$Fine\text{-}scale\ fronts\ as\ hotspots\ of\ fish\ aggregation$ $in\ the\ open\ ocean$

Alberto Baudena^{1,2}, Enrico Ser-Giacomi¹, Donatella d'Onofrio^{3,4}, Xavier Capet¹, Cedric Cotté¹, Yves Cherel⁵, and Francesco d'Ovidio¹

¹ Sorbonne Université, CNRS, IRD, MNHN, Laboratoire d'Océanographie et du Climat: Expérimentations et Approches Numériques (LOCEAN-IPSL), Paris, France
 ²Sorbonne Université, Institut de la Mer de Villefranche sur mer, Laboratoire d'Océanographie de Villefranche, F-06230 Villefranche-sur-Mer, France
 ³Institute of Atmospheric Sciences and Climate, National Research Council (CNR-ISAC), Torino, Italy
 ⁴Copernicus Institute of Sustainable Development, Environmental Science Group, Utrecht University, The Netherlands
 ⁵Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 du CNRS-La Rochelle Université, 79360 Villiers-en-Bois, France

Abstract. Oceanic Lagrangian Coherent Structures have been shown to deeply influence the distribution of primary producers and, at the other extreme of the trophic chain, top predators. However, the relationship between these structures and intermediate trophic levels is much more obscure. In this paper we address this knowledge gap by comparing acoustic measurements of mesopelagic fish concentrations to satellite-derived fine-scale Lagrangian Coherent Structures in the open ocean. The results demonstrate unambiguously that higher fish concentrations are significantly associated with stronger Lagrangian Coherent Structures, and we observe that these features represent a limiting condition for high fish concentrations. A model, specifically built for mid trophic levels with realistic parameters, provides a possible mechanism of fish aggregation, and is coherent with the observations. These results may help to integrate intermediate trophic levels in trophic models, which can ultimately support management and conservation policies.

Introduction

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

25

26

27

28

29

- 31 Marine biomass distribution is highly patchy and variable in time across the
- entire trophic web Bertrand et al. (2014); McManus and Woodson (2012). Dis-
- 33 cerning the factors underpinning ocean patchiness is fundamental to understand
- how they influence biogeochemical reactions and ecosystem stability Martin
- 35 (2003); Lévy and Martin (2013). These issues are pivotal for conservation pur-
- poses Gaines et al. (2010) and for assessing the impact of climate change on the
- marine environment Hoegh-Guldberg and Bruno (2010).
- One of the origins of the heterogeneity of the biotic fields is the dynamic nature
- of the ocean environments, which transforms the water masses on a large range

of temporal scales, including those of ecological relevance. In this regard, a special role is fulfilled by the mesoscale and submesoscale McGillicuddy (2016), now 41 commonly referred to together as "fine-scales", which span a spatial range from a few to hundreds of kilometers. 43 One fruitful approach for capturing the structuring effect of fine-scale dynamics 44 is the extraction of so-called Lagrangian Coherent Structures, and in particular Lagrangian fronts Haller (2015); Lehahn et al. (2018). Lagrangian Coherent 46 Structures (LCSs) provide several types of information regarding flow proper-47 ties, such as the location of fronts, barriers to transport Boffetta et al. (2001), 48 or retentive and coherent regions d'Ovidio et al. (2013). One of the most common Lagrangian diagnostics used to determine LCSs is the Finite-size Lyapunov 50 Exponent (FSLE, d'Ovidio et al., 2004). This measures the exponential rate of 51 water parcel deformation and has maximal values over frontal regions. 52 By shaping and elongating water patches, Lagrangian Coherent Structures have 53 been demonstrated to set the frontiers of phytoplanktonic patches in terms 54 of chlorophyll concentration Lehahn et al. (2018), and even functional type 55 d'Ovidio et al. (2010). This in turn enhances contacts between different com-56 munities, regulating plankton diversity De Monte et al. (2013). 57 More recently, advances in biologging programs provided evidence on the impact 58 of fine-scale structures on top predators behavior. The concentration of preda-59 tors foraging efforts has been observed in the neighbourhoods of Lagrangian 60 fronts Kai et al. (2009); Scales et al. (2018). Furthermore, fronts detected by 61 Lagrangian Coherent Structures (which in the following we will call Lagrangian 62 fronts) have been observed to influence predators movements Della Penna et al. 63 (2015). This could enhance energy transfer and gain Abrahms et al. (2018). 64 However, while the influence of Lagrangian fronts has been observed on both extremes of the trophic chain, much less is known about mid-trophic levels. Prants 66 et al. (see in particular Prants et al., 2014) demonstrated a correlation between 67 Pacific saury catches and Lyapunov exponents, and Watson et al. (2018) found 68 that several fishery vessels track LCSs when targeting fishery spots. However, 69 these results leave some concerns about possible biases because commercial fish-70 eries provides only punctual observations, and because they are even known to 71 use satellite images. Therefore, fishing vessels may target intentionally frontal 72 systems. Unbiased fish measurements have been instead recently used by Sato 73 et al. (2018) to analyse the relationship between a frontal system and acoustic 74 measurements in a coastal upwelling system. This allowed the authors to highlight the different role played by in-shore and off-shore waters. In terms of the 76 mechanisms which can explain how fine-scale structures influence mid-trophic 77 biomass distribution, even less is known. Classical explanations are based pri-78 marily on bottom-up mechanisms along fronts with intense upwelling Yoder et al. 79 (1994); Woodson and Litvin (2015). However, these hypothesis do not take into account the necessity of a maturation time, which in the case of fish is con-81 sistently longer than both the growth response of lower trophic levels and the 82 lifetime of the front. Neither the fish behavior is considered, despite the fact that fish possess efficient sensorial and swimming capacities along the horizontal

⁸⁵ (Kasumyan (2004)and Supporting Information SI.2).

The objective of the present study is to analyze the relationship between fine-

scale structures in the open ocean and mid-trophic organisms with unbiased,

direct observations of fish concentrations, and to propose a mechanism by which

9 fine-scales organize mid-trophic biomass.

This study was conducted in the subantarctic area of the southern Indian ocean.

The functioning of this region is mainly regulated by the Kerguelen plateau, a

major topographic barrier for the Antarctic Circumpolar Current (ACC). The

plateau enriches in iron, a limiting nutrient, the high-nutrients-low-chlorophyll

waters advected by the ACC. Depending on seasonal light conditions and stratifi-

cation of the water column, this provokes a large annual phytoplanktonic bloom,

which supports a rich trophic chain. This is one of the reasons for which the Ker-

 $_{97}$ guelen archipelago and its surrounding waters are part of one of the ten largest

marine protected areas in the world (http://www.mpatlas.org/).

