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F1000Research TMATCH: A New Algorithm for Protein
Alignments using amino-acid hydrophobicities
Searching for proteins of similar structure using proteins of known structure remains a key task in bioinformatics. We have
created a hydrophobic proclivity index with a dynamic programming alignment algorithm (TMATCH) that can rapidly identify
proteins with similar structure from databases even when the sequence similarity is small
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Abstract The identification of proteins of similar structure using sequence align-
ment is an important problem in bioinformatics. We decribe TMATCH, a basic
dynamic programming alignment algorithm which can rapidly identify proteins of
similar structure from a database. TMATCH was developed to utilize an optimal
hydrophobicity metric for alignments traceable to fundamental properties of amino-
acids. Standard alignment algorithms use affine gap penalties as contrasted with
the TMATCH algorithm adaptation of local alignment score reinforcement of favor-
able diagonal paths (transitions) and punishment of unfavorable transitions paired
with fixed gap opening penalties. The TMATCH algorithm is especially designed to
take advantage of the extra information available within the hydrophobicity scale to
detect homologies, as opposed to the probabilities derived from raw percent identi-
ties.
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Introduction
Protein and DNA/RNA sequence alignment algorithms
are fundamental to modern bioinformatics. Sequence
alignments are widely used in diverse applications such
as phylogenetic analysis, database searches for related se-
quences to aid identification of unknown protein domain
structures, classification of proteins and classification of
protein domains. Additionally, alignment algorithms are
integral to the location of related proteins in order to se-
cure understanding of unknown protein functions, to sug-
gest the folded structure of proteins of unknown struc-
ture from location of homologous proteins and/or by
locating homologous domains of known 3D structure.
[1] [2] [3] [4] Smith-Waterman (local alignment) and
Needleman-Wunsch (global alignment) are exact match
algorithms that use dynamic programming methods while
BLAST and FASTA can be termed as “word” methods (e.g.
local alignment of regions of high similarity) that while
not guaranteed to find optimal alignment solutions are
significantly more efficient and very useful in large-scale
database searches. Dynamic programming alignment al-
gorithms produce optimal/near optimal alignments from
an optimization of the global alignment score derived
from local alignment score optimization. The local align-
ment scores derive from a statistical transition probability
matrix of nucleotides or amino-acids, depending upon the
sequences being aligned.
We have developed an algorithm we call TMATCH that has
adapted features of basic dynamic programming align-
ment algorithms. TMATCH was developed to utilize
an optimal hydrophobicity metric for alignments as de-
scribed elsewhere [5] Standard alignment algorithms use
affine gap penalties. In TMATCH, the local alignment
score reinforces favorable diagonal sequences that are
paired with fixed gap opening penalties. The TMATCH al-
gorithm is especially designed to take advantage of the ex-
tra information available within the hydrophobicity scale
to detect homologies, as opposed to the probabilities de-
rived from raw percent identities.
It is difficult to detect remote homologies in the so called
twilight zone that have low percent sequence identities
starting around 20-25 % and descending to around 10-15
%. The hydrophobicity scale we have described [5] is an
excellent measure of sequence relatedness and identifies
similar proteins much better than those derived using se-
quence identities, particularly in the twilight zone. A ro-
bust estimate of the hydrophobicity based sequence iden-
tity may be calculated directly from the global alignment
score, which may be directly used in database searches,
obviating the need to actually incur the overhead of main-
taining the backtracking matrix (described later) and ac-
tually extracting the alignment. Low sequence identities,
possessing statistically insignificant similarities by con-
ventional measures, but having similar secondary struc-
tures can be identified using our algorithm, while not
identified as statistically significant by other methods such
as FASTA and Smith-Waterman.

