
disease (Figure 2A), which is consistent with Braak’s hypothesis, which postulates that Parkinson’s 
disease could start in the gut and travel to the brain via the vagus nerve 38,39. Furthermore, we found 
that oligodendrocytes (mainly sampled in the midbrain, medulla, pons, spinal cord and thalamus, 
Figure S8) were significantly associated with Parkinson’s disease, indicating a strong glial component 
to the disorder. This finding was unexpected but consistent with the strong association of the spinal 
cord at the tissue level (Figure 1C), as the spinal cord contains the highest proportion of 
oligodendrocytes (71%) in the nervous system 30. Altogether, these findings provide genetic evidence 
for a role of enteric neurons, cholinergic and monoaminergic neurons, as well as oligodendrocytes in 
Parkinson’s disease etiology. 
 
Neuronal prioritization in the mouse central nervous system 
 
A key goal of this study was to prioritize specific cell types for follow-up experimental studies. As our 
metric of gene expression specificity was computed based on all cell types in the nervous system, it 
is possible that the most specific genes in a given cell type capture genes that are shared within a 
high level category of cell types (e.g. neurons). To rule out this possibility, we computed new 
specificity metrics based only on neurons from the central nervous system (CNS). We then tested 
whether the top 10% most specific genes for each CNS neuron were enriched in genetic association 
for the brain related traits that had a significant association with a CNS neuron (13/18) in our initial 
analysis. 
 
Using the CNS neuron gene expression specificity metrics, we observed a reduction in the number 
of neuronal cell types associated with the different traits (Figure S9), suggesting that some of the 
signal was driven by core neuronal genes. For example, the association of telencephalon projecting 
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excitatory neurons with intracranial volume (Figure S5) was not significant using the CNS neuron 
specificity metric (Figure S9). However, we found that multiple neuronal cell types remained 
associated with a number of traits. For example, we found that telencephalon projecting excitatory 
and projecting inhibitory neurons were strongly associated with schizophrenia, bipolar disorder, 
educational attainment and intelligence using both LDSC and MAGMA. Similarly, telencephalon 
projecting excitatory neurons were significantly associated with BMI, neuroticism, MDD, autism and 
anorexia using one of the two methods (Figure S9), while hindbrain neurons and cholinergic and 
monoaminergic neurons remained significantly associated with Parkinson’s disease (Figure S9). 
 
Altogether, these results suggest that specific types of CNS neurons can be prioritized for follow-up 
experimental studies for multiple traits. 
 
Cell type-specific and trait-associated genes are enriched in specific biological functions 
 
Understanding which biological functions are dysregulated in different cell types is a key component 
of the etiology of complex traits. To obtain insights into the biological functions driving cell-type/trait 
associations, we evaluated GO term enrichment of genes that were specifically expressed (top 20% 
in a given cell type) and highly associated with a trait (top 10% MAGMA gene-level genetic 
association). Genes that were highly associated with schizophrenia and specific to telencephalon 
projecting excitatory neurons were enriched for GO terms related to neurogenesis, synapses, and 
voltage-gated channels (Table S5), suggesting that these functions may be fundamental to 
schizophrenia. Similarly, genes highly associated with educational attainment, intelligence, bipolar 
disorder, neuroticism,  BMI, anorexia and MDD and highly specific to their most associated cell types 
were enriched in terms related to neurogenesis, synaptic processes and voltage-gated channels 
(Table S5). In contrast, genes highly associated with stroke and specific to vascular cells were 
enriched in terms related to vasculature development, while genes highly associated with ALS and 
peripheral sensory neurofilament neurons were enriched in terms related to lysosomes.   
 
Genes highly associated with Parkinson’s disease and highly specific to cholinergic and 
monoaminergic neurons were significantly enriched in terms related to endosomes and synapses 
(Table S5). Similarly, genes highly specific to oligodendrocytes and Parkinson’s disease were 
enriched in endosomes. These results support the hypothesis that the endosomal pathway plays an 
important role in the etiology of Parkinson’s disease 40. 
 
Taken together, we show that cell type-trait associations are driven by genes belonging to specific 
biological pathways, providing insight into the etiology of complex brain related traits. 
 
Distinct traits are associated with similar cell types, but through different genes 
 
As noted above, the pattern of associations of psychiatric and cognitive traits were highly correlated 
across the 39 different cell types tested (Figure S6). For example, the Spearman rank correlation of 
cell type associations (-log10P) between schizophrenia and intelligence was 0.96 (0.94 for educational 
attainment) as both traits had the strongest signal in telencephalon projecting excitatory neurons and 
little signal in immune or vascular cells. In addition, we observed that genes driving the association 
signal in the top cell types of the two traits were enriched in relatively similar GO terms involving 
neurogenesis and synaptic processes. We evaluated two possible explanations for these findings: (a) 
schizophrenia and intelligence are both associated with the same genes that are specifically 
expressed in the same cell types or (b) schizophrenia and intelligence are associated with different 
sets of genes that are both highly specific to the same cell types. Given that these two traits have a 
significant negative genetic correlation (𝑟"=-0.22, from GWAS results alone) (Figure S2 and Table 
S1), we hypothesized that the strong overlap in cell type associations for schizophrenia and 
intelligence was due to the second explanation.  
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To evaluate these hypotheses, we tested whether the 10% most specific genes for each cell type 
were enriched in genetic association for schizophrenia controlling for the gene-level genetic 
association of intelligence using MAGMA. We found that the pattern of associations were largely 
unaffected by controlling the schizophrenia cell type association analysis for the gene-level genetic 
association of intelligence and vice versa (Figure S10). Similarly, we found that controlling for 
educational attainment had little effect on the schizophrenia associations and vice versa (Figure S11). 
In other words, genes driving the cell type associations of schizophrenia appear to be distinct from 
genes driving the cell types associations of cognitive traits.  
 
Multiple cell types are independently associated with brain complex traits 
 
Many neuronal cell types passed our stringent significance threshold for multiple brain traits (Figure 
2A and S5). This could be because gene expression profiles are highly correlated across cell types 
and/or because many cell types are independently associated with the different traits. In order to 
address this, we performed univariate conditional analysis using MAGMA, testing whether cell type 
associations remained significant after controlling for the 10% most specific genes from other cell 
types (Table S6). We observed that multiple cell types were independently associated with age at 
menarche, anorexia, autism, bipolar, BMI, educational attainment, intelligence, MDD, neuroticism and 
schizophrenia (Figure S12). As in our previous study 12, we found that the association between 
schizophrenia and telencephalon projecting inhibitory neurons (i.e. medium spiny neurons) appears 
to be independent from telencephalon projecting excitatory neurons (i.e. pyramidal neurons). For 
Parkinson’s disease, we found that enteric neurons, oligodendrocytes and cholinergic and 
monoaminergic neurons were independently associated with the disorder (Figure 2B), suggesting 
that these three different cell types play an independent role in the etiology of the disorder. 
 
Replication in other single-cell RNA-seq datasets 
 
To assess the robustness of our results, we repeated these analyses in independent RNA-seq 
datasets. A key caveat is that these other datasets did not sample the entire nervous system as in 
the analyses above.  
 
First, we used a single-cell RNA-seq dataset that identified 88 broad categories of cell types (565 
subclusters) in 690K single cells from 9 mouse brain regions (frontal cortex, striatum, globus pallidus 
externus/nucleus basalis, thalamus, hippocampus, posterior cortex, entopeduncular 
nucleus/subthalamic nucleus, substantia nigra/ventral tegmental area, and cerebellum) 41. We found 
similar patterns of association in this external dataset (Figure 3A, S14 and Table S7). Notably, for 
schizophrenia, we strongly replicated associations with neurons from the cortex, hippocampus and 
striatum. We also observed similar cell type associations for other psychiatric and cognitive traits 
(Figure 3A, S13, S14 and S15). For neurological disorders, we found that stroke was significantly 
associated with mural cells while Alzheimer’s disease was significantly associated with microglia 
(Figure S14). The associations of Parkinson’s disease with neurons from the substantia nigra and 
oligodendrocytes were significant at a nominal level in this dataset (P=0.006 for neurons from the 
substantia nigra, P=0.027 for oligodendrocytes using LDSC) (Table S3). By computing gene 
expression specificity within neurons, we replicated our previous findings that neurons from the cortex 
can be prioritized for multiple traits (schizophrenia, bipolar, educational attainment, intelligence, BMI, 
neuroticism, MDD, anorexia) (Figure S16). 
 
