
Opening the black box of high resolution fish tracking
using yaps

Henrik Baktoft∗1, Karl Ø. Gjelland 2, Finn Økland 2, Jennifer S. Rehage 3, Jonathan R.
Rodemann 3, Rolando Santos Corujo 3, Natasha Viadero 3, Uffe H. Thygesen 4

1National Institute of Aquatic Resources, Technical University of Denmark, Denmark;
2Norwegian Institute of Nature Research, NINA, Norway; 3Institute of Environment, Florida
International University, Miami USA; 4Department of Applied Mathematics and Computer

Science, Technical University of Denmark, Denmark

Abstract
The R package yaps was introduced in 2017 as a transparent open source alternative to closed source
manufacturer-provided solutions to estimate positions of fish (and other aquatic animals) tagged with acoustic
transmitters.
Although yaps is open source and transparent, the process from raw detections to final tracks has proved to
be challenging for many potential users, effectively preventing most users from accessing the benefits of using
yaps. Especially, the very important process of synchronizing the hydrophone arrays have proven to be an
obstacle for many potential users.
To make yaps more approachable to the wider fish tracking community, we have developed and added
user-friendly functions assisting users in the complex process of synchronizing the data.
Here, we introduce these functions and a six-step protocol intended to provide users with an example workflow
that can be used as a template enabling users to apply yaps to their own data. Using example data collected
by an array of Vemco VR2 hydrophones, the protocol walks the user through the entire process from raw
data to final tracks. Example data sets and complete code for reproducing results are provided.

Introduction
Tracking of free-ranging fish in the wild with high spatiotemporal resolution using acoustic transmitters and
fixed position hydrophone arrays is an increasingly popular methodology to obtain otherwise intractable
information about fish behaviour and ecology (Lennox et al. 2017). Until recently, the software needed to
estimate positions from detections was available only through manufacturer-supplied solutions with little to
no transparency, leaving users (i.e. scientists and resource managers) in the blind regarding which algorithms,
filters, etc. had been applied to the data. The R package yaps (Yet Another Positioning Solver) was
introduced in 2017 as an alternative to these proprietary and vendor-specific options for estimating positions
and tracks (Baktoft et al. 2017). Although yaps was developed with an intent of openness, transparency,
reproducibility and flexibility, yaps is not a turnkey or a one-size-fits-all solution. While yaps itself is open
and transparent, the process from collecting raw data in the field to having final estimated tracks is long and
sometimes challenging. Especially, the very important process of synchronizing the hydrophone arrays has
proven to be a major obstacle for many potential users.

Synchronization of hydrophone arrays
Regardless of the algorithm used for positioning, synchronization of the hydrophone array prior to track
estimation is extremely important for quality of the final tracks and great care should be taken to achieve
the best possible synchronization. The newly developed synchronization method recently included in the
yaps package has several benefits. It synchronizes all hydrophones in one go, avoiding sequential propagating

∗Corresponding author: hba@aqua.dtu.dk

1

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 17, 2019. ; https://doi.org/10.1101/2019.12.16.877688doi: bioRxiv preprint

mailto:hba@aqua.dtu.dk
https://doi.org/10.1101/2019.12.16.877688
http://creativecommons.org/licenses/by-nc/4.0/

synchronization, which may lead to error accumulation in the perimeter of the hydrophone array. Additionally,
it allows for estimation of hydrophone positions, which can be useful if the initial hydrophone positions are
uncertain e.g. due to deep water, strong current or use of a low-accuracy GPS. Perhaps most importantly,
synchronization in yaps is aimed at being user-friendly. To meet this, we have attempted to wrap the
necessary complex mathematical operations and data wrangling inside easy-to-use functions. Hydrophone
internal clocks drift in varying directions and the rate of drift can be affected by external factors such as
water temperature. Therefore, temporally flexible non-linear correction is needed. This is implemented in the
yaps synchronization procedure through multiple hydrophone-specific polynomials.

Motivations for developing and using yaps:
• Transparency and reproducibility. These concepts should be fundamental in all science and

scientific methodology. However, available proprietary software for estimating positions lack transparency
and constitute “black boxes” making reproducibility and scrutiny of results very challenging, if not
impossible.

• Open source. In addition to complete transparency, publishing yaps open-source enables the user
community to implement study specific adaptations, tweak parts of the estimation models and contribute
to the continued development. We urge users to submit improvements, refinements, etc. to the main
yaps repository on github, thereby helping future users.