Approach
The TMATCH algorithm starts off with the dynamic pro-
gramming algorithm used for alignments as is embodied
in the Needleman-Wunsch global alignment algorithm.
The TMATCH algorithm uses a fixed gap penalty and
therefore abandons the notion of an affine gap penalty,
which is problematical as there is no deep, underlying the-
oretical construct for choosing a specific affine gap penalty
that derives from statistical theory and/or from protein
function/structure. The TMATCH algorithm leverages
the fact that local pair-wise sequences of high homology
result in diagonal (upper left to lower right) traces in
dot-matrix/dot-plot algorithms. When these local pair-
wise diagonal traces exist in the optimal/near-optimal
alignment catchment basin, which is defined as an area
about the dot-matrix major diagonal, they will contribute
to and be included within the global/near global align-
ment traces within the dot-plot/dot-matrix. TMATCH
captures these dot-plot/dot-matrix algorithmic properties
by introducing the notion of score “rewards” for favor-
able (e.g. local alignment score optimization) cell-cell
diagonal transitions and score “punishments” for unfa-
vorable cell-cell diagonal transitions. Fixed gap penalties
are assessed for horizontal or vertical cell-cell transitions.
Pairwise comparisons of amino-acids in the alignment are
done with an optimal hydrophobicity proclivity matrix de-
veloped in our companion hydrophobicity proclivity scale
paper [5].
Methods are devised in this study to predict the per-
cent hydrophobic match similarity of two protein se-
quences being aligned from the maximum score divided
by the average number of pair-wise matches in the align-
ment. These methods allow a statistical relationship test
to be performed without having to extract the aligned
sequences and directly compute the percentage of hy-
drophobic match similarity. A statistical hypothesis test
of homology is developed based upon percent hydropho-
bicity similarity match between two protein sequences us-
ing a Binomial fraction cumulative PDF. In order to speed
computation and provide for maximum coverage of com-
putational platforms and computational language imple-
mentations of the TMATCH algorithm, a hyperbolic func-
tion was developed to closely approximate the cumula-
tive Binomial fraction PDF. Our computations of proba-
bility with the Binomial fraction PDF and hyperbolic ap-
proximation function calculate tail areas at and above a
threshold Zb, as opposed to calculating an area less than
or equal to the threshold Zb.

1 Methods
We describe the TMATCH algorithm using two, six residue
synthetic poly-peptide sequences using amino acid hy-
drophobicity proclivity indices we have created [5]. These
sequences are VLSEGE (sequence 1, shown as a row) and
VHLTPE (sequence 2, in the column)
The calculations start with the creation of a match ma-
trix and this is shown as Table 1. We then create a score
matrix (Table 3) and a back track matrix (Table 4) These
three matrices are used to create the final alignment and
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a score.
Each matrix (as seen in the Tables 1, 3 and 4) organized
around the row (search protein) string and each of the
incoming (match protein) column strings being aligned
against the row (search) string. Each matrix column cor-
responds to one character of the row string and each row
character corresponds to a character of the column string.
The match matrix (table 1) has scaled delta hydropho-
bic proclivities which represent similarities between the
amino-acids being compared, where a score of 2 is a per-
fect match and a score of 0 is declared a non-match.
Scaled delta hydrophobic proclivities below a threshold
are windowed by forcing cell values to zero for each scaled
delta hydrophobic proclivity less than the threshold value.
The match matrix will contain diagonal sequences rep-
resenting contiguous sequences of amino-acids with high
similarity, comparable to what a dot plot will do.