In this region, the myctophids, also known as lantern fish, are one of the most 99 abundant groups of mesopelagic fish. They are also present in other oceans world-100 wide and are thought to constitute one the largest portions of world fish biomass 101 Irigoien et al. (2014). They also represent important prey items for numerous 102 predators Cherel et al. (2010). Myctophids are reported to play a central role in 103 the carbon export to deep sea depths, and are suspected to affect the climate 104 Kwon et al. (2009). Constituting a potentially massive harvestable resource, they 105 are threatened to be exploited in the near future St. John et al. (2016). A bet-106 ter understanding of the mechanisms regulating their biomass is thus urgently 107 108

In this paper, we relate acoustic measurements of fish concentrations and satel-109 lite derived diagnostics. These diagnostics allow us to identify the intensity of 110 several fine scale fronts. The aim is to explore the degree to which fish distribu-111 tion is shaped by these fine-scale features, and in particular Lagrangian fronts. 112 Our results indicate that stronger Lagrangian fronts aggregate larger quantities 113 of fish, although not all these structures are aggregation sites. We then propose 114 a simple aggregating mechanism specifically designed for fish, based on a cue 115 pursuing dynamic along the horizontal dimension. Myctophids are supposed to 116 be able to orientate and to actively swim to search for food (hypothesis discussed 117 in SI.2). They follow a gradient of a passive tracer, which is considered a proxy 118 for heterogeneously-distributed zooplankton. All the parameters values of this 119 model are set using observational data (SI.5) and none of them has been opti-120 mized nor fitted. The predictions of such model are consistent with the observed 121 concentrations. In addition, the model provides also theoretical estimations of 122 the dominant spatio-temporal scales of aggregation.

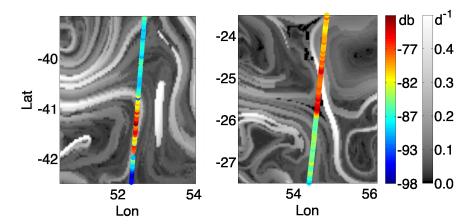


Fig. 1: Illustrative examples of two transects of the boat trajectory. The color of each dot is proportional to the Acoustic Fish Concentration (in decibels, right colorbar for scale). The transects are superimposed on a simultaneous field of Finite-size Lyapunov Exponents. These identify fine-scale frontal structures. They are computed with altimetry derived velocities (days⁻¹, left colorbar for the scale). Left panel: August, 29th, 2014. Right panel: August, 31st, 2013.

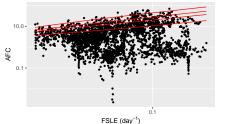
Results

Relationships between acoustic fish concentration and satellite-derived diagnostics

We used ship acoustic measurements acquired along 6 transects of 2860 linear kilometers. For each point of the boat trajectory, we computed a value of Acoustic Fish Concentration (AFC). This is representative of the fish concentration in the water column. Alongside this, we calculate two satellite derived diagnostics: the Finite-size Lyapunov Exponent (FSLE) and the Sea Surface Temperature (SST) gradient. These two metrics are typically associated with front intensity (see Materials and Methods for further details). Other diagnostics are reported in SI.1. In-situ temperature measurement were available only on a part of the transects, and were therefore not considered in the analysis.

Fig. 1 depicts two illustrative examples of the boat trajectory on August 29th, 2014 and August 31st, 2013 respectively. They are superposed on a field of Finite-size Lyapunov exponents. The latter are associated with frontal features. Each dot of the boat trajectory is colored proportionally to the AFC in that point. On both the panels, AFC values indicate a qualitative agreement with the FSLE, increasing in correspondence of the frontal features identified by high values of the Lyapunov exponents.

Fig. 2 depicts the scatter plots of the AFC against the two diagnostics, with both the axes in logarithmic scale. To determine whether the AFC values present significant differences in proximity of fine-scale features, a bootstrap analysis was conducted. Details of the methodology are provided in Materials and Methods



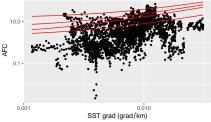


Fig. 2: Scatter plot of AFC against FSLE (left panel) and SST gradient (right panel). The lines, from the bottom to the top, indicate the linear quantile regressions at 75th, 90th, 95th and 99th percentiles. The analysis is used to investigate the relationship between the front intensity and just the higher values of fish concentration. Both axes are in logarithmic scale (values equal to zero are therefore not depicted). Values of the quantile regression coefficients are reported in Table S.1.

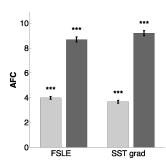


Fig. 3: Bootstrap method results. Left columns refer to FSLE analysis, right columns to SST gradient. Light gray columns represent the mean AFC under the respective threshold, and the dark gray columns represent the mean AFC over the threshold. Error bars indicate the standard deviation, while black stars indicate the significance of the bootstrap test.

section. The results are reported in Fig. 3. Significantly higher AFC values are detected over the thresholds (p-value < 0.001) for both FSLE and SST gradient. Finally, linear quantile regression method was employed Koenker (2005). This analysis was used to investigate the relationship between the higher values of AFC and the front intensity. Results of the regression are displayed in Fig. 2 as red lines. All the quantile slopes are statistically different from zero. This suggests the presence of a positive relationship between the higher values of AFC and FSLE and SST gradient (Table S.1).

A fine-scale mechanism of fish aggregation

Why do fish aggregate along frontal features? We addressed this question by proposing a simple mathematical model. The model assumes a gradient climb-

180

181

182

183

186

187

188

190

191

192

194

195

196

197

198

199

202

203

204

206

207

217 218

219

220

223

224

226

227

ing capacity, which is one of the most widespread movement mechanisms used in other biological contexts (e.g., chemotaxis, Adler (1975)). This gradient climbing capacity is specifically tuned for mid-trophic organisms and myctophids and is based on a cue pursuing dynamic. Fish try to climb a gradient of tracer. We considered this tracer a proxy of zooplankton concentration, prev of several fish species, and in particular of myctophids Pakhomov et al. (1996). At the scales considered in this study (10s of kilometers) zooplankton swimming capacities are restricted to the vertical axis Genin et al. (2005). They can thus be considered, along the horizontal axis, passive tracers. Along this dimension, zooplankton aggregation and growth is usually driven by a relatively fast response to nutrients presence, of the order of days to weeks Vidal (1980). In particular, this is valid also for zooplankton species present in our study region Alonzo et al. (2003); Labat et al. (2005). Conversely, fish have growth rates consistently slower: in particular, pelagic fishes and myctophids are considered as "slow-growing fish", with lifetimes spanning few years Greely et al. (1999). Therefore, their aggregation can not be explained by the same dynamics affecting the zooplankton. Alongside this, fish have extremely developed sensorial capacities and, differently from zooplankton, they can actively swim, with both capacities involved in many functional activities, including feeding Kasumyan (2004). These arguments support our approach of modelling zooplankton as a passive tracer and fish as active swimmers (we invite the reader to refer to SI.2 for further details). To include ocean patchiness, we perturbed the ability of the fish to properly identify the spots of zooplankton with a noise term. However, we assumed that fish are able to orientate without problems over a given threshold of the zooplankton gradient. This threshold was estimated from the zooplankton concentrations (SI.5).Making these assumptions, the average velocity of a group of fish $U_F(x)$ can