• Vendor agnostic. The basic input to yaps is plain matrices of time-of-arrivals of transmitter signals
detected by hydrophones. The brand of hydrophones and transmitters are irrelevant. This enables
more direct comparisons of tracks and of the derived behavioural quantifications among studies using
varying vendors.

• Get the most out of your data. To our knowledge, all vendor supplied tracking software processes
data from individual pings independently from other pings. By doing this, these algorithms explicitly
discard collected data when pings are detected by less than three hydrophones. However, these data
are valuable for estimating tracks if used correctly, and can dramatically increase overall data yield
from your study (see (Baktoft et al. 2017)). Note, that this otherwise discarded data is only of value if
the transmitter burst interval is either fixed or the sequence of random burst intervals is known.

• Get the best out of your data. The holistic complete-track-oriented approach used by yaps has
proven to be superior in many instances to the isolated single-ping-oriented approach used in vendor
software. The single-ping approach is prone to numerical challenges, which can lead to varying degrees
of spurious outliers, multiple position estimates from individual pings (sometimes known as “ghost
positions”) and overall increased track jaggedness and uncertainties. These artifacts often necessitate
the use of post-processing filters and/or smoothing techniques. In contrast, many of these irregularities
are, in most circumstances, handled well by yaps and resulting tracks are often ready for use in
further analyses. Note, we are not stating that yaps estimated tracks never need or will benefit
from post-processing – it depends very much on study specifics such as the acoustic environment and
transmitter burst interval type and duration. However, using yaps-estimated tracks as the starting
point for post-processing has in all cases we know of, been superior to using tracks estimated by vendor
software.

2

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 17, 2019. ; https://doi.org/10.1101/2019.12.16.877688doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.16.877688
http://creativecommons.org/licenses/by-nc/4.0/

Methods and Materials
A six step protocol from raw detections to synchronized data
The workflow going from raw detection to synchronized data is a multi-step process. Below we describe each
step in detail, and then provide the concise code to implement each step.

1. Prepare data as a list containing tables hydros, detections and optionally gps following the format
in the included example data set ssu1 described below. The table gps is optional and only relevant for
test tracks. To aid in generating table detections from hydrophone downloads, we have included a
helper function prepDetections() in yaps.

2. Set synchronization parameters. Each data set is different in terms of hydrophone array configura-
tion, precision and accuracy of hydrophone positioning, acoustic environment and detection probability,
synchronization tag configuration, manufacturer etc. A number of parameters are available in function
getInpSync() to setup the synchronization process for best results.

• max_epo_diff For the synchronization process to function properly, hydrophones are assumed
to be roughly synchronized initially (e.g. by setting correct time via pc communication), such
that trains of emitted signals from synchronization transmitters can be aligned correctly across
all hydrophones. max_epo_diff sets the upper threshold for differences in time of arrival (TOA)
of a synchronization transmitter signal detected at each hydrophone. Best choice of parameter
value depends on burst rate of synchronization transmitter and how far apart the internal clocks
of the hydrophones are prior to synchronization. This parameter value should never exceed half of
minimum synchronization transmitter burst rate. A linear time correction applied to the detection
data prior to synchronization can dramatically improve the alignment process.

• min_hydros To ensure connectivity throughout the array, pings from synchronization transmitters
need to be detected by multiple hydrophones. Additionally, every hydrophone need to detect
synchronization transmitters also detected by one or more other hydrophones. Therefore, position-
ing of synchronization transmitters should be done in such a way that multiple hydrophones can
recieve it’s pings and such that all hydrophones can recieve pings from at least one synchronization
transmitter also detected by one or more other hydrophones. min_hydros sets the lower threshold
of number of hydrophones needed to detect each synchronization transmitter ping in order to be
included in the synchronization process. This value should be as high as possible, while ensuring
that all hydrophones are included. If min_hydros is too high, isolated hydrophones risk completely
falling out of the synchronization process. Future versions will work towards automation of this
step.

• time_keeper_idx One hydrophone is assigned the role of time-keeper. All other hydrophones
are synchronized to match the time-keeper. time_keeper_idx is the index of this hydrophone
specified in the hydros table (for instance, the hydrophone with smallest overall clock-drift).