Table 1. Match Matrix

Match Matrix

V L S E G E

V 2.0000 1.8304 0.0000 0.0000 0.0000 0.0000

H 0.0000 0.0000 1.9378 0.0000 1.9638 0.0000

L 1.8304 2.0000 0.0000 0.0000 0.0000 0.0000

T 0.0000 0.0000 1.9050 0.0000 1.9966 0.0000

P 0.0000 0.0000 1.9902 1.6298 1.8918 1.6298

E 0.0000 0.0000 1.6200 2.0000 0.0000 2.0000

The score matrix (Table 3) is derived like the recursion
relations of the classic dynamic programming algorithm,
such as with the Needleman-Wunch algorithm. Concomi-
tantly with generating the score matrix, the backtracking
matrix (table 4) is generated with each cell correspond-
ing to the same cell of the score matrix, and each back-
track matrix cell value indicating which was the previous
cell path chosen in the score matrix (from left, up or up-
wards left diagonal). The backtracking matrix cell corre-
sponding to the maximum value cell in the score matrix is
then used to extract the alignment, moving from the string
right (end) and growing towards the string left (front).
The direction taken in the backtracking matrix will deter-
mine the growth of the aligned row/column strings either
by taking amino-acid characters from the row or column
strings respectively, or by introducing gap characters as
necessary.
The match matrix match values are calculated by first cal-
culating the difference in hydrophobicities between the
amino-acids in each row and column intersection, sub-
tracting the absolute value of this difference from 1.0,
and if the difference is greater than a threshold value,
is multiplied by a weighting factor. We chose the in-
verted hydrophobicity proclivity distance (1 minus the hy-
drophobicity proclivity distance) threshold value of 0.8
(hydrophobicity proclivity distance of 0.2) and a weight-
ing factor of 2.0, for a match value distance threshold
value of 1.6. Therefore, the match value threshold of 1.6
comes from a maximum allowed fuzzy match hydropho-
bicity proclivity distance of 0.2. The Mw (weighting fac-
tor) of 2.0 derives from an initial, discrete version of the

TMATCH algorithm designed to work with plain alphanu-
meric string comparisons. The values of the gap penalty,
the transition reward and the transition penalty were also
empirically and iteratively determined in order to yield
optimal alignments under different and taxing conditions.
Details of this portion of the work have been necessarily
omitted from this current paper for brevity sake. The por-
tion of the work we are now showing serves to illustrate
the reasonableness of the fitted reward/penalty values.
The result of these calculations are shown in Table 1.
Here are some sample calculations using the hydrophobic
proclivity values from the table 2 as seen in [5].

Table 2. Table of Regression Fitted Hydrophobic Pro-
clivities

Residue Amino Acid Hydrophobicity (H) Regression Fitted ∆G

F (Phenylalanine) 0.0688 2.5658

L (Leucine) 0.0579 2.6095

I (Isoleucine) 0.0349 2.7022

M (Methionine) 0.2213 1.9528

V (Valine) 0.1427 2.2687

P (Proline) 0.7123 -0.0212

T (Threonine) 0.6599 0.1895

S (Serine) 0.7074 -0.0018

A (Alanine) 0.4925 0.8624

Y (TYrosine) 0.4523 1.0237

H (Histidine) 0.6763 0.1232

Q (Glutamine) 0.8692 -0.6522

N (AsparagiNe) 0.8350 -0.5148

K (Lysine) 0.9651 -1.0376

D (Aspartic AciD) 0.9157 -0.8393

E (Glutamic Acid) 0.8974 -0.7657

C (Cysteine) 0.2650 1.7769

W (Tryptophan) 0.3403 1.4742

R (ARginine) 0.9091 -0.8126

G (Glycine) 0.6582 0.1961

We begin with the calculations for PS (row value of 5,
column value of 3)

1. Calculate 1.0 − abs(hydrophobicity P −
hydrophobicity S) which is (using values from
table 2) 1.0− abs(0.7123− 0.7074) which is 0.995

2. Since 0.995 is greater than 0.8, match value is
2.0*0.995 which is 1.99 shown in Table 1

We next show the calculations for LS (row 3, column 3)

1. Calculate 1.0−abs(0.0579−0.7074)which is 0.3505

2. Since 0.3505 is smaller than 0.8, the match value is
zero.

The entire Table 1 is calculated this way. Owing to the na-
ture of the TMATCH algorithm, there is a trough (catch-
ment basin) of high likelihood constraining possible align-
ment paths, running from the top left to the bottom right
corners. Horizontal or vertical blocks (e.g. with a non-
zero match value, shown in red) mostly surrounded by
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white space (e.g. 0 match value) generally represent re-
gions of gap insertions, should the alignment path run
through those blocks. The “isolated" vertical/horizontal
red blocks represent amino-acid regions of high similar-
ity, which will likely be part of the alignment path, if they
can be diagonally connected on one side or the other and
lie within the alignment catchment basin. The alignment
path (corresponding to gaps) may pass through white
(zero value) cells, within the catchment basin, between
islands of red (non-zero value) cells.
Our algorithm assigns a fixed gap penalty of 0.8. Each
cell in a dynamic programming score matrix reflects the
cumulative score from the start to that point, as the dy-
namic programming algorithm finds the best path through
the matrix by passing through all of the best (or near op-
timal) local scores along the catchment basin.
A cumulative score matrix is calculated next (shown as
Table 3)