Second, we reanalyzed these GWAS datasets using our previous single-cell RNA-seq dataset (24 
cell types from the neocortex, hippocampus, striatum, hypothalamus midbrain, and specific 
enrichments for oligodendrocytes, serotonergic neurons, dopaminergic neurons and cortical 
parvalbuminergic interneurons, 9970 single cells; Figure 3B, S17 and Table S8). We again found 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 16, 2019. ; https://doi.org/10.1101/528463doi: bioRxiv preprint 

https://doi.org/10.1101/528463
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 7 of 54 

strong associations of pyramidal neurons from the somatosensory cortex, pyramidal neurons from 
the CA1 region of the hippocampus (both corresponding to telencephalon projecting excitatory 
neurons in our main dataset), and medium spiny neurons from the striatum (corresponding to 
telencephalon projecting inhibitory neurons) with psychiatric and cognitive traits. MDD and autism 
were most associated with neuroblasts, while intracranial volume was most associated with neural 
progenitors (suggesting that drivers of intracranial volume are cell types implicated in increasing cell 
mass). The association of dopaminergic adult neurons with Parkinson’s disease was significant at a 
nominal level using LDSC (P=0.01), while oligodendrocytes did not replicate in this dataset, perhaps 
because they were not sampled from the regions affected by the disorder (i.e. spinal cord, pons, 
medulla or midbrain). A within-neuron analysis again found that projecting excitatory (i.e. pyramidal 
CA1) and projecting inhibitory neurons (i.e. medium spiny neurons) can be prioritized for multiple 
traits (schizophrenia, bipolar, intelligence, educational attainment, BMI). In addition, we found that 
neuroblasts could be prioritized for MDD and that neural progenitors could be prioritized for 
intracranial volume (Figure S18) in this dataset.  
 
Third, we evaluated a human single-nuclei RNA-seq dataset consisting of 15 different cell types from 
cortex and hippocampus 42 (Figure 4A and Table S9). We replicated our findings with psychiatric and 
cognitive traits being associated with pyramidal neurons (excitatory) and interneurons (inhibitory) from 
the somatosensory cortex and from the CA1 region of the hippocampus. We also replicated the 
association of Parkinson’s disease with oligodendrocytes (enteric neurons and cholinergic and 
monoaminergic neurons were not sampled in this dataset). No cell types reached our significance 
threshold using specificity metrics computed within-neurons, possibly because of similarities in the 
transcriptomes of neurons from the cortex and hippocampus. 
 
Fourth, we evaluated a human single-nuclei RNA-seq dataset consisting of 31 different cell types 
from 3 different brain regions (visual cortex, frontal cortex and cerebellum) (Figure 4B and Table 
S10). We found that schizophrenia, educational attainment, neuroticism and BMI were associated 
with excitatory neurons, while bipolar was associated with both excitatory and inhibitory neurons. As 
observed previously 11,17,31, Alzheimer’s disease was significantly associated with microglia. 
Oligodendrocytes were not significantly associated with Parkinson’s disease in this dataset, again 
possibly because the spinal cord, pons, medulla and midbrain were not sampled. No cell types 
reached our significance threshold using specificity metrics computed within neurons in thid dataset. 
 
Most cell type-trait associations were attenuated using human single-nuclei data compared with 
mouse single-cell RNA-seq data, suggesting that the transcripts that are lost by single-nuclei RNA-
seq are important for a large number of disorders and/or that the controlled condition of mouse 
experiments provide more accurate gene expression quantifications (see Discussion and Figure 
S19).  
 
Comparison with case/control differentially expressed genes at the cell type level 
 
We compared our findings for Alzheimer’s disease (Table S3, Figure 4B, Figure S14) with a recent 
study that performed differential expression analysis at the cell type level between 24 Alzheimer’s 
cases and 24 controls 43 (prefrontal cortex, Brodmann area 10). We tested whether the top 500, top 
1000 and top 2000 most differentially expressed genes (no pathology vs pathology) in six different 
cell types (excitatory neurons, inhibitory neurons, oligodendrocytes, oligodendrocytes precursor cells, 
astrocyte and microglia) were enriched in genetic associations with Alzheimer’s disease using 
MAGMA. Consistently with our results, we found that genes differentially expressed in microglia were 
the most associated with Alzheimer’s disease genetics (Table S11), indicating that our approach 
appropriately highlight the relevant cell type at a fraction of the cost of a case-control single cell RNA-
seq study. As performing case-control single cell RNA-seq studies in the entire nervous system is 
currently cost prohibitive, the consistency of our results with the case-control study of Alzheimer’s 
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disease suggests that our results could be leveraged to target specific brain regions and cell types in 
future case-control genomic studies of brain disorders. 
 
Validation of oligodendrocyte pathology in Parkinson’s disease 
 
We investigated the role of oligodendrocyte lineage cells in Parkinson’s disease. First, we confirmed 
the association of oligodendrocytes with Parkinson’s disease by combining evidence across all 
datasets (Fisher’s combined probability test, P=2.5*10-7 using MAGMA and 6.3*10-3 using LDSC) 
(Table S3 and Figure S20). Second, we tested whether oligodendrocytes were significantly 
associated with Parkinson’s disease conditioning on the top neuronal cell type in the different datasets 
using MAGMA and found: (a) that oligodendrocytes were independently associated from the top 
neuronal cell type in our main dataset and in the Habib replication dataset 42 at a Bonferroni significant 
level (P=7.3*10-5 and P=1.7*10-4 respectively), (b) nominal evidence in the Saunders dataset 44 
(P=0.018), (c) weak evidence in the Skene 12 (P=0.12) and Lake 45 datasets (P=0.2) and (d) combining 
the conditional evidence from all datasets, oligodendrocytes were significantly associated with 
Parkinson’s disease independently of the top neuronal association (P=1.2*10-7, Fisher’s combined 
probability test).  
 
Third, we tested whether genes with rare variants associated with Parkinsonism (Table S12) were 
specifically expressed in cell types from the mouse nervous system (Method). As for the common 
variant, we found the strongest enrichment for cholinergic and monoaminergic neurons (Table S13). 
However, we did not observe any significant enrichments for oligodendrocytes or enteric neurons 
using genes associated with rare variants in Parkinsonism. 
 
Fourth, we applied EWCE 11 to test whether genes that are up/down-regulated in human post-mortem 
Parkinson’s disease brains (from six separate cohorts) were enriched in cell types located in the 
substantia nigra and ventral midbrain (Figure 5). Three of the studies had a case-control design and 
measured gene expression in: (a) the substantia nigra of 9 controls and 16 cases 46, (b) the medial 
substantia nigra of 8 controls and 15 cases 47, and (c) the lateral substantia nigra of 7 controls and 9 
cases 47. In all three studies, downregulated genes in Parkinson’s disease were specifically enriched 
in dopaminergic neurons (consistent with the loss of this particular cell type in disease), while 
upregulated genes were significantly enriched in cells from the oligodendrocyte lineage. This 
suggests that an increased oligodendrocyte activity or proliferation could play a role in Parkinson’s 
disease etiology. Surprisingly, no enrichment was observed for microglia, despite recent findings 48,49. 
 
We also analyzed gene expression data from post-mortem human brains which had been scored by 
neuropathologists for their Braak stage 50. Differential expression was calculated between brains with 
Braak scores of zero (controls) and brains with Braak scores of 1—2, 3—4 and 5—6. At the latter 
stages (Braak scores 3—4 and 5—6), downregulated genes were specifically expressed in 
dopaminergic neurons, while upregulated genes were specifically expressed in oligodendrocytes 
(Figure 5), as observed in the case-control studies. Moreover, Braak stage 1 and 2 are characterized 
by little degeneration in the substantia nigra and, consistently, we found that downregulated genes 
were not enriched in dopaminergic neurons at this stage. Notably, upregulated genes were already 
strongly enriched in oligodendrocytes at Braak Stages 1-2. These results not only support the genetic 
evidence indicating that oligodendrocytes may play a causal role in Parkinson’s disease, but indicate 
that their involvement precedes the emergence of pathological changes in the substantia nigra. 
 