Making these assumptions, the average velocity of a group of fish $U_F(x)$ can be found applying simple algebra to a standard gradient climbing model (see Materials and Methods, subsection "Gradient climbing model"):

$$U_F(x) = V \frac{\frac{\partial T}{\partial x}}{\frac{\partial T}{\partial x} MAX} \left(2 - \frac{\left| \frac{\partial T}{\partial x} \right|}{\frac{\partial T}{\partial x} MAX} \right)$$
(1)

in which T is the zooplankton concentration, $\frac{\partial T}{\partial x_{MAX}}$ is the threshold of the zooplankton gradient, and V is the cruising speed of the myctophids. Similarly, the evolution of the fish concentration over time can be easily obtained from the one-dimensional continuity equation, by imposing the conservation of fish total biomass, and by using Expr. 4 (see Materials and Methods for further details). The tracer shape used describes a sigmoid function, which models a generic local gradient in the zooplankton concentration. At the limits of the plateau, the tracer decreases along a distance of ~ 5 km, a typical fine-scale range.

Four different snapshots (at 0, 6 hours, 1 day and 4 days) of the fish modelled concentration are illustrated in Fig. 4. Intuitively, having chosen a gradient-climbing behavior, one can expect that fish concentration will evolve quickly in the regions in which the tracer gradient is larger. Indeed, after only 6 hours,

two peaks of doubled concentration are present in correspondence with the margins of the tracer plateau. In the following days, the two peaks decreased their growth rate, while the concentration between them increases until they merged together. The fish concentration is thus homogeneous over the plateau, presenting values between 2.5 and 3.5 times higher than the initial concentration. In case of a larger plateau (Fig. 5), the model predicts a similar behavior, but the merging between the peaks occurs over longer timescales. In that case, the peaks reach their maximum value after the first day, with the creation of two regions of increased concentration at the margins of the plateau. Changing the type of fish behavior leads to similar results (see SI.3).

We note that this mechanism does not explicitly take into account fronts. However, in the oceanic environment, frontal regions represent areas of convergence of water masses with different properties. This is why regions of strong gradients are often associated to frontal features Yoder et al. (1994).

However, at the same time during which this mechanism occurs, the tracer can evolve. As a sensitivity test, we numerically analyzed a scenario in which the tracer, subjected to a typical frontal dynamics, is stretched in a filament and eroded by diffusion (SI.4). Using realistic bio-physical parameters representative of the study area, we found that these tracer dynamics do not compromise the aggregation mechanism presented above, but may even facilitate the aggregation of fish along frontal zones. Indeed, the model developed predicts several quantitative information, such as an estimate of the fish aggregation over time. The latter highlighted a final concentration, on average, an order of magnitude stronger than the initial one. In addition, it was possible to obtain the "school life time". This quantity indicates the amount of time during which a group of fish is able to follow a patch of interest before it vanishes due to the frontal

Fig. 4: Time evolution of the fish concentration (blue line, adimensional) according to the continuity equation. The tracer (red line, adimensional) describes a plateau of 8 km in width. At its limits, its values range from 1 to 0 in about 5 km. Each panel represents a different snapshot at 0, 6 hours, 1 day, and 4 days.

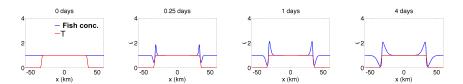


Fig. 5: Time evolution of the fish concentration as reported in Fig. 4. This time, the plateau width has been set to 70 km.

dynamics. The school life times we obtained ranged between 7 to 25 days, with an average value of around 2 weeks. Remarkably, this amount of time matches with that of fine-scale processes.

Discussion

In the oceans, patchiness characterizes biomass distribution, which regulates 260 ecosystem stability and biogeochemical processes Bertrand et al. (2014); Mar-261 tin (2003); Lévy and Martin (2013). In the open ocean, biomass distribution is 262 largely driven by processes at the fine-scale (between 1 and hundreds of kilometers or a few days to several weeks, such as lateral advection and horizontal 264 stirring Martin (2003); Lévy et al. (2018). 265 One approach to studying the structuring processing occurring at this scale is provided by Lagrangian methods. In the past, Lagrangian tools like the com-267 putation of Lagrangian Coherent Structures have revealed the structuring role of fine-scale dynamics on primary levels of the trophic chain (see a review in 269 Lehahn et al. (2018)). On the other hand, they have highlighted their influence 270 on apex predators behaviors as well Kai et al. (2009); Scales et al. (2018). 271 However, less information is available on intermediate trophic levels. In the 272 present study (i) we correlate the intensity of acoustic fish concentrations and 273 fine-scale fronts, and (ii) we propose a mechanism of fish aggregation along fronts. 274 We analyze the Kerguelen region in the Southern Ocean, one of the ten largest protected areas in the world, and an oasis for several threatened species (IUCN, 276 https://www.iucn.org/). The reference fish of this study are the myctophids, 277 which are highly diffused in that region and one of the most abundant group of 278 mesopelagic fish in the world Irigoien et al. (2014). Our results reveal a significant difference in fish concentration between frontal 280 and non-frontal features. These are difficult to explain with traditional mecha-281 nisms usually prescribed to lower trophic levels, such as rapid growth associated to a presence of nutrient, because fish have slower growth rates. Therefore, start-283 ing from a homogeneous fish distribution and applying simple ecological rules, 284 we propose a gradient-climbing model specifically calibrated for the study of 285 mid-trophic organisms. Once parameterized with values typical for the study 286 region, the model demonstrates a quick response to gradient structures. Two peaks of doubled concentration appear after just 6 hours, and then merge after 288 4 days. Fish thus tend to be homogeneously distributed over the entire patch of 289 interest. This is in coherence with on-going studies on myctophids' response to food concentration. These presuppose that myctophids have a Holling type III 291 functional response, in that they ingest always the same quantity of food over a 292 certain prey density (A. Hulley, personal communication). 293 Tracer patchiness is known to be associated with frontal features Yoder et al. (1994); Lehahn et al. (2018). However, patchiness evolves, and under the double 295 effect of stretching and diffusion, local gradients can be eroded. Thus, we tested 296 the robustness of our model to this feature in SI.4. As in the former case, none 297

of the parameters employed has been optimized nor fitted, but they all represent

rigorous estimations of Southern Ocean physical and biological conditions, such 299 as stretching and mixing rates or fish cruising speed. Results allowed us to esti-300 mate a typical lifetime for a fine-scale patch of around two weeks, much longer 301 than the peak doubling time (~ 6 hours). This robustness analysis is consistent 302 with the hypothesis of a fixed tracer assumed in the gradient climbing scenario. 303 Furthermore, we demonstrated that the stretching and diffusion dynamics can potentially enhance fish aggregations. The patch of interest is considered as a proxy of zooplankton concentration. 306 However, being parameterized as a passive tracer, it can be considered, more 307 simply, as a physical water property. Indeed, physical characteristics, such as

temperature, have been proven to be used by predators to find favorable condi-

309

310

311

312

313

314

315

316

317

318

319

321

322

323

324

325

326

327

ing.