Table 3. Score Matrix

Score Matrix

V L S E G E

0.0000 -0.8000 -1.6000 -2.4000 -3.2000 -4.0000 -4.8

V -0.8000 3.0000 4.0304 3.2304 2.4304 1.6304 0.8304

H -1.6000 2.2000 3.2304 6.9682 6.1682 7.3320 6.5320

L -2.4000 3.2304 5.2000 6.1682 5.5682 6.7682 5.9882

T -3.2000 2.4304 4.4000 7.7050 6.9050 8.5648 7.7648

P -4.0000 1.6304 3.6000 8.8952 9.9348 11.0266 11.8564

E -4.8000 0.8304 2.8000 9.7152 11.8952 11.0952 14.0266

The calculation starts at the first row and first column (in
this case at V & V). The score value at each cell is calcu-
lated using information from the previous diagonal cell
and those from the cell in the previous row (up) and the
cell from the previous column (left). At each step of the
calculation, the current cell in the score matrix is the same
cell being accessed in the match value matrix. The start-
ing score value in the score matrix is set to zero. Subse-
quently, the score assigned to each cell of the score ma-
trix comes from the highest score achieved by selecting
an immediately previous cell on the left hand side, on the
upper left hand diagonal side or the on the upper side.
For each score matrix cell processed, the first calculation
step adds the match matrix cell value corresponding to the
current score matrix cell to each of the 3 possible previ-
ous score matrix cells (left, diagonal or up), each of which
could be one of the three putative paths into the current
score matrix cell. In step two of each current score matrix
cell calculation for the left and up cell paths, a fixed gap
opening penalty of -0.8 is added. The second step of the
current score matrix cell calculation for the diagonal cell
path is a more complex in that the potential transition is
assessed a penalty (-1.4) for a bad transition (match value
matrix diagonal cell value > the current match value ma-
trix cell value) or granted a reward (+1.0) for a favorable
transition (match value matrix diagonal cell value<= the
current match value matrix cell value). The second step
of the current score matrix cell calculation for the diag-
onal cell path reward/penalty is added to the diagonal
path calculation. The path chosen is that resulting in the
highest score for the current score matrix cell. The first

row only has left hand entry transitions and the first col-
umn only has entry transitions from the up direction, with
concomitant application of the gap penalty (-0.8) for each
cell transition. Effectively, the calculation proceeds in an
iterative fashion matching that of the traditional dynamic
programming algorithm.
To illustrate these algorithmic steps we calculate the up-
per left 6 cells of the score matrix, with a couple of exam-
ples of where the back track matrix trace will go through
and how they are determined. Each cell address is re-
ported as (column label, row label), such that the third
column & second row is cell LV:

1. (The initial entry into the score matrix is 0)

2. VV: 0 (upper left initialization) +1 (favorable diago-
nal transition) +2 (equiv match matrix cell) =3

3. VH: 3 (upper cell) -0.8 (gap penalty) =2.200

4. LV: 3 (cell VV) +1.8304 (equiv match matrix cell) -
0.8 (gap penalty) =4.0304

5. LH: (from left): 2.2000 (cell VH) +0.0 (equiv match
matrix cell) -0.8 (gap penalty) =1.4000

6. LH (from up): 4.0304 (cell LV) +0.0 (equiv match
matrix cell) -0.8 (gap penalty) = 3.2304

7. LH (upper-left): 3.000 (cell VV) +0.0 (equiv match
matrix cell) -1.4 (bad diagonal punishment: 2>0 in
match matrix) =1.6000

8. LH: 3.2304 (highest score from up, equiv back track
cell value =1)

9. VL: 2.2000 (upper cell) +1.8304 (equiv match ma-
trix cell) -0.8 (gap penalty) =3.2304

10. LL (from left): 3.2304 (cell VL) +2.0000 (equiv
match matrix cell) -0.8 (gap penalty) =4.4304

11. LL (from up): 3.2304 (cell LH) +2.0000 (equiv
match matrix cell) -0.8 (gap penalty) =4.4304

12. LL (upper-left): 2.2000 (cell VH) + 2.0000 (equiv
match matrix cell) +1.0 (favorable diag reward, 0<2
in match matrix) =5.2000