Discussion 
 
In this study, we used gene expression data from cells sampled from the entire nervous system to 
systematically map cell types to GWAS results from multiple psychiatric, cognitive, and neurological 
complex phenotypes.  
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We note several limitations. First, we again emphasize that we can implicate a particular cell type but 
it is premature to exclude cell types for which we do not have data 12. Second, we used gene 
expression data from mouse to understand human phenotypes. We believe our approach is 
appropriate for several reasons. (A) Crucially, the key findings replicated in human data. (B) Single-
cell RNA-seq is achievable in mouse but difficult in human neurons (where single-nuclei RNA-seq is 
typical 42,45,51,52). In brain, differences between single-cell and single-nuclei RNA-seq are important as 
transcripts that are missed by sequencing nuclei are important for psychiatric disorders, and we 
previously showed that dendritically-transported transcripts (important for schizophrenia) are 
specifically depleted from nuclei datasets 12 (we confirmed this finding in four additional datasets, 
Figure S19). (C) Correlations in gene expression for cell type across species is high (median 
correlation 0.68, Figure S21), and as high or higher than correlations across methods within cell type 
and species (single-cell vs single-nuclei RNA-seq, median correlation 0.6) 53. (D) We evaluated 
protein-coding genes with 1:1 orthologs between mouse and human. These constitute most human 
protein-coding genes, and these genes are generally highly conserved particularly in the nervous 
system. We did not study genes present in one species but not in the other. (E) More specifically, we 
previously showed that gene expression data cluster by cell type and not by species 12, indicating 
broad conservation of core brain cellular functions across species. (F) We used a large number of 
genes to map cell types to traits (~1500 genes for each cell type), minimizing potential bias due to 
individual genes differentially expressed across species. (G) If there were strong differences in cell 
type gene expression between mouse and human, we would not expect that specific genes in mouse 
cell types would be enriched in genetic associations with human disorders. However, it remains 
possible that some cell types have different gene expression patterns between mouse and human, 
are only present in one species, have a different function or are involved in different brain circuits.  
 
A third limitation is that gene expression data were from adolescent mice. Although many psychiatric 
and neurological disorders have onsets in adolescence, some have onsets earlier (autism) or later 
(Alzheimer’s and Parkinson's disease). It is thus possible that some cell types are vulnerable at 
specific developmental times. Data from studies mapping cell types across brain development and 
aging are required to resolve this issue. 
 
For schizophrenia, we replicated and extended our previous findings 12. We found the most significant 
associations for neurons located in the cortex, hippocampus and striatum (Figure 2A, 3) in multiple 
independent datasets, and showed that these neuronal cell types can be prioritized among neurons 
(Figure S9, S16 and S18). These results are consistent with the strong schizophrenia heritability 
enrichment observed in open chromatin regions from: human dorsolateral prefrontal cortex 54; human 
cortical, striatal and hippocampal neurons 55; and mouse open chromatin regions from cortical 
excitatory and inhibitory neurons 56. This degree of replication in independent transcriptomic datasets 
from multiple groups along with consistent findings using orthogonal open chromatin data is notable, 
and strongly implicates these cell types in the etiology of schizophrenia.  
 
Moreover, we found that other psychiatric traits implicated largely similar cell types. These biological 
findings are consistent with genetic and epidemiological evidence of a general psychopathy factor 
underlying diverse clinical psychiatric disorders 21,57,58. Although intelligence and educational 
attainment implicated similar cell types, conditional analyses showed that the same cell types were 
implicated for different reasons. This suggests that different sets of genes highly specific to the same 
cell types contribute independently to schizophrenia and cognitive traits.  
 
A number of studies have argued that the immune system plays a causal role in some psychiatric 
disorders 59,60. Our results did not implicate any brain immune cell types in psychiatric disorders. We 
interpret these negative findings cautiously as we did not fully sample the immune system. It is also 
possible that a small number of genes are active in immune cell types and that these cell types play 
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an important role in the etiology of psychiatric disorders. Finally, if immune functions are salient for a 
small subset of patients, GWAS may not identify these loci without larger and more detailed studies.  
 
Our findings for neurological disorders were strikingly different from psychiatric disorders. In contrast 
to previous studies that either did not identify any cell type associations with Parkinson’s disease 61 
or identified significant associations with cell types from the adaptive immune system 49, we found 
that cholinergic and monoaminergic neurons (which include dopaminergic neurons), enteric neurons 
and oligodendrocytes were significantly and independently associated with the disease. It is well 
established that loss of dopaminergic neurons in the substantia nigra is a hallmark of Parkinson’s 
disease. Our findings suggest that dopaminergic neuron loss in Parkinson’s disease is at least partly 
due to intrinsic biological mechanisms. In addition, other type of cholinergic and monoaminergic 
neurons are known to degenerate in Parkinson’s disease (e.g., raphe nucleus serotonergic neurons 
and cholinergic neurons of the pons), suggesting that specific pathological mechanisms may be 
shared across these neurons and lead to their degeneration. Two theories for the selective 
vulnerability of neuronal populations in Parkinson’s disease currently exist: the “spread Lewy 
pathology model” which assumes cell-to-cell contacts enabling spreading of prion-like α-synuclein 
aggregates 62; and the “threshold theory” 63,64 which proposes that the vulnerable cell types 
degenerate due to molecular/functional biological similarities in a cell-autonomous fashion. While both 
theories are compatible and can co-exist, our findings support the existence of cell autonomous 
mechanisms contributing to selective vulnerability. We caution that we do not know if all cholinergic 
and monoaminergic neurons show degeneration or functional impairment. However, analysis of the 
cellular mechanisms driving the association of cholinergic and monoaminergic neurons with 
Parkinson’s disease revealed endosomal trafficking as a plausible common pathogenic mechanism. 
 
Interestingly, enteric neurons were also associated with Parkinson’s disease. This result is in line with 
prior evidence implicating the gut in Parkinson’s disease. Notably, dopaminergic defects and Lewy 
bodies (i.e. abnormal aggregates of proteins enriched in α-synuclein) are found in the enteric nervous 
system of patients affected by Parkinson’s disease 65,66. In addition, Lewy bodies have been observed 
in patients up to 20 years prior to their diagnosis 67 and sectioning of the vagus nerve (which connects 
the enteric nervous system to the central nervous system) was shown to reduce the risk of developing 
Parkinson’s disease 68. Therefore, our results linking enteric neurons with Parkinson’s disease 
provides new genetic evidence for Braak’s hypothesis, which postulates that Parkinson’s disease 
could start in the gut, travel along the vagus nerve, and affect the brain years after disease initiation 
38. 
 
The association of oligodendrocytes with Parkinson’s disease was more unexpected. A possible 
explanation is that this association could be due to a related disorder (e.g., multiple system atrophy, 
characterized by Parkinsonism and accumulation of α-synuclein in glial cytoplasmic inclusions 69). 
However, this explanation is unlikely as multiple system atrophy is a very rare disorder; hence, only 
a few patients are likely to have been included in the Parkinson’s disease GWAS which could not 
have affected the GWAS results. In addition, misdiagnosis is unlikely to have led to the association 
of Parkinson’s disease with oligodendrocytes. Indeed, we found a high genetic correlation between 
self-reported diagnosis from the 23andMe cohort and a previous GWAS of clinically-ascertained 
Parkinson’s disease 19. In addition, self-report of Parkinson’s disease in 23andMe subjects was 
confirmed by a neurologist in all 50 cases evaluated 70.  
 
We did not find an association of oligodendrocytes with Parkinsonism for genes affected by rare 
variants. This result may reflect etiological differences between sporadic and familial forms of the 
disease or the low power and insufficient number of genes tested. Prior evidence has suggested an 
involvement of oligodendrocytes in Parkinson’s disease. For example, α-synuclein-containing 
inclusions have been reported in oligodendrocytes in Parkinson’s disease brains 71. These inclusions 
(“coiled bodies”) are typically found throughout the brainstem nuclei and fiber tracts 72. Although the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 16, 2019. ; https://doi.org/10.1101/528463doi: bioRxiv preprint 

https://doi.org/10.1101/528463
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 11 of 54 

presence of coiled bodies in oligodendrocytes is a common, specific, and well-documented 
neuropathological feature of Parkinson’s disease, the importance of this cell type and its early 
involvement in disease has not been fully recognized. Our findings suggest that intrinsic genetic 
alterations in oligodendrocytes occur at an early stage of disease, which precedes the emergence of 
neurodegeneration in the substantia nigra, arguing for a key role of this cell type in Parkinson’s 
disease etiology.  
 