tions where concentrated food occurs Snyder et al. (2017). The proposed mechanism of aggregation needs two obvious initial conditions: the presence of fish, and the presence of a zooplankton patch. It is presumable that fine-scale fronts, lacking one or both these conditions, cannot act as aggregating spots. Furthermore, while we assumed that the aggregation occurs after a certain amount of time, the environment studied is dynamic. Thus, it is likely that the aggregation mechanism was observed during different stages. The statistically significant positive relationships between the high values of acoustic fish concentration with the front intensity diagnostics confirms the previous considerations. Not all of the strong fronts detected indicate high acoustic fish concentrations. On the contrary, strong fish aggregation is preconditioned by the intensity of a frontal feature. Our results suggest that fronts represent in this regard a limiting condition for high fish concentrations. Model predictions are in accordance with the observations. Furthermore, the model provided estimations of other aggregation dynamics, such as the dimensions of the aggregation patterns or its intensity, with timescales comparable with those of fine scale processes. Specific experiments are necessary to validate these outputs, which however look promis-

Within the ACC, little information available on mid-trophic levels reported that
the large circumpolar fronts are known to host (i) large densities of zooplankton
and myctophids and (ii) that these organisms are patchily distributed Pakhomov
and Froneman (2000). We identified in this study, at least partly, the potential
mechanisms driving the patchiness observed at fine-scale. Assessing the preconditions and the other dynamics necessary for front aggregation is a new, open
challenge emerging from the present work.

334 Note that in our work we focus only on open ocean Lagrangian fronts, that is, fine-scale frontal features induced by the mesoscale open ocean activity. In 336 particular, we intentionally exclude coastal fronts as well as large scale fronts, 337 whose dynamics and ecological role may be different (e.g., Lara-Lopez et al. 338 (2012); Netburn and Koslow (2018); Sato et al. (2018)). Finally, the limitations 339 of our analysis must be discussed. No vertical dynamics has been included in 340 the model presented. However, these play an important role in the organization 341 of marine biota Lévy et al. (2018), and, typically, stronger gradients are present 342 along the vertical Ohman (1988). This assumption is due to the fact that, while

knowledge on horizontal dynamics is more advanced, 3D Lagrangian analyses, 344 while appealing Sulman et al. (2013), are not currently possible, due to a lack 345 of quantitative information on the vertical velocities of the ocean. Future satellite missions (such as SWOT: https://swot.cnes.fr) will possibly help to mitigate 347 this problem, by helping the assimilation scheme to better reconstruct the three 348 dimensional dynamics Morrow et al. (2019). At the same time, they will also improve satellite resolution, providing a more precise location of fine-scale fronts. 350 The model studied does not consider the diel vertical migration of myctophids 351 either. This choice is driven by the difficulty in parameterizing such a non linear 352 behavior and in assimilating different migratory diel patterns. However, we note that many zooplankton species exhibit a diel cycle as well. Finally, zooplankton 354 consumption due to fish foraging is considered to be negligible, or compensated 355 by source terms (like blooms). The limitations presented can open the way for 356 future investigations. Thus, the present study sheds some light on a largely unexplored topic. 358 The results presented here may be useful for improving the representation of 359 intermediate trophic levels to coupled ecological and physical models Robinson 360 et al. (2011), habitat models PC et al. (2018), targeting the mesopelagic com-361 partment in particular. At the same time, the possibility of using Lagrangian 362 Coherent Structures as a proxy of higher fish concentrations may further improve 363 the integration of satellite-derived Lagrangian tools in conservation planning Penna et al. (2017).

Materials and Methods

367 Acoustic measurements

Two subsets of data were used for the analysis. Both of them were collected 368 within the Mycto-3D-MAP program. The first subset (named MYCTO) was 369 collected during 6 campaigns in 2013 and 2014, both in summer and in winter (see Tab. 1 for more details), using split-beam echo sounders at 38 and 120kHz. 371 The data were then treated with a bi-frequency algorithm, applied to the 38 and 372 120 kHz frequencies (details of data collection and processing are provided in 373 Béhagle et al. (2017)). This provides a quantitative estimation of the concentra-374 tion of gas-bearing organisms, mostly attributed to fish containing a gas-filled 375 swimbladder in the water column Kloser et al. (2009). Most mesopelagic fish 376 present swimbladders and several works pointed out that myctophids are the 377 dominant mesopelagic fish in the region Duhamel et al. (2014). Therefore, we considered the acoustic signal as mainly representative of myctophids concentra-379 tion. Data were organized in acoustic units, averaging acoustic data over 1.1 km 380 along the boat trajectory on average. Myctophid school length is in the order 381 of tens of meters Saunders et al. (2013). For this reason, acoustic units were considered as not autocorrelated. Every acoustic unit is composed of 30 layers, 383 ranging from from 10 to 300 meters (30 layers in total). 384 The second subset of data (named ZOO) was collected between January the 22^{nd} and February the 5^{th} , 2014. It was processed in the same manner as the

other dataset, but this time the bifrequency algorithm was used to infer the 387 zooplankton biomass. This second subset possesses a higher resolution with an 388 acoustic unit every 206 m of the boat trajectory on average. The two datasets were used to infer the Acoustic Fish Concentration (AFC) and 390 the Acoustic Zooplankton Concentration (AZC) in the water column, respec-391 tively. We considered as AFC (or AZC) of the point (x_i, y_i) the average of the bifrequency acoustic backscattering on the whole column, with the exclusion of 393 the first layer. The latter was not considered due to surface noise. 394 The AZC was used to compute the zooplankton gradient. The zooplankton gra-395 dient of a point i of the boat transect is computed as:

$$\frac{\partial Z}{\partial x}(i) = \frac{1}{2} \left(\frac{Z_i - Z_{i-1}}{d_{i-1}} + \frac{Z_{i+1} - Z_i}{d_i} \right)$$

in which d_i indicates the kilometric distance between the point i+1 and i, and Z_i is the cubic spline interpolation (to smooth the noise effects), in an around of 2 km, of the zooplankton concentrations. This type of interpolation, in contrast with the moving average, preserves the trend of the data, and thus a possible front.

Acoustic campaigns details

Cruise				Distance (km)
LOGIPEV193_RUNKER				
LOGIPEV193_KERMAU				
OP2013-2_RUNKER		30/08/2013		
LOGIPEV197_RUNKER				
LOGIPEV197_KERMAU			, ,	
OP2014-2_RUNKER	Winter	24/08/2014	04/09/2014	3677

Table 1: Details of the acoustic transects analyzed.