• fixed_hydros_idx Vector of hydrophone indexes specified in the table hydros of hydrophones
where the position is assumed to be known with adequate accuracy and precision. As many as
possible fixed hydrophones should be included in order to reduce overall computation time and
reduce variability. As a bare minimum two hydrophones need to be fixed, but we strongly advice
to use more. If the position determined by gps of one or more hydrophones is uncertain (e.g. placed
at deep water) or missing all together, their position can be estimated during the synchronization
process, by excluding their index from this vector.

• n_offset_day Specifies the number of hydrophone specific polynomials to use per day. For
PPM-based systems like Vemco VR2 and Thelma TBR700, 1 or 2 is often as good choice.

• n_ss_day Specifies number of speed of sound estimates per day. Future versions will enable use of
logged water temperature instead. However, estimating speed of sound yields an extra option for
quality checking the final synchronization model.

3

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 17, 2019. ; https://doi.org/10.1101/2019.12.16.877688doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.16.877688
http://creativecommons.org/licenses/by-nc/4.0/

• keep_rate Synchronizing large data sets can take a long time. However, there is often excess
number of synchronization transmitter detections available and a sub-sample is typically enough
to obtain a good synchronization model. This parameter specifies the proportion (0-1) of the data
to keep when sub-sampling. Future versions will work towards automation of this step.

3. Compile input data for the synchronization process using function getInpSync().

4. Obtain synchronization model by running function getSyncModel(). This can take a long time
for larger data sets including more hydrophones and/or spanning longer periods. In such cases, we
suggest to start with the first few days to make sure everything looks reasonable before attempting to
synchronize the entire data set. Also consider using the parameter keep_rate in getInpSync().

5. Quality check the synchronization model to ensure the hydrophone array is synchronized well.
Functions plotSyncModelResids() and plotSyncModelCheck() produce plots which can be used to
diagnose if the overall model fit is good.

• Function plotSyncModelResids() plots synchronization model residuals (in meter). Residuals
centered closely around zero indicate that the synchronization model is good. If fixed hydrophones
and/or synchronization transmitters consistently have large deviations from zero, it may indicate
that initial position accuracy of the hydrophone is sub-optimal. Either obtain a better position
(typically not possible) or allow estimation of the position of that particular hydrophone (i.e. remove
it’s idx from vector fixed_hydros_idx). Note that it requires a rerun of the entire process for
altered synchronization parameters to take effect.

• Function plotSyncModelCheck() applies the synchronization model to the data obtained
by getInpSync() and compares true distances between hydrophone and synchronization
transmitters to distances estimated based on the newly synchronized TOA-data. Similar to
plotSyncModelResids(), consistent large deviations indicate a problem in the synchronization
model that needs further attention.

6. Apply the synchronization model to the entire data set using applySync().

The data should now be synchronized and ready to be processed by yaps to obtain estimated tracks.

Package installation and dependencies
yaps is an R package available from a github repository at github.com/baktoft/yaps. To install in R,
package devtools (Wickham, Hester, and Chang 2019) is needed. Integral parts of yaps relies on package
TMB, Template Model Builder (Kristensen et al. 2016). Run the following lines in R to meet dependencies,
ensure TMB is working and install yaps.

install.packages("devtools")
install.packages("TMB")
TMB::runExample(all=TRUE)
devtools::install_github("baktoft/yaps")

Note that Rtools might also be needed. If so, go to https://cran.r-project.org/bin/windows/Rtools
and choose the correct version for your current installed version of R. These steps are only needed once.

4

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 17, 2019. ; https://doi.org/10.1101/2019.12.16.877688doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.16.877688
http://creativecommons.org/licenses/by-nc/4.0/

Example data in package yaps

We use the ssu1 data set included in yaps for the purpose of this demonstration. This is a small data
set containing test tracks collected in Florida Bay, Florida, USA using 19 Vemco VR2 hydrophones. The
size of the data set makes it suitable for demonstration purposes. The data set is a list containing the
following three data.tables: hydros, detections and gps. The table hydros contains positions of the
hydrophones obtained using a handheld gps-unit, serial number of co-located synchronization transmitters
and hydrophone index (must be in range 1:nrow(hydros)); table detections contain all detections of
synchronization transmitters and transmitters used for the test track; and table gps contains gps-recordings
of the test track used as ground truth when evaluating quality of the estimated tracks. See ssu1 help (type
?ssu1 into R console) for further information.