Taken together, we integrated genetics and single-cell gene expression data from the entire nervous 
system to systematically identify cell types underlying brain complex traits. We believe that this a 
critical step in the understanding of the etiology of brain disorders and that these results will guide 
modelling of brain disorders and functional genomic studies.  
 
Methods 
 
GWAS results 
Our goal was to use GWAS results to identify relevant tissues and cell types. Our primary focus was 
human phenotypes whose etiopathology is based in the central nervous system. We thus obtained 
18 sets of GWAS summary statistics from European samples for brain-related complex traits. These 
were selected because they had at least one genome-wide significant association (as of 2018; e.g., 
Parkinson’s disease, schizophrenia, and IQ). For comparison, we included GWAS summary statistics 
for 8 diseases and traits with large sample sizes whose etiopathology is not rooted in the central 
nervous system (e.g., type 2 diabetes). The selection of these conditions allowed contrasts of tissues 
and cells highlighted by our primary interest in brain phenotypes with non-brain traits.  
 
The phenotypes were: schizophrenia 2, educational attainment 3, intelligence 15, body mass index 5, 
bipolar disorder 73, neuroticism 4, major depressive disorder 74, age at menarche 75, autism 76, migraine 
77, amyotrophic lateral sclerosis 78, ADHD 79, Alzheimer’s disease 26, age at menopause 80, coronary 
artery disease 81, height 5, hemoglobin A1c 82, hippocampal volume 83, inflammatory bowel disease 
84, intracranial volume 85, stroke 86, type 2 diabetes mellitus 87, type 2 diabetes adjusted for BMI 87, 
waist-hip ratio adjusted for BMI 88, and anorexia nervosa 89.  
 
For Parkinson’s disease, we performed an inverse variance-weighted meta-analysis 90 using 
summary statistics from Nalls et al. 19 (9,581 cases, 33,245 controls) and summary statistics from 
23andMe (12,657 cases, 941,588 controls). We found a very high genetic correlation (𝑟") 20 between 
results from these cohorts (𝑟"=0.87, s.e=0.068) with little evidence of sample overlap (LDSC bivariate 
intercept=0.0288, s.e=0.0066). The P-values from the meta-analysis strongly deviated from the 
expected (Figure S22) but was consistent with polygenicity (LDSC intercept=1.0048, s.e=0.008) 
rather than uncontrolled inflation 20.  
 
Gene expression data 
We collected publicly available single-cell RNA-seq data from different studies. The core dataset of 
our analysis is a study that sampled more than 500K single cells from the entire mouse nervous 
system (19 regions) and identified 39 broad categories (level 4) and 265 refined cell types (level 5) 
30. The 39 cell types expressed a median of 16417 genes, had a median UMI total count of ~8.6M 
and summed the expression of a median of 1501 single cells (Table S14). The replication datasets 
were: 1) a mouse study that sampled 690K single cells from 9 brain regions and identified 565 cell 
types 91 (note that we averaged the UMI counts by broad categories of cell type in each brain region, 
resulting in 88 different cell types); 2) our prior mouse study of ~10K cells from 5 different brain regions 
(and samples enriched for oligodendrocytes, dopaminergic neurons, serotonergic neurons and 
cortical parvalbuminergic interneurons) that identified 24 broad categories and 149 refined cell types 
12; 3) a study that sampled 19,550 nuclei from frozen adult human post-mortem hippocampus and 
prefrontal cortex and identified 16 cell types 42; 4) a study that generated 36,166 single-nuclei 
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expression measurements (after quality control) from the human visual cortex, frontal cortex and 
cerebellum 45. We also obtained bulk tissues RNA-seq gene expression data from 53 tissues from the 
GTEx consortium 8 (v8, median across samples).  
 
Gene expression data processing 
All datasets were processed uniformly. First we computed the mean expression for each gene in each 
cell type from the single-cell expression data (if this statistics was not provided by the authors). We 
used the pre-computed median expression across individuals for the GTEx dataset and excluded 
tissues that were not sampled in at least 100 individuals, non-natural tissues (e.g. EBV-transformed 
lymphocytes) and testis (outlier using hierarchical clustering). We then averaged the expression of 
tissues by organ (with the exception of brain tissues) resulting in gene expression profiles of a total 
of 37 tissues. For all datasets, we filtered out any genes with non-unique names, genes not expressed 
in any cell types, non-protein coding genes, and, for mouse datasets, genes that had no expert 
curated 1:1 orthologs between mouse and human (Mouse Genome Informatics, The Jackson 
laboratory, version 11/22/2016). Gene expression was then scaled to a total of 1M UMIs (or transcript 
per million (TPM)) for each cell type/tissue. We then calculated a metric of gene expression specificity 
by dividing the expression of each gene in each cell type by the total expression of that gene in all 
cell types, leading to values ranging from 0 to 1 for each gene (0: meaning that the gene is not 
expressed in that cell type, 0.6: that 60% of the total expression of that gene is performed in that cell 
type, 1: that 100% of the expression of that gene is performed in that cell type). The top 10% most 
specific genes (Table S15 and Table S16) in each tissue/cell type partially overlapped for related 
tissues/cell types, did not overlap for unrelated tissue/cell types and allowed to cluster related 
tissues/cell types as expected (Figure S23 and Figure S24). 
 
MAGMA primary and conditional analyses 
MAGMA (v1.06b) 23 is a software for gene-set enrichment analysis using GWAS summary statistics. 
Briefly, MAGMA computes a gene-level association statistic by averaging P-values of SNPs located 
around a gene (taking into account LD structure). The gene-level association statistic is then 
transformed to a Z-value. MAGMA can then be used to test whether a gene set is a predictor of the 
gene-level association statistic of the trait (Z-value) in a linear regression framework. MAGMA 
accounts for a number of important covariates such as gene size, gene density, mean sample size 
for tested SNPs per gene, the inverse of the minor allele counts per gene and the log of these metrics.  
 
For each GWAS summary statistics, we excluded any SNPs with INFO score <0.6, with MAF < 1% 
or with estimated odds ratio > 25 or smaller than 1/25, the MHC region (chr6:25-34 Mb) for all GWAS 
and the APOE region (chr19:45020859–45844508) for the Alzheimer’s GWAS. We set a window of 
35kb upstream to 10kb downstream of the gene coordinates to compute gene-level association 
statistics and used the European reference panel from the phase 3 of the 1000 genomes project 92 
as the reference population. For each trait, we then used MAGMA to test whether the 10% most 
specific gene in each tissue/cell type was associated with gene-level genetic association with the trait. 
Only genes with at least 1TPM or 1 UMI per million in the tested cell type were used for this analysis. 
The significance level of the different cell types was highly correlated with the effect size of the cell 
type (Figure S25) with values ranging between 0.999 and 1 across the 18 brain related traits in the 
Zeisel et al. dataset 93. The significance threshold was set to a 5% false discovery rate across all 
tissues/cell types and traits within each dataset. 
 
MAGMA can also perform conditional analyses given its linear regression framework. We used 
MAGMA to test whether cell types were associated with a specific trait conditioning on the gene-level 
genetic association of another trait (Z-value from MAGMA .out file) or to look for associations of cell 
types conditioning on the 10% most specific genes from other cell types by adding these variables as 
covariate in the model. 
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To test whether MAGMA was well-calibrated, we randomly permuted the gene labels of the 
schizophrenia gene-level association statistic file a thousand times. We then looked for association 
between the 10% most specific genes in each cell type and the randomized gene-level schizophrenia 
association statistics. We observed that MAGMA was slightly conservative with less than 5% of the 
random samplings having a P-value <0.05 (Figure S26). 
 
We also evaluated the effect of varying window sizes (for the SNPs to gene assignment step of 
MAGMA) on the schizophrenia cell type associations strength (-log10(P)). We observed strong 
Pearson correlations in cell type associations strength (-log10(P)) across the different window sizes 
tested (Figure S27). Our selected window size (35kb upstream to 10 kb downstream) had Pearson 
correlations ranging from 0.94 to 0.98 with the other window sizes, indicating that our results are 
robust to this parameter. 
 