Regional data selection

402 403 404

405

The geographic area of interest of the present study is the Southern Ocean. To select the boat trajectory points belonging to this region, we used the ecopartition of Sutton et al. Sutton et al. (2017). Only points falling in the Antarctic Southern Ocean region were considered. We highlight that this choice is consistent with the ecopartition of Koubbi et al. Koubbi et al. (2011) (group 5), which is specifically designed for the myctophids, the reference fish of this study. Furthermore, this choice allowed us to exclude major fronts which have been the subject of different research works Lara-Lopez et al. (2012); Netburn and Koslow (2018). In this way our analysis is focused specifically on fine scale fronts.

⁴¹⁷ Day-night data separation

Several species of myctophids present a diel vertical migration. They live at great depths during the day (between 500 and 1000 m), ascending at dawn in the upper euphotic layer, where they spend the night. Since the maximal depth reached by our equipment is 300 m, in the analysis reported in Fig. 2 and 3 we excluded data collected during the day. However, their analysis is reported in SI.1. This is also consistent with the use of the Lagrangian and Eulerian diagnostics. These quantities, obtained from geostrophic velocity fields, are representative of the first part of the water column (~ 50 m).

26 Satellite data

Velocity current data and processing. Velocity currents are obtained from the Sea Surface Height (SSH), which is measured by satellite, through the geostrophic 428 approximation. Data, which were downloaded from E.U. Copernicus Marine En-429 vironment Monitoring Service (CMEMS, http://marine.copernicus.eu/), were 430 obtained from DUACS (Data Unification and Altimeter Combination System) 431 delayed-time multi-mission altimeter, and displaced over a regular grid with spa-432 tial resolution of $\frac{1}{4} \times \frac{1}{4}^{\circ}$ and a temporal resolution of 1 day. 433 Trajectories were computed with a Runge-Kutta scheme of the 4th order with an 434 integration time of 3 hours. Finite-size Lyapunov Exponents (FSLE) were com-435 puted following the methods in d'Ovidio et al. (2004), with initial and final sep-436 aration of 0.04° and 0.4° respectively. This Lagrangian diagnostic is commonly 437 used to identify Lagrangian Coherent Structures. This method determines the location of barriers to transport, and it is usually associated with oceanic fronts 439 Haller (2015). 440 Temperature field. The Sea Surface Temperature (SST) field was downloaded 441 from the OSTIA global foundation Sea Surface Temperature product (SST_GLO_SST_L4_NRT_OBSERVAT The data are represented over a regular grid with spatial resolution of $0.05 \times 0.05^{\circ}$ 443 444

and daily-mean maps.

Satellite data extrapolation. For each point of the boat trajectory, we considered as value of the diagnostic the average value over a disc of radius σ . Different value reported in the present work. This value is consistent with the uncertainty of the satellite velocity field.

450 Statistical processing

Bootstrap method. In this section, we describe the analysis necessary for the bootstrap test. To identify the frontal features, the following diagnostic values were chosen as thresholds for representing the front: for the FSLEs, we used 0.08 days⁻¹, a threshold value consistent with those chosen in De Monte et al. (2012) and obtained from Kai et al. (2009). For the SST gradient, we considered representative of thermal front values greater than 0.9°C/100 km, which is about the half of the value chosen in De Monte et al. (2012). However, in that work, the

SST gradient was obtained from the advection of the SST field with satellite-458 derived currents for the previous 3 days, which structures it in high resolution 459 features that therefore present higher gradient values. The threshold value splits the AFC into two groups: over and under the thresh-461 old. Their independency was tested using a Mann-Whitney or U test. Finally, 462 bootstrap analysis is applied following the methodologies used in De Monte et al. Linear quantile regression. Linear quantile regression method Koenker (2005) 465 is employed to estimate the effect of FSLE and SST gradient on the upper 466 limit of the AFC, as in Sankaran et al. (2005). The percentiles values used are 75th, 90th, 95th, and 99th. The analysis is performed using the statistical package QUANTREG in R (https://CRAN.R-project.org/package=quantreg, v.5.38, 469 Koenker (2005)), using the default settings. 470

Gradient climbing model

The fish searching dynamic is considered a one dimensional, individual-based, 472 Markovian process. Time is discretized in timesteps of length $\Delta \tau$. We presuppose 473 that, at each timestep, the fish chooses between swimming in one of the two directions. This decision depends on the comparison between the quantity of 475 tracer at its actual position and the one perceived at a distance f_W from it, 476 where f_W is the field view of the fish. We consider the fish immersed in a tracer 477 whose concentration is described by the function T(x). An expression for the average velocity of the fish, $U_F(x)$, can now be derived. 479 We assume that the fish is able to observe simultaneously the tracer to its right 480 and its left. Fish sensorial capacities are discussed in SI.2. The tracer observed 481 is affected by a noise. Noise distribution is considered uniform, with $-\xi_{MAX}$ $\xi < \xi_{MAX}, \, \xi_{MAX} > 0$. The effective values perceived by the fish, at its left and 483 its right, will be, respectively: 484

$$\tilde{T}(x_0 - \Delta x) = T(x_0 - \Delta x) + \xi_1$$

$$\tilde{T}(x_0 + \Delta x) = T(x_0 + \Delta x) + \xi_2.$$

We assume that, if $\tilde{T}(x_0 + \Delta x) > \tilde{T}(x_0 - \Delta x)$, the fish will move to the right, and, vice versa, to the left. We hypothesize that the observational range is small enough to consider the tracer variation as linear, as illustrated in Fig. S.6 (SI.3). In this way:

$$\begin{split} \tilde{T}(x_0 + \Delta x) &= T(x_0) + f_W \frac{\partial T}{\partial x} + \xi_1 \\ \tilde{T}(x_0 - \Delta x) &= T(x_0) - f_W \frac{\partial T}{\partial x} + \xi_2 \;. \end{split}$$

In case of absence of noise, or with $\xi_{MAX} < f_W \frac{\partial T}{\partial x}$, the fish will always move in the correct direction, in that it will climb the gradient. Assuming V as the

- 14 Fine-scale fronts as hotspots of fish aggregation in the open ocean.
- cruising swimming velocity of the fish, this means $U_F(x) = V$.
- Let's now assume $\xi_{MAX} > f_W \frac{\partial T}{\partial x}$. If $T(x_0 + \Delta x) > T(x_0 \Delta x)$ (as in Fig. S.6), and the fish will swim leftward if

$$\xi_1 - \xi_2 > 2f_W \frac{\partial T}{\partial x}$$
.