Applying the six step protocol to synchronize example data ssu1

0. Load the yaps package
library(yaps)

1. Prepare data We can use the function prepDetections() to generate the data.table detections
from raw detections download from all hydrophones in the array. Future versions will work towards
support for other vendors and data formats. The included example data set ssu1 is a subset of the
data.table vue created below.

Extract location of raw data included in package yaps
fn <- system.file("extdata", "VUE_Export_ssu1.csv", package="yaps")
vue <- data.table::fread(fn, fill=TRUE)
head(vue[,1:5], n=3)

Date and Time (UTC) Receiver Transmitter Transmitter Name Transmitter Serial
1: 2019-09-09 16:04:11.193 VR2W-128355 A69-1602-59335 NA NA
2: 2019-09-09 16:04:12.574 VR2W-128371 A69-1602-59336 NA NA
3: 2019-09-09 16:04:43.953 VR2W-128959 A69-1602-59335 NA NA

detections <- prepDetections(raw_dat=vue, type="vemco_vue")
head(detections, n=3)

ts tag epo frac serial
1: 2019-09-09 16:04:11 59335 1568045051 193 128355
2: 2019-09-09 16:04:12 59336 1568045053 574 128371
3: 2019-09-09 16:04:43 59335 1568045084 953 128959

2. Define synchronization parameters
max_epo_diff <- 120
min_hydros <- 2
time_keeper_idx <- 5
fixed_hydros_idx <- c(2:3, 6, 8, 11, 13:17)
n_offset_day <- 2
n_ss_day <- 2

3. Compile input data
inp_sync <- getInpSync(sync_dat=ssu1, max_epo_diff, min_hydros, time_keeper_idx,

fixed_hydros_idx, n_offset_day, n_ss_day)

4. Obtain synchronization model
sync_model <- getSyncModel(inp_sync, silent=TRUE)

5. Quality check the synchronization model by plotting model residuals (Fig. 1, 2 & 3) and model
check plots (Fig. 4, 5, 6 & 7). For all plots, values closer to zero are better.

5

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 17, 2019. ; https://doi.org/10.1101/2019.12.16.877688doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.16.877688
http://creativecommons.org/licenses/by-nc/4.0/

plotSyncModelResids(sync_model, by='overall') # Fig. 1
plotSyncModelResids(sync_model, by='sync_tag') # Fig. 2
plotSyncModelResids(sync_model, by='hydro') # Fig. 3

plotSyncModelCheck(sync_model, by="sync_bin_sync") # Fig. 4
plotSyncModelCheck(sync_model, by="sync_bin_hydro") # Fig. 5
plotSyncModelCheck(sync_model, by="sync_tag") # Fig. 6
plotSyncModelCheck(sync_model, by="hydro") # Fig. 7

0

200

400

600

−2 0 2 4
Residual (m)

co
un

t

Figure 1: Overall histogram of sync model residuals (converted to meter). Vertical red lines indicate 1, 5, 95
and 99 % quantiles.

4 5 9

5 10 15 5 10 15 5 10 15

−2

0

2

4

hydro_idx

R
es

id
ua

l (
m

)

Figure 2: Boxplots of sync model residuals (in meter) grouped by sync tags (panel) and hydrophone (x-axis).
Vertical red lines added for every fifth hydro_idx to aid in identifying troublesome hydrophones

6

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 17, 2019. ; https://doi.org/10.1101/2019.12.16.877688doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.16.877688
http://creativecommons.org/licenses/by-nc/4.0/

16 17 18 19

11 12 13 14 15

6 7 8 9 10

1 2 3 4 5

4 5 9 4 5 9 4 5 9 4 5 9

4 5 9

−2

0

2

4

−2

0

2

4

−2

0

2

4

−2

0

2

4

sync_tag_idx

R
es

id
ua

l (
m

)

Figure 3: Boxplots of sync model residuals (in meter) grouped by sync tags (x-axis) and hydrophone (panels)

4 5 9

1 2 1 2 1 2

0.4

0.8

1.2

1.6

Sync period

D
el

ta
 (

m
)

Figure 4: Delta grouped by sync tag (panel) and sync period (x-axis)

7

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 17, 2019. ; https://doi.org/10.1101/2019.12.16.877688doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.16.877688
http://creativecommons.org/licenses/by-nc/4.0/