In a recent paper, Watanabe et al. 94 introduced a different methodology to test for cell type – complex 
trait association based on MAGMA. Their proposed methodology tests for a positive relationship 
between gene expression levels and gene-level genetic associations with a complex trait (using all 
genes). Their method uses the average expression of each gene in all cell types in the dataset as a 
covariate. We examined the method of Watanabe et al. in detail, and decided against its use for 
multiple reasons.  
 
First, Watanabe et al. hypothesize that genes with higher levels of expression should be more 
associated with a trait. In extended discussions among our team (which include multiple 
neuroscientists), we have strong reservations about the appropriateness and biological 
meaningfulness of this hypothesis; it is a strong requirement and is at odds with decades of 
neuroscience research where molecules expressed a low levels can have profound biological impact. 
For instance, many cell-type specific genes that are disease relevant are expressed at moderate 
levels (e.g., Drd2 is in the 10% most specific genes in telencephalon projecting inhibitory neurons but 
in the bottom 30% of expression levels). Our method does not make this hypothesis.  
 
Second, the method of Watanabe et al. corrects for the average expression of all cell types in a 
dataset. This practice is, in our view, problematic as it necessarily forces dependence on the 
composition of a scRNA-seq dataset. For instance, if a dataset consists mostly of neurons, this 
amounts to correcting for neuronal expression and necessarily erodes power to detect trait 
enrichment in neurons. Alternatively, if a dataset is composed mostly of non-neuronal cells, this will 
impacts the detection of enrichment in non-neuronal cells. 
 
Third, preliminary results indicate that the method of Watanabe et al. is sensitive to scaling. As 
different cell types express different numbers of genes, scaling to the same total read counts affects 
the average gene expression across cell types (which they use as a covariate), leading to different 
results with different choices of scaling factors (e.g., scaling to 10k vs 1 million reads). Our method is 
not liable to this issue. 
 
LD score regression analysis 
We used partitioned LD score regression 95 to test whether the top 10% most specific genes of each 
cell type (based on our specificity metric described above) were enriched in heritability for the diverse 
traits. Only genes with at least 1TPM or 1 UMI per million in the tested cell type were used for this 
analysis. In order to capture most regulatory elements that could contribute to the effect of the region 
on the trait, we extended the gene coordinates by 100kb upstream and by 100kb downstream of each 
gene as previously 13. SNPs located in 100kb regions surrounding the top 10% most specific genes 
in each cell type were added to the baseline model (consisting of 53 different annotations) 
independently for each cell type (one file for each cell type). We then selected the coefficient z-score 
p-value as a measure of the association of the cell type with the traits. The significance threshold was 
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set to a 5% false discovery rate across all tissues/cell types and traits within each dataset. All plots 
show the mean -log10(P) of partitioned LDscore regression and MAGMA. All results for MAGMA or 
LDSC are available in supplementary data files.  
 
We evaluated the effect of varying window sizes and varying the percentage of most specific genes 
on the schizophrenia cell type associations strength (-log10P). We observed strong Pearson 
correlations in cell type associations strength (-log10P) across the different percentage and window 
sizes tested (Figure S28). Our selected window size (100 kb upstream to 100 kb downstream, top 
10% most specific genes) had Pearson correlations ranging from 0.96 to 1 with the other window 
sizes and percentage, indicating that our results are robust to these parameters. 
 
MAGMA vs LDSC ranking 
In order to test whether the cell type ranking obtained using MAGMA and LDSC in the Zeisel et al. 
dataset 30 were similar, we computed the Spearman rank correlation of the cell types association 
strength (-log10P) between the two methods for each complex trait. The Spearman rank correlation 
was strongly correlated with 𝜆$%  (a measure of the deviation of the GWAS test statistics from the 
expected) (Spearman r=0.89) (Figure S29) and with the average number of cell types below our 
stringent significance threshold (Spearman r=0.92), indicating that the overall ranking of the cell types 
is very similar between the two methods, provided that the GWAS is well powered (Figure S30). In 
addition, we found that 𝜆$% was strongly correlated with the strength of association of the top tissue 
(-log10P) (Spearman r=0.88) (Figure S31), as well as with the effect size (beta) of the top tissue 
(Spearman r=0.9), indicating that cell type – trait associations are stronger for well powered GWAS. 
The significance level (-log10P)  was also strongly correlated with the effect size (Spearman r=0.996) 
(Figure S31) for the top cell type of each trait. 
 
 
Dendritic depletion analysis 
This analysis was performed as previously described 12. In brief, all datasets were reduced to a set of 
six common cell types: pyramidal neurons, interneurons, astrocytes, microglia and oligodendrocyte 
precursors. Specificity was recalculated using only these six cell types. Comparisons were then made 
between pairs of datasets (denoted in the graph with the format ‘X versus Y’). The difference in 
specificity for a set of dendrite enriched genes is calculated between the datasets. Differences in 
specificity are also calculated for random sets of genes selected from the background gene set. The 
probability and z-score for the difference in specificity for the dendritic genes is thus estimated. 
Dendritically enriched transcripts were obtained from Supplementary Table 10 of Cajigas et al. 96. For 
the KI dataset 12, we used S1 pyramidal neurons. For the Zeisel 2018 dataset 30 we used all ACTE* 
cells as astrocytes, TEGLU* as pyramidal neurons, TEINH* as interneurons, OPC as oligodendrocyte 
precursors and MGL* as microglia. For the Saunders dataset 41, we used all Neuron.Slc17a7 cellt 
ypes from FC, HC or PC as pyramidal neurons; all Neuron.Gad1Gad2 cell types from FC, HC or PC 
as interneurons; Polydendrocye as OPCs; Astrocyte as astrocytes, and Microglia as microglia. The 
Lake datasets both came from a single publication 45 which had data from frontal cortex, visual cortex 
and cerebellum. The cerebellum data was not used here. Data from frontal and visual cortices were 
analyzed separately. All other datasets were used as described in our previous publication 12. The 
code and data for this analysis are available as an R package (see code availability below).  
 
GO term enrichment 
We tested whether genes that were highly specific to a trait-associated cell type (top 20% in a given 
cell type) AND highly associated with the genetics of the traits (top 10% MAGMA gene-level genetic 
association) were enriched in biological functions using the topGO R package 97. As background, we 
used genes that were highly specific to the cell type (top 20%) OR highly associated with the trait (top 
10% MAGMA gene-level genetic association). 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 16, 2019. ; https://doi.org/10.1101/528463doi: bioRxiv preprint 

https://doi.org/10.1101/528463
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 15 of 54 

Parkinson’s disease rare variant enrichments 
We searched the literature for genes associated with Parkinsonism on the basis of rare and familial 
mutations. We found 66 genes (listed in Table S12). We used linear regression to test whether the z-
scaled specificity metric (per cell type) of the 66 genes were greater than 0 in the different cell types. 
 
Parkinson’s disease post-mortem transcriptomes 
The Moran dataset 47 was obtained from GEO (accession GSE8397). Processing of the U133a and 
U133b Cel files was done separately. The data was read in using the ReadAffy function from the R 
affy package 98, then Robust Multi-array Averaging (RMA) was applied. The U133a and U133b array 
expression data were merged after applying RMA. Probe annotations and mapping to HGNC symbols 
was done using the biomaRt R package 99. Differential expression analysis was performed using 
limma 100 taking age and gender as covariates. The Lesnick dataset 46 was obtained from GEO 
(accession GSE7621). Data was processed as for the Moran dataset: however, age was not available 
to use as a covariate. The Disjkstra dataset 50 was obtained from GEO (accession GSE49036) and 
processed as above: the gender and RIN values were used as covariates. As the transcriptome 
datasets measured gene expression in the substantia nigra, we only kept cell types that are present 
in the substantia nigra or ventral midbrain for our EWCE 11 analysis. We computed a new specificity 
matrix based on the substantia nigra or ventral midbrain cells from the Zeisel dataset (level 5) using 
EWCE 11. The EWCE analysis was performed on the 500 most up or down regulated genes using 
10,000 bootstrapping replicates. 
 
Code availability 
The code used to generate these results is available at: https://github.com/jbryois/scRNA_disease. 
An R package for performing cell type enrichments using magma is also available from: 
https://github.com/NathanSkene/MAGMA_Celltyping. 
 