- Since ξ_1 and ξ_2 range both between $-\xi_{MAX}$ and ξ_{MAX} , we can obtain the probability of leftward moving P(L). This will be the probability that the difference
- between ξ_1 and ξ_2 is greater than $2f_W \frac{\partial T}{\partial x}$

$$P(L) = \frac{1}{8\xi_{MAX}^2} \left(2\xi_{MAX} - 2f_W \frac{\partial T}{\partial x} \right)^2$$
$$= \frac{1}{2} \left(1 - \frac{f_W}{\xi_{MAX}} \frac{\partial T}{\partial x} \right)^2$$

The probability of moving right will be

$$P(R) = 1 - P(L)$$

and their difference gives the frequency of rightward moving

$$\begin{split} P(R) - P(L) &= 1 - 2P(L) = 1 - \left(1 - \frac{f_W}{\xi_{MAX}} \frac{\partial T}{\partial x}\right)^2 \\ &= \frac{f_W}{\xi_{MAX}} \frac{\partial T}{\partial x} \left(2 - \frac{f_W}{\xi_{MAX}} \left| \frac{\partial T}{\partial x} \right| \right) \,, \end{split}$$

where the absolute value of $\frac{\partial T}{\partial x}$ has been added to preserve the correct climbing direction in case of negative gradient. The above expression leads to:

$$U_F(x) = \frac{V f_W}{\xi_{MAX}} \frac{\partial T}{\partial x} \left(2 - \frac{f_W}{\xi_{MAX}} \left| \frac{\partial T}{\partial x} \right| \right). \tag{2}$$

We then assume that, over a certain value of tracer gradient $\frac{\partial T}{\partial x}_{MAX}$, the fish are able to climb the gradient without being affected by the noise. This assumption, 501 502 from a biological perspective, means that the fish does not live in a completely noisy environment, but that under favorable circumstances it is able to correctly identify the swimming direction. This means that 505

$$f_W * \frac{\partial T}{\partial x}_{MAX} = \xi_{MAX} \,. \tag{3}$$

Substituting then (3) into (2) gives:

$$U_F(x) = V \frac{\frac{\partial T}{\partial x}}{\frac{\partial T}{\partial x} MAX} \left(2 - \frac{\left| \frac{\partial T}{\partial x} \right|}{\frac{\partial T}{\partial x} MAX} \right). \tag{4}$$

Finally, we can include an eventual effect of currents speed, considering that the tracer is transported passively by them, simply adding the current speed U_C to Expr. (4).

The representations provided are individual based, with each individual representing a single fish. However, we note that all the considerations done are also valid if we consider an individual representing a fish school. U_F will then simply represent the average velocity of the fish schools. This aspect should be stressed since many fish species live and feed in groups (see SI.2 for further details).

Continuity equation in one dimension. The solution of this model will now be discussed. The continuity equation is first considered in one dimension. The starting scenario is simply an initially homogeneous distribution of fish, that are moving in a one dimensional space with a velocity given by $U_F(x)$.

We assume that in the time scales considered (few days to some weeks), the fish biomass is conserved, so for instance fishing mortality or growing rates are neglected. In that case, we can express the evolution of the concentration of the fish ρ by the continuity equation

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{j} = 0 \tag{5}$$

in which $\mathbf{j} = \rho U_F(x)$, so that Eq. (5) becomes

507

508

510

511

514

528

529

530

531

532

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \, U_F(x)) = 0 \,. \tag{6}$$

In one dimension, the divergence is simply the partial derivate along the x-axis. Eq. (6) becomes

$$\frac{\partial \rho}{\partial t} = -\frac{\partial}{\partial x} \left(\rho \, U_F \right) \tag{7}$$

Now, we decompose the fish concentration ρ in two parts, a constant one and a variable one $\rho = \rho_0 + \tilde{\rho}$. Eq. (7) will then become

$$\frac{\partial \rho}{\partial t} = -U_F \frac{\partial \tilde{\rho}}{\partial x} - \rho \frac{\partial U_F}{\partial x} . \tag{8}$$

Using Expr. (4), Eq. (8) is numerically simulated with the Lax method. In Expr. (4) we impose that $U_F(x) = V$ when $U_F(x) > V$. This biological assumption means that fish maximal velocity is limited by a physiological constraint rather than by gradient steepness. Details of the physical and biological parameters are provided in SI.5.

${f Acknowledgements}$

This work is a contribution to the CNES/TOSCA project LAECOS and BIOS-WOT, and was partly funded by the Copernicus Marine Environment Monitoring Service (CMEMS) Sea Level Thematic Assembly Centre (SL-TAC). This work was supported financially and logistically by the Agence Nationale de la

- 16 Fine-scale fronts as hotspots of fish aggregation in the open ocean.
- Recherche (ANR MyctO-3D-MAP, Programme Blanc SVSE 7 2011, Y. Cherel),
- 539 the Institut Polaire Franais Paul Emile Victor, and the Terres Australes et
- Antarctiques Françaises. The authors would also like to thank Mara Baudena,
- Bettina Fach, Philippe Koubbi, Mark Ohman, Sara Sergi, Lars Stemmann and
- Jost von Hardenberg for their helpful advice.

Authors contribution

- A.B., E.S.G. and F.d.O designed the research with assistance from X.C. A.B.
- performed the research. A.B. and D.d.O. analyzed the data. C.C. and Y.C.
- provided the data. A.B. wrote the paper, with assistance from F.d.O., E.S.G,
- 547 D.d.O, X.C., and C.C.

Bibliography

548

- Abrahms, B., Scales, K.L., Hazen, E.L., Bograd, S.J., Schick, R.S., Robinson, P.W., Costa, D.P., 2018. Mesoscale activity facilitates energy gain in a top predator. Proc. R. Soc. B, 285:20181101. doi:10.1098/rspb.2018.1101.
- Adler, J., 1975. Chemotaxis in bacteria. Annual review of biochemistry, 44:341–356.
- Alonzo, F., Mayzaud, P., Razouls, S., Bocher, P., Cherel, Y., 2003. Seasonal changes in biomass, growth rates and production of subantarctic calanoid copepods in the Bay of Morbihan, Kerguelen Islands. Marine Biology, 142:525–536. doi:10.1007/s00227-002-0976-5.
- Béhagle, N., Cotté, C., Lebourges-Dhaussy, A., Roudaut, G., Duhamel, G.,
 Brehmer, P., Josse, E., Cherel, Y., 2017. Acoustic distribution of discriminated micronektonic organisms from a bi-frequency processing: The case study of eastern Kerguelen oceanic waters. Progress in Oceanography, 156:276 289.
 doi:https://doi.org/10.1016/j.pocean.2017.06.004.
- Bertrand, A., Grados, D., Colas, F., Bertrand, S., Capet, X., Chaigneau, A., Vargas, G., Mousseigne, A., Fablet, R., 2014. Broad impacts of fine-scale dynamics on seascape structure from zooplankton to seabirds. Nature Communications, 5:5239. doi:10.1038/ncomms6239.
- Boffetta, G., Lacorata, G., Redaelli, G., Vulpiani, A., 2001. Detecting barriers to transport: a review of different techniques. Physica D: Nonlinear Phenomena, 159:58–70. doi:10.1016/S0167-2789(01)00330-X.
- Cherel, Y., Fontaine, C., Richard, P., Labatc, J.P., 2010. Isotopic niches and trophic levels of myctophid fishes and their predators in the southern ocean.
 Limnology and oceanography, 55:324–332.
- De Monte, S., Cotté, C., d'Ovidio, F., Lévy, M., Le Corre, M., Weimerskirch, H., 2012. Frigatebird behaviour at the ocean-atmosphere interface: integrating animal behaviour with multi-satellite data. Journal of The Royal Society Interface, 9:3351–3358. doi:10.1098/rsif.2012.0509.
- De Monte, S., Soccodato, A., Alvain, S., d'Ovidio, F., 2013. Can we detect oceanic biodiversity hotspots from space? The ISME journal, 7:2054. doi: 10.1038/ismej.2013.72.
- Della Penna, A., De Monte, S., Kestenare, E., Guinet, C., d'Ovidio, F., 2015.
 Quasi-planktonic behavior of foraging top marine predators. Scientific reports,
 582 5. doi:10.1038/srep18063.
- d'Ovidio, F., De Monte, S., Della Penna, A., Cotté, C., Guinet, C., 2013. Ecological implications of eddy retention in the open ocean: a Lagrangian approach. Journal of Physics A: Mathematical and Theoretical, 46:254023. doi: 10.1088/1751-8113/46/25/254023.
- d'Ovidio, F., Fernández, V., Hernández-García, E., López, C., 2004. Mixing structures in the Mediterranean Sea from finite-size Lyapunov exponents. Geophysical Research Letters, 31. doi:10.1029/2004GL020328.