13. LL: 5.2000 (highest score from upper-left, equiv
backtrack matrix cell value =0)

The successive building of cumulative score matrix cell
values in Table 3 are then used to build the alignment in
the backtrack matrix Table 4 from the score matrix local
cell maximum computed scores, where there is a direct
location correspondence between each cell in the score
matrix and backtrack matrix. For each cell in the score
matrix and its backtrack matrix analog cell, the algorithm
for building the backtrack matrix will mirror the score
matrix cell entry path from the direction resulting in the
maximum value for the current score matrix cell. If the
current maximum score matrix cell value was arrived at
from the previous diagonal, a value of 0 is assigned to the
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corresponding backtrack matrix cell. If the current score
matrix cell value was arrived from the score matrix cell
on the left, the backtrack matrix cell value assigned is -1
(meaning there will be a gap in the column and the row
symbol taken), and if the score matrix cell value was ar-
rived at from the upper cell, the value of +1 is assigned to
the backtrack matrix cell (gap in the row and the column
symbol is taken).

Table 4. BackTrack Matrix

BackTrack Matrix

V L S E G E

V 0.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000

H 1.0000 1.0000 0.0000 -1.0000 -1.0000 -1.0000

L 1.0000 0.0000 1.0000 0.0000 0.0000 -1.0000

T 1.0000 1.0000 0.0000 -1.0000 0.0000 -1.0000

P 1.0000 1.0000 1.0000 0.0000 -1.0000 -1.0000

E 1.0000 1.0000 1.0000 0.0000 -1.0000 0.0000

V-LSEGE Aligned row string
VHLTP-E Aligned column string
The alignment itself is extracted by starting with the back-
track matrix cell corresponding to the score matrix cell
that had the maximum cell value and backtracking to each
of the next (previous) cells as indicated by the stored
path direction in each backtrack matrix cell. The align-
ment path follows backward though each cell obtained by
the successive recorded entry directions. Concomitantly,
the row and column protein alignment strings grow from
right to left as the alignment is extracted from the back-
track matrix. For a 0 backtrack matrix cell value, both
the next (from the right hand side or end position) row
and column protein string characters are taken into the
growing (right to left, end to front) aligned row/column
strings. For a -1 backtrack matrix cell value, a gap (-)
character is put into the front (left) of the growing aligned
column string and the next (end) character from the row
protein string is taken for the front (left) of the aligned
growing row string. For a +1 backtrack matrix cell value,
a gap (-) character is put into the front (left) of the grow-
ing aligned row string and the next (end) character from
the column protein string is taken for the front (left) of
the aligned growing column character string.
The red highlighted cells in table 4 above shows the back-
track trace used to recover the gapped alignment strings,
shown at the bottom of table 4. Under each alignment
string corresponding to each amino-acid is a match value
as represented in table B above. A match value distance
of two represents a perfect match. In this case, the total of
the match values is 14.0266. While indicative of how the
two sequences are similar, this sum match value is not as
useful as the score matrix cell values in database searches,
or looking for proteins with similar properties.
In the interest of large database searches it is desirable
to minimize the computational load to keep the database
searches within reasonable time frames. We show how
this can be done by calculating a set of metrics from the
alignment.
Now we turn to the rationale and description of the sta-
tistical significance test of the aligned protein character

strings. We have used the serine protease protein fam-
ily data from Pearson [4] to calibrate the binomial distri-
bution (our selected distribution) expected parameter P
(derived below) for amino acid pair matches from random
search and match sequences being aligned. The statistical
hypothesis test null hypothes used is that the two aligned
sequences are not related (they are random), so the post
alignment %H matches are less than or equal to the fitted
P (parameter) value, which will result in the the binomial
distribution function right hand tail area of greater than
10% (i.e. Bn(Z) > 0.1), resulting in the declaration that
two random sequences are unrelated.
The two sequences chosen to bracket Bn(Z), which is ap-
proximately = F(Zb’) = alpha = 0.1 (derived below) are
in the region where the Smith Waterman statistical signif-
icance function E() values transition into statistical non-
signficance. The significance function E() used for the
Smith-Waterman alignment is considered to be marginally
significant around 0.0001 to 0.01, whereas the same re-
gion for the binomial Bn(Z) PDF is around 0.10. As
can be seen from table 5 below, the Bn(CO2_HUMAN)
and Bn(CFAB_MOUSE) values actually bracket the alpha
=0.10 value for F(Zb’) corresponding to the E() transi-
tion threshold of statistically insignificant alignment. The
TRYP Bovine Serine Protease was used as the search pro-
tein [6] [4]. Table 5 below also shows the percent iden-
tity value to be approximately the square root of the hy-
drophobicity fuzzy match percent (i.e. there is more in-
formation in the hydrophobicity index).