Data availability 
All single-cell expression data are publicly available. Most summary statistics used in this study are 
publicly available. The migraine GWAS can be obtained by contacting the authors 77. The Parkinson’s 
disease summary statistics from 23andMe can be obtained under an agreement that protects the 
privacy of 23andMe research participants (https://research.23andme.com/collaborate/#publication ).  
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Figures 
 

 
Figure 1: Study design and tissue-level associations. Heat map of trait – tissue/cell types associations 
(-log10P) for the  selected traits. (A) Trait – tissue/cell types associations were performed using 
MAGMA and LDSC (testing for enrichment in genetic association of the top 10% most specific genes 
in each tissue/cell type). (B) Tissue – trait associations for selected brain related traits. (C) Tissue – 
trait associations for selected non-brain related traits. (D) The mean strength of association (-log10P) 
of MAGMA and LDSC is shown and the bar color indicates whether the tissue is significantly 
associated with both methods, one method or none (significance threshold: 5% false discovery rate). 
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Figure 2: Association of selected brain related traits with cell types from the entire nervous system. 
Associations of the top 10 most associated cell types are shown. (A) Conditional analysis results for 
Parkinson’s disease using MAGMA. The label indicates the cell type the association analysis is being 
conditioned on. (B) The mean strength of association (-log10P) of MAGMA and LDSC is shown and 
the bar color indicates whether the cell type is significantly associated with both methods, one method 
or none (significance threshold: 5% false discovery rate). 
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Figure 3: Replication of cell type – trait associations in mouse datasets. Tissue – trait associations 
are shown for the 10 most association cell types among 88 cell types from 9 different brain regions. 
(A) Tissue – trait associations are shown for the 10 most association cell types among 24 cell types 
from 5 different brain regions. (B) The mean strength of association (-log10P) of MAGMA and LDSC 
is shown and the bar color indicates whether the cell type is significantly associated with both 
methods, one method or none (significance threshold: 5 % false discovery rate). 
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Figure 4: Human replication of cell type – trait associations. Cell type - trait associations for 15 cell 
types (derived from single-nuclei RNA-seq) from 2 different brain regions (cortex, hippocampus). (A) 
Cell type - trait associations for 31 cell types (derived from single-nuclei RNA-seq) from 3 different 
brain regions (frontal cortex, visual cortex and cerebellum). (B) The mean strength of association (-
log10P) of MAGMA and LDSC is shown and the bar color indicates whether the cell type is significantly 
associated with both methods, one method or none (significance threshold: 5% false discovery rate). 
INT (intelligence), SCZ (schizophrenia), EDU (educational attainment), NEU (neuroticism), BMI (body 
mass index), BIP (bipolar disorder), MDD (Major depressive disorder), MEN (age at menarche), ASD 
(autism spectrum disorder), MIG (migraine), PAR (Parkinson’s disease), ADHD (attention deficit 
hyperactivity disorder), ICV (intracranial volume), HIP (hippocampal volume), AN (anorexia nervosa), 
ALZ (Alzheimer’s disease), ALS (amyotrophic lateral sclerosis), STR (stroke). 
 

INT SCZ EDU NEU BMI BIP MDD MEN ASD MIG PAR ADHD ICV HIP AN ALZ ALS STR

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

Astrocyte 2

Astrocyte 1

Neural Stem Cell

Microglia

Endothelial

Oligodendrocyte Precursor Cell 2

Oligodendrocyte

Oligodendrocyte Precursor Cell 1

Pyramidal Neuron CA3

Pyramidal Neuron CA1

Granule Neuron Dentate Gyrus

Pyramidal Neuron SS 2

Pyramidal Neuron SS 1

Interneuron 2

Interneuron 1

Mean(−log10(pvalue))

Significant
Both

MAGMA

LDSC

None

A

B
INT SCZ EDU NEU BMI BIP MDD MEN ASD MIG PAR ADHD ICV HIP AN ALZ ALS STR

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
Ex8
Ex2
Ex6b
Ex5b
Ex3a
Ex4
Ex3b
Ex5a
Ex3e
Ex3c
Ex6a
Ex3d
Ex1
In1b
In1a
In2
In3
In1c
In4b
In4a
In6b
In6a
In8
In7

OPC_Cer
Ast_Cer

OPC
Ast
Oli
Mic
Per
End

Purk2
Purk1
Gran

Mean(−log10(pvalue))

Significant
Both

MAGMA

LDSC

None

Schizophrenia Intelligence MDD Parkinson

0 5 10 0 5 10 0 5 10 0 5 10
Brain − Substantia nigra

Brain − Spinal cord (cervical c−1)
Brain − Cerebellum

Brain − Cerebellar Hemisphere
Brain − Hippocampus

Brain − Amygdala
Brain − Hypothalamus

Brain − Putamen (basal ganglia)
Brain − Caudate (basal ganglia)

Brain − Nucleus accumbens (basal ganglia)
Brain − Frontal Cortex (BA9)

Brain − Cortex
Brain − Anterior cingulate cortex (BA24)

Pituitary
Stomach
Pancreas

Thyroid
Salivary Gland

Prostate
Liver

Small Intestine
Lung

Spleen
Blood

Vagina
Esophagus

Skin
Breast

Adipose Tissue
Colon

Uterus
Blood Vessel

Nerve
Ovary

Muscle
Heart

Adrenal Gland

Mean(−log10(pvalue))

Significant
Both

MAGMA

LDSC

None

Schizophrenia Intelligence MDD Parkinson

0 5 10 0 5 10 0 5 10 0 5 10
Brain − Substantia nigra

Brain − Spinal cord (cervical c−1)
Brain − Cerebellum

Brain − Cerebellar Hemisphere
Brain − Hippocampus

Brain − Amygdala
Brain − Hypothalamus

Brain − Putamen (basal ganglia)
Brain − Caudate (basal ganglia)

Brain − Nucleus accumbens (basal ganglia)
Brain − Frontal Cortex (BA9)

Brain − Cortex
Brain − Anterior cingulate cortex (BA24)

Pituitary
Stomach
Pancreas

Thyroid
Salivary Gland

Prostate
Liver

Small Intestine
Lung

Spleen
Blood

Vagina
Esophagus

Skin
Breast

Adipose Tissue
Colon

Uterus
Blood Vessel

Nerve
Ovary

Muscle
Heart

Adrenal Gland

Mean(−log10(pvalue))

Significant
Both

MAGMA

LDSC

None

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 16, 2019. ; https://doi.org/10.1101/528463doi: bioRxiv preprint 

https://doi.org/10.1101/528463
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 22 of 54 

 
Figure 5: Enrichment of Parkinson’s disease differentially expressed genes in cell types from the 
substantia nigra. Enrichment of the 500 most up/down regulated genes (Braak stage 0 vs Braak stage 
1—2, 3—4 and 5—6, as well as cases vs controls) in postmortem human substantia nigra gene 
expression samples. The enrichments were obtained using EWCE11. A star shows significant 
enrichments after multiple testing correction (P<0.05/(25*6).  
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Supplementary Figures 
 

 
Figure S1: Manhattan plot of Parkinson’s disease meta-analysis. The black dotted line represents 
the genome-wide significance threshold (5x10-8).  
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Figure S2: Genetic correlation across traits. The genetic correlation across traits were computed 
using LDSC101. Traits are ordered based on hierarchical clustering. 
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Figure S3: Enrichment of immune genes in GTEx tissues. Enrichment pvalues of genes belonging to 
the GO term “Immune System Process” in the 10% most specific genes in each tissue. The one-sided 
pvalues were computed using linear regression, testing whether the average specificity metric of the 
gene set was higher than 0 (z-scaled specificity metrics per tissue). The GO term was selected 
because it is the most associated with inflammatory bowel disease using MAGMA. 
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Figure S4: Tissue – trait associations for all traits. The mean strength of association (-log10P) of 
MAGMA and LDSC is shown and the bar color indicates whether the tissue is significantly associated 
with both methods, one method or none (significance threshold: 5% false discovery rate). 
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Figure S5: Associations of brain related traits with cell types from the entire mouse nervous system. 
Associations of the top 15 most associated cell types are shown. The mean strength of association (-
log10P) of MAGMA and LDSC is shown and the bar color indicates whether the cell type is significantly 
associated with both methods, one method or none (significance threshold: 5% false discovery rate). 
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Figure S6: Correlation in cell type associations across traits. The Spearman rank correlations 
between the cell types associations across traits (-log10P) are shown. SCZ (schizophrenia), EDU 
(educational attainment), INT (intelligence), BMI (body mass index), BIP (bipolar disorder), NEU 
(neuroticism), PAR (Parkinson’s disease), MDD (Major depressive disorder), MEN (age at menarche), 
ICV (intracranial volume), ASD (autism spectrum disorder), STR (stroke), AN (anorexia nervosa), MIG 
(migraine), ALS (amyotrophic lateral sclerosis), ADHD (attention deficit hyperactivity disorder), ALZ 
(Alzheimer’s disease), HIP (hippocampal volume). 
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Figure S7: GWAS signal to noise ratio (λGC) by category of GWAS trait. Boxplot of the λGC of the 
different GWAS by category of trait. λGC was estimated using LDSC for each GWAS. 
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Figure S8: Number of single cells forming the oligodendrocyte cluster. Number of single cells per 
region of the mouse nervous system used to estimate the average gene expression of 
oligodendrocytes. 
 