Duhamel, G., Hulley, P.A., Causse, R., Koubbi, P., Vacchi, M., Pruvost, P., Vigetta, S., Irisson, J.O., Mormède, S.A.B.M., Dettai,
 A.A.D.H.W.A.G.J.A.J.C.D., Kock, K.H., Lopez Abellan, L.J., Van de
 Putte, A.P., 2014. Biogeographic Patterns Of Fish (Biogeographic Atlas of the Southern Ocean), chapter Biogeographic Patterns Of Fish, pages 328–362.
 Scientific Committee on Antarctic Research, Cambridge UK.

Gaines, S.D., White, C., Carr, M.H., Palumbi, S.R., 2010. Designing marine
 reserve networks for both conservation and fisheries management. Proceedings
 of the National Academy of Sciences. doi:10.1073/pnas.0906473107.

Genin, A., Jaffe, J.S., Reef, R., Richter, C., Franks, P.J.S., 2005. Swimming Against the Flow: A Mechanism of Zooplankton Aggregation. Science,
 308:860–862. doi:10.1126/science.1107834.

Greely, T.M., Gartner Jr, J.V., Torres, J.J., 1999. Age and growth of Electrona antarctica (Pisces: Myctophidae), the dominant mesopelagic fish of the Southern Ocean. Marine Biology, 133:145–158. doi:10.1007/s002270050453.

Haller, G., 2015. Lagrangian coherent structures. Annual Review of Fluid Mechanics, 47:137–162. doi:10.1146/annurev-fluid-010313-141322.

Hoegh-Guldberg, O., Bruno, J.F., 2010. The Impact of Climate Change on
 the World's Marine Ecosystems. Science, 328:1523–1528. doi:10.1126/science.
 1189930.

Irigoien, X., Klevjer, T.A., Røstad, A., Martinez, U., Boyra, G., Acuña, J., Bode,
 A., Echevarria, F., Gonzalez-Gordillo, J., Hernandez-Leon, S., et al., 2014.
 Large mesopelagic fishes biomass and trophic efficiency in the open ocean.
 Nature communications, 5. doi:dx.doi.org/10.1038/ncomms4271.

Kai, E.T., Rossi, V., Sudre, J., Weimerskirch, H., Lopez, C., Hernandez-Garcia,
 E., Marsac, F., Garcon, V., 2009. Top marine predators track lagrangian
 coherent structures. Proceedings of the National Academy of Sciences of the
 United States of America, 106:8245–8250. doi:10.1073/pnas.0811034106.

Kasumyan, A., 2004. The olfactory system in fish: structure, function, and role in behavior. Journal of Ichthyology, 44:S180.

Kloser, R.J., Ryan, T.E., Young, J.W., Lewis, M.E., 2009. Acoustic observations of micronekton fish on the scale of an ocean basin: potential and challenges. ICES Journal of Marine Science, 66:998–1006. doi:10.1093/icesjms/fsp077.

Koenker, R., 2005. Quantile Regression. Econometric Society Monographs.
 Cambridge University Press. doi:10.1017/CBO9780511754098.

Koubbi, P., Moteki, M., Duhamel, G., Goarant, A., Hulley, P.A., ODriscoll, R.,
 Ishimaru, T., Pruvost, P., Tavernier, E., Hosie, G., 2011. Ecoregionalization of myctophid fish in the Indian sector of the Southern Ocean: Results from generalized dissimilarity models. Deep Sea Research Part II: Topical Studies in Oceanography, 58:170 – 180. doi:https://doi.org/10.1016/j.dsr2.2010.09.007.
 Census of Antarctic Marine Life: Diversity and Change in the Southern Ocean Ecosystems.