Table 5. Match

Protein %H match % identity F(Zb’) S.W. E()

CO2_HUMAN (P066811) 39.84 17.5 0.1319 1.00E-04

CFAB_MOUSE (P041851) 40.55 21.25 0.0960 1.00E-02

Since the hydrophobicity proclivities are variables (e.g.
not discrete), in order to make logic comparisons it is nec-
essary to stipulate an interval definition of similarity for a
"fuzzy match" indicating a pairwise match owing to simi-
larity between two amino acids being compared. Two def-
initions of similarity were chosen for loose and strict fuzzy
matches, H ± 0.2 and H ± 0.067 respectively. The fH val-
ues reported in table 5 are the average of the strict and
loose fH values per this definition, which is used for the
calculation of the TMATCH F(Zb’) significance function
values. A compromise bin width of 0.2 was used for mak-
ing a theoretical prediction of the cumulative Binomial
PDF expected/average percent. As mentioned above, in-
spection of the distribution of the hydrophobicity procliv-
ity values shows that that this bin width yields approx-
imately 4 amino-acids per bin, or the whole 20 amino-
acids over the whole interval of 0 to 1, hence the choice
of 0.2 for the bin width.
The null hypothesis is that a search sequence is not statis-
tically related to the match sequence. We use the biono-
mial probability distribution function (PDF) in construct-
ing a test for the null hypothesis. Examining the hy-
drophobic proclivity values, we can see that the 20 amino
acids are distributed almost evenly over the whole inter-
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val from 0 to 1, 4 amino acids in each of the 5 interval
bins of width 0.2. Using this observation, we start with a
search sequence as given and a putative match sequence
alignment is assumed to result in random (uniform distri-
bution) pairwise amino acid match ups, where two amino
acids being compared from search and match sequences
are declared to be matching if both amino acids being
compared fall into the same interval of the 5 predefined
intervals. The bin counts after the alignment of random
search and random match sequences should result in the
5 interval bin counts having nearly the same values. This
result would then suggest that 5 equal intervals used to
determine a pairwise amino-acid match would result in a
Binomial PDF P parameter of around 0.2 for the statistical
determination of “non-relatedness” from the alignment of
two random amino-acid sequences.
There are two ways to construct a detailed probability ar-
gument for calculating the theoretically expected Bino-
mial average and assemble the null hypothesis. Firstly,
the search sequence is a known or given and each subse-
quent sequence to which it is compared using an align-
ment can be considered for the sake of this analysis to
be a random (uniform distribution) sequence of amino-
acids. Furthermore, we can make the assumption that
the statistical paradigm we are using is sampling with
replacement, so the idealized probabilities can be used.
Therefore, for any amino-acid selected from the search se-
quence is considered to be fixed for the comparison pur-
pose and is located in one of the fixed width bins. The
amino-acid to which it is compared from the comparison
sequence is either in the same bin or not. If the selected
comparison sequence amino-acid falls into the same bin,
it is treated as a fuzzy match. In actuality, the fuzzy match
bin is centered about the hydrophobicity proclivity of the
selected search sequence amino-acid, but for the sake of
simplifying the calculations five fixed bins have been as-
signed. For the purposes of selecting the expected average
of the cumulative Binomial PDF, the null hypothesis cho-
sen here is that the selected search sequence amino-acid
is fixed, non-random and that the comparison or match
sequence amino-acid to which it is compared is random
and a match occurs when the selected comparison/match
sequence amino-acid randomly drops into the same bin as
the fixed search sequence. Under this scenario, there are
4 ways out of 20 (20% chance) that a fuzzy match occurs
as there are 4 possible randomly selected amino-acids in
the comparison/match sequence which could fall into the
same bin as the fixed search sequence (e.g. sampling with
replacement).
A second calculation approach may be made by assuming
that both the selected search sequence amino-acid and the
matched amino-acid in the search string are both random
and each amino-acid would independently and randomly
have dropped into the same bin. The probability of the
two amino-acids randomly dropping into the same bin are
(4/20)*(4/20)=4%, but there are 5 ways that this could
happen, so the actual probability (average) over all com-
parisons would be derived from the fact that there are 5
ways (5 bins) that the random match could occur yield-
ing a N*P=5*4%=20%. Both calculations yield the same