Oligodendrocytes

0 1000 2000 3000 4000

DorsalRootGanglia
Enteric

Sympathetic
CortexLayer1.5

DentateGyrus
Cerebellum

CA1
Amygdala

SomatoSensoryCortex
CortexLayer2
OlfactoryBulb
CortexLayer3
CortexLayer1
Hippocampus

StriatumDorsal
StriatumVentral
Hypothalamus

Thalamus
SpinalCord

Pons
MidbrainVentral

Medulla
MidbrainDorsal

Number of single cells

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 16, 2019. ; https://doi.org/10.1101/528463doi: bioRxiv preprint 

https://doi.org/10.1101/528463
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 31 of 54 

 
Figure S9: Associations of brain related traits with neurons from the central nervous system. 
Associations of the 15 most associated neurons from the central nervous system (CNS) are shown. 
The specificity metrics were computed only using neurons from the CNS. The mean strength of 
association (-log10P) of MAGMA and LDSC is shown and the bar color indicates whether the cell type 
is significantly associated with both methods, one method or none (significance threshold: 5% false 
discovery rate). 
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Figure S10: Associations of cell types with schizophrenia/intelligence conditioning on gene-level 
genetic association of intelligence/schizophrenia. MAGMA association strength for each cell type 
before and after conditioning on gene-level genetic association for another trait. The black bar 
represents the significance threshold (5% false discovery rate). SCZ (schizophrenia), INT 
(intelligence).  
 

 
Figure S11: Associations of cell types with schizophrenia/educational attainment conditioning on 
gene-level genetic association of educational attainment/schizophrenia. MAGMA association strength 
for each cell type before and after conditioning on gene-level genetic association for another trait. The 
black bar represents the significance threshold (5% false discovery rate). SCZ (schizophrenia), EDU 
(educational attainment). 
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Figure S12: Conditional analysis results for brain related traits. Conditional analysis results using 
MAGMA are shown for up to the 5 most associated cell types (if at least 5 cell types were significant 
at a 5% false discovery rate in the original analysis. The color indicates if the cell type is significant at 
a 5% false discovery rate and the label indicates the cell type the association analysis is being 
conditioned on. 
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Figure S13: Replication of cell type – trait associations in 88 cell types from 9 different brain regions. 
The mean strength of association (-log10P) of MAGMA and LDSC is shown and the bar color indicates 
whether the cell type is significantly associated with both methods, one method or none (significance 
threshold: 5% false discovery rate). SCZ (schizophrenia), EDU (educational attainment), INT 
(intelligence), BMI (body mass index), BIP (bipolar disorder), NEU (neuroticism), PAR (Parkinson’s 
disease), MDD (Major depressive disorder), MEN (age at menarche), ICV (intracranial volume), ASD 
(autism spectrum disorder), STR (stroke), AN (anorexia nervosa), MIG (migraine), ALS (amyotrophic 
lateral sclerosis), ADHD (attention deficit hyperactivity disorder), ALZ (Alzheimer’s disease), HIP 
(hippocampal volume). 
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Figure S14: Top associated cell types with brain related traits among 88 cell types from 9 different 
brain regions. The mean strength of association (-log10P) of MAGMA and LDSC is shown for the 15 
top cell types for each trait. The bar color indicates whether the cell type is significantly associated 
with both methods, one method or none (significance threshold: 5% false discovery rate). 
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Figure S15: Correlation in cell type associations across traits in a replication data set (88 cell types, 
9 brain regions). Spearman rank correlations for cell types associations (-log10P) across traits are 
shown. SCZ (schizophrenia), EDU (educational attainment), INT (intelligence), BMI (body mass 
index), BIP (bipolar disorder), NEU (neuroticism), PAR (Parkinson’s disease), MDD (Major depressive 
disorder), MEN (age at menarche), ICV (intracranial volume), ASD (autism spectrum disorder), STR 
(stroke), AN (anorexia nervosa), MIG (migraine), ALS (amyotrophic lateral sclerosis), ADHD (attention 
deficit hyperactivity disorder), ALZ (Alzheimer’s disease), HIP (hippocampal volume). 
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Figure S16: Associations of brain related traits with neurons from 9 different brain regions. Trait – 
neuron association are shown for neurons of the 9 different brain regions. The specificity metrics were 
computed only using neurons. The mean strength of association (-log10P) of MAGMA and LDSC is 
shown and the bar color indicates whether the cell type is significantly associated with both methods, 
one method or none (significance threshold: 5% false discovery rate). 
 