- Kwon, E.Y., Primeau, F., Sarmiento, J.L., 2009. The impact of remineralization depth on the air–sea carbon balance. Nature Geoscience, 2:630.
- Labat, J.P., Mayzaud, P., Sabini, S., 2005. Population dynamics of Themisto gaudichaudii in Kerguelen Islands waters, Southern Indian Ocean. Polar Biology, 28:776–783. doi:10.1007/s00300-005-0003-7.
- Lara-Lopez, A.L., Davison, P., Koslow, J.A., 2012. Abundance and community
 composition of micronekton across a front off Southern California. Journal of
 Plankton Research, 34:828–848. doi:10.1093/plankt/fbs016.
- Lehahn, Y., d'Ovidio, F., Koren, I., 2018. A satellite-based lagrangian view
 on phytoplankton dynamics. Annual Review of Marine Science, 10:99–119.
 doi:10.1146/annurev-marine-121916-063204. PMID: 28961072.
- Lévy, M., Franks, P.J.S., Smith, K.S., 2018. The role of submesoscale currents in structuring marine ecosystems. Nature Communications, 9. doi:10.1038/s41467-018-07059-3.
- Lévy, M., Martin, A.P., 2013. The influence of mesoscale and submesoscale het erogeneity on ocean biogeochemical reactions. Global Biogeochemical Cycles,
 27:1139–1150. doi:10.1002/2012GB004518.
- Martin, A., 2003. Phytoplankton patchiness: the role of lateral stirring and
 mixing. Progress in Oceanography, 57:125 174. doi:https://doi.org/10.1016/
 S0079-6611(03)00085-5.
- McGillicuddy, D.J., 2016. Mechanisms of Physical-Biological-Biogeochemical Interaction at the Oceanic Mesoscale. Annual Review of Marine Science, 8:125–159. doi:10.1146/annurev-marine-010814-015606. PMID: 26359818.
- McManus, M.A., Woodson, C.B., 2012. Plankton distribution and ocean dispersal. Journal of Experimental Biology, 215:1008–1016. doi:10.1242/jeb.059014.
- Morrow, R., Fu, L.L., Ardhuin, F., Benkiran, M., Chapron, B., Cosme, E.,
 D'Ovidio, F., Farrar, J.T., Gille, S.T., Lapeyre, G., et al., 2019. Global observations of fine-scale ocean surface topography with the surface water and ocean topography (swot) mission. Frontiers in Marine Science, 6:232.
- Netburn, A.N., Koslow, J.A., 2018. Mesopelagic fish assemblages across oceanic fronts: A comparison of three frontal systems in the southern California Current Ecosystem. Deep Sea Research Part I: Oceanographic Research Papers, 134:80 91. doi:https://doi.org/10.1016/j.dsr.2018.03.005.
- Ohman, M.D., 1988. Sources of variability in measurements of copepod lipids and gut fluorescence in the california current coastal zone. Marine Ecology Progress Series, 42:143–153.
- Pakhomov, E., Perissinotto, R., McQuaid, C., 1996. Prey composition and daily rations of myctophid fishes in the southern ocean. Marine Ecology Progress Series, pages 1–14.
- Pakhomov, E.A., Froneman, P.W., 2000. Composition and spatial variability of macroplankton and micronekton within the Antarctic Polar Frontal Zone of the Indian Ocean during austral autumn 1997. Polar Biology, 23:410–419. doi:10.1007/s003000050462.
- PC, E.F., RL, O., JC, M., 2018. Predicting distribution and relative abundance of mid-trophic level organisms using oceanographic parameters and

Penna, A.D., Koubbi, P., Cott, C., Bon, C., Bost, C.A., d'Ovidio, F., 2017.
 Lagrangian analysis of multi-satellite data in support of open ocean Marine
 Protected Area design. Deep Sea Research Part II: Topical Studies in Oceanography, 140:212 – 221. doi:https://doi.org/10.1016/j.dsr2.2016.12.014. Future
 of oceanic animals in a changing ocean.

Prants, S., Budyansky, M., Uleysky, M., 2014. Identifying Lagrangian fronts with favourable fishery conditions. Deep Sea Research Part I: Oceanographic Research Papers, 90:27 – 35. doi:https://doi.org/10.1016/j.dsr.2014.04.012.

Robinson, L.M., Elith, J., Hobday, A.J., Pearson, R.G., Kendall, B.E., Possingham, H.P., Richardson, A.J., 2011. Pushing the limits in marine species distribution modelling: lessons from the land present challenges and opportunities. Global Ecology and Biogeography, 20:789–802. doi:10.1111/j.1466-8238.2010. 00636.x.

Sankaran, M., Hanan, N.P., Scholes, R.J., Ratnam, J., Augustine, D.J., Cade, B.S., Gignoux, J., Higgins, S.I., Le Roux, X., Ludwig, F., et al., 2005. Determinants of woody cover in African savannas. Nature, 438:846. doi: 10.1038/nature04070.

Sato, M., Barth, J.A., Benoit-Bird, K.J., Pierce, S.D., Cowles, T.J., Brodeur,
 R.D., Peterson, W.T., 2018. Coastal upwelling fronts as a boundary for plank tivorous fish distributions. Marine Ecology Progress Series, 595:171–186. doi:
 10.3354/meps12553.

Saunders, R.A., Fielding, S., Thorpe, S.E., Tarling, G.A., 2013. School characteristics of mesopelagic fish at South Georgia. Deep Sea Research Part I:
Oceanographic Research Papers, 81:62 – 77. doi:https://doi.org/10.1016/j.dsr.2013.07.007.

Scales, K.L., Hazen, E.L., Jacox, M.G., Castruccio, F., Maxwell, S.M., Lewison,
 R.L., Bograd, S.J., 2018. Fisheries bycatch risk to marine megafauna is intensified in Lagrangian coherent structures. Proceedings of the National Academy of Sciences of the United States of America. doi:10.1073/pnas.1801270115.

Snyder, S., Franks, P.J.S., Talley, L.D., Xu, Y., Kohin, S., 2017. Crossing the
 line: Tunas actively exploit submesoscale fronts to enhance foraging success.
 Limnology and Oceanography Letters, 2:187–194. doi:10.1002/lol2.10049.

St. John, M.A., Borja, A., Chust, G., Heath, M., Grigorov, I., Mariani, P., Marini, A.P., Santos, R.S., 2016. A Dark Hole in Our Understanding of Marine
 Ecosystems and Their Services: Perspectives from the Mesopelagic Community. Frontiers in Marine Science, 3:31. doi:10.3389/fmars.2016.00031.

Sulman, M.H., Huntley, H.S., Lipphardt, B., Kirwan, A., 2013. Leaving flatland:
Diagnostics for Lagrangian coherent structures in three-dimensional flows.
Physica D: Nonlinear Phenomena, 258:77 – 92. doi:https://doi.org/10.1016/j.physd.2013.05.005.

Sutton, T.T., Clark, M.R., Dunn, D.C., Halpin, P.N., Rogers, A.D., Guinotte,
 J., Bograd, S.J., Angel, M.V., Perez, J.A.A., Wishner, K., Haedrich, R.L.,
 Lindsay, D.J., Drazen, J.C., Vereshchaka, A., Piatkowski, U., Morato, T.,
 Bachowiak-Samoyk, K., Robison, B.H., Gjerde, K.M., Pierrot-Bults, A.,

- Bernal, P., Reygondeau, G., Heino, M., 2017. A global biogeographic classification of the mesopelagic zone. Deep Sea Research Part I: Oceanographic Research Papers, 126:85 102. doi:https://doi.org/10.1016/j.dsr.2017.05.006.
- Vidal, J., 1980. Physioecology of zooplankton. I. Effects of phytoplankton concentration, temperature, and body size on the growth rate of Calanus pacificus and Pseudocalanus sp. Marine Biology, 56:111–134. doi:10.1007/BF00397129.
- Watson, J.R., Fuller, E.C., Castruccio, F.S., Samhouri, J.F., 2018. Fishermen
 Follow Fine-Scale Physical Ocean Features for Finance. Frontiers in Marine
 Science, 5. doi:10.3389/fmars.2018.00046.
- Woodson, C.B., Litvin, S.Y., 2015. Ocean fronts drive marine fishery production
 and biogeochemical cycling. Proceedings of the National Academy of Sciences,
 112:1710–1715. doi:10.1073/pnas.1417143112.
- Yoder, J.A., Ackleson, S.G., Barber, R.T., Flament, P., Balch, W.M., 1994. A line in the sea. Nature, 371:689. doi:10.1038/371689a0.