16 17 18 19

11 12 13 14 15

6 7 8 9 10

1 2 3 4 5

1 2 1 2 1 2 1 2

1 2

0.4

0.8

1.2

1.6

0.4

0.8

1.2

1.6

0.4

0.8

1.2

1.6

0.4

0.8

1.2

1.6

Sync period

D
el

ta
 (

m
)

Figure 5: Delta grouped by hydro_idx (panel) and sync period (x-axis)

4 5 9

5 10 15 5 10 15 5 10 15
0.3

0.6

0.9

1.2

hydro_idx

D
el

ta
 (

m
)

Figure 6: Delta grouped by sync tag (panel) and hydro_idx (x-axis)

8

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 17, 2019. ; https://doi.org/10.1101/2019.12.16.877688doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.16.877688
http://creativecommons.org/licenses/by-nc/4.0/

16 17 18 19

11 12 13 14 15

6 7 8 9 10

1 2 3 4 5

4 5 9 4 5 9 4 5 9 4 5 9

4 5 9

0.3

0.6

0.9

1.2

0.3

0.6

0.9

1.2

0.3

0.6

0.9

1.2

0.3

0.6

0.9

1.2

sync_tag_idx

D
el

ta
 (

m
)

Figure 7: Delta grouped by hydro_idx (panel) and sync tag (x-axis)

6. Apply the synchronization model to all data in table detections. Synchronized timestamps are
found in column eposync. Note, fractions of seconds are not shown in output below. Data are now
synchronized and ready to track estimation using yaps.

detections_synced <- applySync(toa=ssu1$detections, hydros=ssu1$hydros, sync_model)
head(detections_synced, n=3)

ts tag epo frac serial hydro_idx epofrac eposync
1: 2019-09-09 16:07:46 59334 1568045266 0.644 128368 6 1568045267 1568045267
2: 2019-09-09 16:09:21 59337 1568045361 0.932 128368 6 1568045362 1568045362
3: 2019-09-09 16:14:42 59334 1568045682 0.387 128368 6 1568045682 1568045683

9

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 17, 2019. ; https://doi.org/10.1101/2019.12.16.877688doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.16.877688
http://creativecommons.org/licenses/by-nc/4.0/

Estimate track using yaps on newly synchronized ssu1 data
The only tracks to estimate from the ssu1 data set are test tracks performed to test feasibility of deploying
an array at this specific location. In the original data set, several transmitters with different power and burst
rates were used. Here, we focus on a single of these: ID 15266, Vemco V9, high power output, 20-40 second
burst interval.
We use the estimated positions of the hydros as they are assumed to be better
hydros_yaps <- data.table::data.table(sync_modelplTRUE_H)
colnames(hydros_yaps) <- c('hx','hy','hz')

Specify focal tag and tag specific min and max burst intervals
focal_tag <- 15266
rbi_min <- 20
rbi_max <- 40

Extract relevant data from the synced data
synced_dat_ssu1 <- detections_synced[tag == focal_tag]

Compile TOA-matrix to use for yaps
toa_ssu1 <- getToaYaps(synced_dat_ssu1, hydros_yaps, rbi_min, rbi_max)

Compile all input data needed for yaps
inp_ssu1 <- getInp(hydros_yaps, toa_ssu1, E_dist="Mixture", n_ss=2, pingType="rbi",

sdInits=1, rbi_min=rbi_min, rbi_max=rbi_max, ss_data_what="est", ss_data=0)

Run yaps to obtain estimated track
Default parameter values should work for this example
yaps_out_ssu1 <- runYaps(inp_ssu1, silent=TRUE)

10

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 17, 2019. ; https://doi.org/10.1101/2019.12.16.877688doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.16.877688
http://creativecommons.org/licenses/by-nc/4.0/

Results
Validating the estimated track - ssu1

The code below produces a basic plot of yaps-estimated track after applying the six-step synchronization
protocol.
use basic plotting function in yaps
plotYaps(inp=inp_ssu1, yaps_out=yaps_out_ssu1, type="map")

Add gps track for direct comparison
lines(utm_y~utm_x, data=ssu1$gps, lty=2)

525800 525900 526000 526100 526200 526300

27
71

15
0

27
71

25
0

27
71

35
0

UTM_X

U
T

M
_Y

Figure 8: Estimated track (red line) and true track obtained using gps (black line). Green dots indicate
hydrophone positions.