random match probability for any amino-acid pair com-
parison between the aligned search sequence and aligned
comparison/match sequence. The percentage match un-
der random conditions between the two sequences would
then simply be the expected probability value on a amino-
acid pair comparison, neglecting the contribution of in-
sertion characters which will affect the actual results seen
in practice. However, for the purposes of calculating the
expected Binomial PDF average of 20%, some reason-
able simplifying assumptions have been made and we see
from fitting the cumulative Binomial PDF average from
the Pearson [4] Serine Protease data set that the 18.6% is
close to the expected 20% as derived above.
As discussed above, the actual P (parameter) value used
for the binomial distribution (Bn(Z)) (Z score average
percent to standardize Bn(z)) was calibrated from a the-
oretical initial estimate of 0.2 with a subsequent itera-
tive fit using a Tryptophan like Serine protease data set
known to be significantly related by a Smith-Waterman
alignment in Pearson [4]. This Tryptophan like Ser-
ine Protease family from Pearson [4] was used to cal-
ibrate/fit the cumulative binomia PDF Bn(Z) random
amino-acid match parameter P on the interval 0.15 to 0.2
using the Bn(Z) interval bracketed with the CO2_Human
and CFAB_Mouse Serine Proteases to yield F(Zb’) values
approximating the marginally significant ("probably re-
lated") to non-significant transition alpha value of 0.10
from the F(Zb’) PDF. The F(Zb’) interval of alpha = 0.10
is bracketed by f(CO2_HUMAN; P06681-1)= 0.1319 and
f(CFAB_MOUSE; P04186-1) = 0.0960. Similarly, we see
in table 5 that these two Serine protease enzymes also
span the E() transition from marginally significant to non-
significance. These F(Zb’) values have been reported in a
table in the companion application paper [6] where we
have applied the TMATCH algorithm to the set of Trypto-
phan like Serine Proteases characterized by Pearson [4].
The Bn(Z) function is fitted with a 5 parameter hyperbolic
significance function F(Zb’) (see below). Bn(Zb) or F(Zb’)
values above 0.1 are at the threshold value where we say
that two aligned proteins are not statistically related. The
average P (parameter) value is the assumed maximum
percent threshold at which two random sequences should
be deemed to be unrelated as the significance function
F(Zb’) (or Bn(Zb)) will result in a value above the alpha
value of 0.1.
The hyperbolic significance function calibration results
we report above, was essentially replicated with datasets
representing multiple protein families: DNA Poly-
merase B enzymes, G proteins, Glutathione proteins and
Rhodopisin/GPCR proteins [6].
We present the following definitions:

1. fHe =0.186 (fraction H match expected for random
matches Calibration algorithm is described above)

2. fHs is the loose fuzzy hydrophobicity match between
amino-acid pairs being compared, which is calcu-
lated as the fraction of matches where the absolute
value of the difference in hydrophobicity proclivities
is less than or equal to 0.2

Page 6 of 10

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 17, 2019. ; https://doi.org/10.1101/2019.12.16.878744doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.16.878744
http://creativecommons.org/licenses/by-nc-nd/4.0/


F1000Research 2014 - DRAFT ARTICLE (PRE-SUBMISSION)

(fHs= #H±0.2 fuzzy matches
Ns )

3. fHr is the strict fuzzy hydrophobicity match, which
is calculated similarly to fHs, but here the abso-
lute value of the difference in hydrophobicity pro-
clivities is less than or equal to 0.067. (fHr =
#H±0.067 fuzzy matches

N r ) and,

4. Ns is the number of characters in the aligned
row/column strings and Nr is the number of char-
acters in the row/search string (and Ns >= Nr).