Hippocampal volume

Age at menarche Autism Parkinson's disease

Major depressive disorder Anorexia Intracranial volume

BMI Neuroticism Bipolar

Educational attainment Intelligence Schizophrenia

0 2 4 6

0 2 4 6 0 2 4 6

Substantia nigra & ventral tegmental area − Neuron

Cerebellum − Neuron

Entopdeduncular & subthalamic nuclei − Neuron

Striatum − Neuron

Globus pallidus externus & nucleus basalis − Neuron

Hippocampus − Neuron

Thalamus − Neuron

Posterior Cortex − Neuron

Frontal Cortex − Neuron

Substantia nigra & ventral tegmental area − Neuron

Entopdeduncular & subthalamic nuclei − Neuron

Cerebellum − Neuron

Globus pallidus externus & nucleus basalis − Neuron

Striatum − Neuron

Hippocampus − Neuron

Frontal Cortex − Neuron

Thalamus − Neuron

Posterior Cortex − Neuron

Substantia nigra & ventral tegmental area − Neuron

Entopdeduncular & subthalamic nuclei − Neuron

Striatum − Neuron

Frontal Cortex − Neuron

Cerebellum − Neuron

Globus pallidus externus & nucleus basalis − Neuron

Posterior Cortex − Neuron

Thalamus − Neuron

Hippocampus − Neuron

Cerebellum − Neuron

Globus pallidus externus & nucleus basalis − Neuron

Entopdeduncular & subthalamic nuclei − Neuron

Posterior Cortex − Neuron

Substantia nigra & ventral tegmental area − Neuron

Striatum − Neuron

Frontal Cortex − Neuron

Thalamus − Neuron

Hippocampus − Neuron

Cerebellum − Neuron

Entopdeduncular & subthalamic nuclei − Neuron

Substantia nigra & ventral tegmental area − Neuron

Striatum − Neuron

Hippocampus − Neuron

Thalamus − Neuron

Globus pallidus externus & nucleus basalis − Neuron

Posterior Cortex − Neuron

Frontal Cortex − Neuron

Entopdeduncular & subthalamic nuclei − Neuron

Cerebellum − Neuron

Hippocampus − Neuron

Striatum − Neuron

Substantia nigra & ventral tegmental area − Neuron

Globus pallidus externus & nucleus basalis − Neuron

Thalamus − Neuron

Posterior Cortex − Neuron

Frontal Cortex − Neuron

Substantia nigra & ventral tegmental area − Neuron

Cerebellum − Neuron

Hippocampus − Neuron

Frontal Cortex − Neuron

Entopdeduncular & subthalamic nuclei − Neuron

Thalamus − Neuron

Striatum − Neuron

Globus pallidus externus & nucleus basalis − Neuron

Posterior Cortex − Neuron

Cerebellum − Neuron

Striatum − Neuron

Globus pallidus externus & nucleus basalis − Neuron

Entopdeduncular & subthalamic nuclei − Neuron

Frontal Cortex − Neuron

Posterior Cortex − Neuron

Hippocampus − Neuron

Substantia nigra & ventral tegmental area − Neuron

Thalamus − Neuron

Substantia nigra & ventral tegmental area − Neuron

Entopdeduncular & subthalamic nuclei − Neuron

Cerebellum − Neuron

Hippocampus − Neuron

Globus pallidus externus & nucleus basalis − Neuron

Thalamus − Neuron

Striatum − Neuron

Frontal Cortex − Neuron

Posterior Cortex − Neuron

Striatum − Neuron

Thalamus − Neuron

Substantia nigra & ventral tegmental area − Neuron

Globus pallidus externus & nucleus basalis − Neuron

Cerebellum − Neuron

Entopdeduncular & subthalamic nuclei − Neuron

Hippocampus − Neuron

Posterior Cortex − Neuron

Frontal Cortex − Neuron

Hippocampus − Neuron

Striatum − Neuron

Entopdeduncular & subthalamic nuclei − Neuron

Cerebellum − Neuron

Substantia nigra & ventral tegmental area − Neuron

Globus pallidus externus & nucleus basalis − Neuron

Frontal Cortex − Neuron

Thalamus − Neuron

Posterior Cortex − Neuron

Substantia nigra & ventral tegmental area − Neuron

Globus pallidus externus & nucleus basalis − Neuron

Striatum − Neuron

Cerebellum − Neuron

Thalamus − Neuron

Hippocampus − Neuron

Entopdeduncular & subthalamic nuclei − Neuron

Frontal Cortex − Neuron

Posterior Cortex − Neuron

Frontal Cortex − Neuron

Cerebellum − Neuron

Hippocampus − Neuron

Posterior Cortex − Neuron

Thalamus − Neuron

Substantia nigra & ventral tegmental area − Neuron

Globus pallidus externus & nucleus basalis − Neuron

Entopdeduncular & subthalamic nuclei − Neuron

Striatum − Neuron

Mean(−log10(pvalue))

Schizophrenia Intelligence MDD Parkinson

0 5 10 0 5 10 0 5 10 0 5 10
Brain − Substantia nigra

Brain − Spinal cord (cervical c−1)
Brain − Cerebellum

Brain − Cerebellar Hemisphere
Brain − Hippocampus

Brain − Amygdala
Brain − Hypothalamus

Brain − Putamen (basal ganglia)
Brain − Caudate (basal ganglia)

Brain − Nucleus accumbens (basal ganglia)
Brain − Frontal Cortex (BA9)

Brain − Cortex
Brain − Anterior cingulate cortex (BA24)

Pituitary
Stomach
Pancreas

Thyroid
Salivary Gland

Prostate
Liver

Small Intestine
Lung

Spleen
Blood

Vagina
Esophagus

Skin
Breast

Adipose Tissue
Colon

Uterus
Blood Vessel

Nerve
Ovary

Muscle
Heart

Adrenal Gland

Mean(−log10(pvalue))

Significant
Both

MAGMA

LDSC

None

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 16, 2019. ; https://doi.org/10.1101/528463doi: bioRxiv preprint 

https://doi.org/10.1101/528463
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 38 of 54 

 
Figure S17: Top associated cell types with brain related traits among 24 cell types from 5 different 
brain regions. The mean strength of association (-log10P) of MAGMA and LDSC is shown for the 15 
top cell types for each trait. The bar color indicates whether the cell type is significantly associated 
with both methods, one method or none (significance threshold: 5% false discovery rate). 
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Figure S18: Top associated neurons with brain related traits among 16 neurons from 5 different brain 
regions. The specificity metrics were computed only using neurons. The mean strength of association 
(-log10P) of MAGMA and LDSC is shown for the top 15 cell types for each trait. The bar color indicates 
whether the cell type is significantly associated with both methods, one method or none (significance 
threshold= 5% false discovery rate). 
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Figure S19: Single nuclei datasets are systematically depleted of dendritically enriched transcripts 
relative to single-cell datasets. Each bar represents a comparison between two datasets (X versus 
Y), with the bootstrapped z-scores representing the extent to which dendritically enriched transcripts 
96 have lower specificity for pyramidal neurons in dataset Y relative to that in dataset X. Larger z-
scores indicate greater depletion of dendritically enriched transcripts, and red bars indicate a 
statistically significant depletion (P < 0.05, by bootstrapping).  
 

 
Figure S20: Association of Parkinson’s disease with oligodendrocytes in the different datasets. The 
dotted line indicated the nominal significance threshold (P=0.05) 
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Figure S21: Gene expression correlation within cell type across species. Pearson correlation of gene 
expression (log2(expression) +1) between mouse and human cell types with matching names (from 
Habib et al. 2017 42). 
 

 
Figure S22: Quantile-quantile plot of Parkinson’s disease meta-analysis. Quantile-quantile plot of the 
meta-analyzed pvalues for Parkinson’s disease. The y-axis is truncated for clarity. The grey zone 
around the red line represents the 95% confidence interval for the null distribution. 
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Figure S23: Jaccard index for the top 10% most specific genes in each tissue in the GTEx dataset. 
Jaccard index were calculated between the top 10% most specific genes in each tissue from the 
GTEx dataset. 
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Figure S24: Jaccard index for the top 10% most specific genes in each cell type in the mouse nervous 
system (Zeisel et al. 2018). Jaccard index were calculated between the top 10% most specific genes 
in each cell type from the mouse nervous system (Zeisel et al. 2018). 
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Figure S25: Correlation between beta coefficient and significance level. Histograms of the spearman 
rank correlations between effect size (beta coefficient) and significance (-log10P) computed for each 
trait in the Zeisel dataset. The effect sizes are strongly correlated with the significance level of the cell 
type with values ranging from 0.999 to 1 using MAGMA and 0.953 to 1 with LDSC. 
 

 
Figure S26: Number of MAGMA associations with P<0.05 using permuted gene-level genetic 
associations. Gene labels were randomly permuted a thousand times for the schizophrenia MAGMA 
gene-level genetic associations (39 cell types * 1000 permuted labels=39,000 associations with 
permuted gene labels). The number of permutations with P < 0.05 is shown in blue. The black 
horizontal bar shows expected number of random associations with P < 0.05 (39,000*0.05=1950). 
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Figure S27: Correlation in schizophrenia cell type association strengths with different window sizes 
using MAGMA. Pearson correlations of the cell type association strength (-log10P) across different 
window sizes using MAGMA. The diagonal shows the distribution of the (-log10P) for each window 
size. 
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Figure S28: Correlation in schizophrenia cell type association strengths with different window sizes 
and percentages of most specific genes using LDSC. Pearson correlations of the cell type association 
strength (-log10P) across different window sizes and percentages of most specific genes using LDSC. 
The diagonal shows the distribution of the (-log10P) for the cell type associations using different 
parameters. 
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Figure S29: Correlation between 𝜆$% and similarity in cell type ordering between MAGMA and LDSC. 
LDSC101 was used to obtain 𝜆$%	(a measure of the deviation of the GWAS statistics from the expected) 
for each GWAS. Spearman rank correlation was used to test for similarity in association strength (-
log10P) between MAGMA and LDSC for each GWAS among 39 cell types from the nervous system. 
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Figure S30: Correlation between mean number of significant cell types and similarity in cell type 
ordering between MAGMA and LDSC. The mean number of cell types was obtained by taking the 
average of the number of cell types that were significantly associated with each trait (FDR<5%) using 
MAGMA and LDSC. Spearman rank correlation was used to test for similarity in association strength 
(-log10P) between MAGMA and LDSC among 39 cell types from the nervous system. 
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Figure S31: The GWAS λGC is correlated with the strength of association of the top cell type in the 
Zeisel dataset. Scatter plot of the λGC (median of chi-squared test statistics divided by expected 
median of the chi-squared distribution) of each GWAS vs the strength of association of the top Zeisel 
cell type associated with the trait (-log10(PMAGMA)). Spearman correlation=0.88 (A). Scatter plot of the 
λGC of each GWAS vs the effect size of the top Zeisel cell type associated with the trait (-
log10(PMAGMA)). Spearman correlation=0.9 (B). Scatter plot of the strength of association of the top 
Zeisel cell type (-log10(PMAGMA)) of each GWAS vs the effect size of the top Zeisel cell type. Spearman 
correlation=0.996 (C). 
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