11

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 17, 2019. ; https://doi.org/10.1101/2019.12.16.877688doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.16.877688
http://creativecommons.org/licenses/by-nc/4.0/

Basic code to plot X and Y coordinates separately.
par(mfrow=c(2,1))
plotYaps(inp=inp_ssu1, yaps_out=yaps_out_ssu1, type="coord_X")
lines(utm_x~ts, data=ssu1$gps, lty=2)

plotYaps(inp=inp_ssu1, yaps_out=yaps_out_ssu1, type="coord_Y")
lines(utm_y~ts, data=ssu1$gps, lty=2)

1568052000 1568053000 1568054000 1568055000 1568056000

52
60

00
52

61
50

TimeOfPing

U
T

M
_X

1568052000 1568053000 1568054000 1568055000 1568056000

27
71

15
0

TimeOfPing

U
T

M
_Y

Figure 9: X and Y coordinates of true track (black) and estimated track (red). Broken red lines indicate
estimated track +- standard error of position estimate.

12

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 17, 2019. ; https://doi.org/10.1101/2019.12.16.877688doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.16.877688
http://creativecommons.org/licenses/by-nc/4.0/

Discussion
Estimating positions and tracks of acoustically tagged fish based on data collected by autonomous receivers
in a variable and often noisy environment is not a trivial task. Many factors, such as acoustic environment
(e.g. degree of echoing from hard substrates and ambient noise level), water temperature and user experience
level can influence both data quality and the level of pre-processing needed. Additionally, hydrophone
performance and output format vary considerably between (and even within) manufacturers. Furthermore,
hydrophones do not always behave and perform as expected. For instance, some hydrophone models
autonomously initiate reboots causing perturbation of varying magnitude and/or duration of the internal
clock at apparently random time intervals. Therefore, the functions in yaps might perform sub-optimal or
fail miserably when applied to new data, if all these factors are not accounted for correctly. To that end, we
want to emphasize that quality of yaps output is highly depended on quality of the input. Therefore, users
should not expect yaps to salvage a poorly designed study or bad quality detection data.

13

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 17, 2019. ; https://doi.org/10.1101/2019.12.16.877688doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.16.877688
http://creativecommons.org/licenses/by-nc/4.0/

References
Baktoft, Henrik, Karl Øystein Gjelland, Finn Økland, and Uffe Høgsbro Thygesen. 2017. “Positioning of
aquatic animals based on time-of-arrival and random walk models using YAPS (Yet Another Positioning
Solver).” Scientific Reports 7 (1): 14294. https://doi.org/10.1038/s41598-017-14278-z.

Kristensen, K, A Nielsen, C W Berg, H Skaug, and B Bell. 2016. “TMB: Automatic Differentiation and
Laplace Approximation.” Journal of Statistical Software 70 (5): 1–21. https://doi.org/10.18637/jss.v070.i05.

Lennox, Robert J., Kim Aarestrup, Steven J. Cooke, Paul D. Cowley, Zhiqun D. Deng, Aaron T. Fisk, Robert
G. Harcourt, et al. 2017. “Envisioning the Future of Aquatic Animal Tracking: Technology, Science, and
Application.” https://doi.org/10.1093/biosci/bix098.

Wickham, Hadley, Jim Hester, and Winston Chang. 2019. “devtools: Tools to Make Developing R Packages
Easier.” https://cran.r-project.org/package=devtools.

14

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 17, 2019. ; https://doi.org/10.1101/2019.12.16.877688doi: bioRxiv preprint

https://doi.org/10.1038/s41598-017-14278-z
https://doi.org/10.18637/jss.v070.i05
https://doi.org/10.1093/biosci/bix098
https://cran.r-project.org/package=devtools
https://doi.org/10.1101/2019.12.16.877688
http://creativecommons.org/licenses/by-nc/4.0/

	Abstract
	Introduction
	Synchronization of hydrophone arrays
	Motivations for developing and using yaps:

	Methods and Materials
	A six step protocol from raw detections to synchronized data
	Package installation and dependencies
	Example data in package yaps
	Applying the six step protocol to synchronize example data ssu1

	Estimate track using yaps on newly synchronized ssu1 data
	Results
	Validating the estimated track - ssu1

	Discussion
	References