Experimenting with a number of sequences, we con-
cluded that the fHs statistic is too sensitive to sig-
nificant mismatches in sequence length and the aver-
age of fHs and fHr gave a more stable yet still sensi-
tive statistic that reflects real protein primary sequence
matches/mismatches.
We next calculate a Z score transformation of the form:
(value-average)/standard deviation. The statistics Zb and
Zb’ defined below are used as part of the calculation of
a hyperbolic statistical significance function F(Zb’) fitted
to the cumulative binomial probability density function
Bn(Zb,fHe), serving for the TMATCH sequence alignment
statistical significance calculation:

Z b =

�

f Hs+ f Hr
2.0

�

− f He

( f He(1.0− f He)/N)0.5

Where N is the number of amino-acid pair comparisons

Z b′ =

�

f Hs+ f Hr
2.0

�

− f He

( f He(1.0− f He))
Where fHe was calibrated to be 0.186 from simulations
with the protein kinase data set from [3] and F(Zb’) is
then calculated as:

F(Z b′) =
1

1+ 0.0000439( Z b′
0.47484 )11

Which is a hyperbolic function that very closely approx-
imates a binomial distribution Bn(Zb, 0.186) and used
to calculate the significance of the aligned row/column
string matches. An average score Sa is calculated from
the alignment:
Sa = (maximum alignment score)/(Mw x median protein
length)
Where the median protein length is simply the average
length of the two proteins being aligned with respect
to each other and the weight Mw is 2.0. Our simula-
tions with the Serine protease set show that a plot of
the Sa1.56 (which we define as fHst) versus fHs is a very
good straight line. Thus, it is possible to relate an aver-
age score obtained during computations to calculate fHst
an estimate of the fHs metric for database searches. The
fHst metric may be substituted for the average of the fHs
and fHr metrics in the Zb calculation above for use during
the first pass search for suitable match candidates to the
search sequence protein.
Below is the statistical significance (alpha) interpretation
of the F(Zb’) hyperbolic significance function:

1. F(Zb’) <= 0.1, probably related

2. F(Zb’) <= 0.05, related

3. F(Zb’) <= 0.01, strongly related

4. F(Zb’) <= 0.001, very strongly related

The fHst is a very good fit of fHs for fHs values between
20% and 70%. For fHs values above 0.85 in some data
sets, the fHst calculation fHst= Sa1.56 can diverge enough
to result in pathological behavior of fHst, where calcu-
lated fHst values may exceed 100%, because the average
alignment score Sa is greater than 1. For data sets lead-
ing to pathological fHst behavior (Sa > 1), two alternate
equations for fHst may be used to represent a better fit of
the data across the whole range of possible fHs values

1. fHst = Sa1.495 where Sa <= 0.69

2. fHst = Sa1.495/1.151 where Sa > 0.69

The average score Sa can be used to estimate the %H
match based upon the fHst0.5 statistic (Figure 2). The
fHst statistic is adequate for initial database searches and
multiple alignments, as it is fairly conservative statistic.
Searching for related sequences in the protein databases
would be done using sequence fuzzy matching using fHst
and the resulting statistical scoring would be calculated
from the F(Zb’) based significance function. A search se-
quence with fHst fuzzy matches on the interval of 5%-10%
can uncover distantly related, but homologous protein se-
quences of percent identities in the twilight zone range of
22%-32% identity. Even modest improvements in algo-
rithmic efficiencies make large differences when search-
ing many thousands of records. Efficiencies of scale derive
from the ability to drop the backtrack matrix calculation
and alignment extraction step, thereby making a signifi-
cant time difference with TMATCH for database searches,
as the average alignment score Sa can be directly used to
calculate fHst and F(Zb’).

2 Discussion
In Figure 2, we show the relationship between the aver-
age of fHs2 and fHr2 and the percent identity (the frac-
tion of exactly matching aligned amino-acids) from the
set of serine proteases. This relationship cannot be an ar-
tifact of the TMATCH algorithm, but represents something
about the underlying relationship between homologous
proteins. In the limit of homology (e.g. the twilight zone
25% identity), the essential core of amino-acids needed
for a particular function is revealed within the homolo-
gous amino-acid positions within the aligned sequences.
For example, two proteins of 25% identity (as seen in Fig-
ure 2) in reality reflect a similarity of 50%. In this way
we see that the apparent dilemma of divergent proteins
(based upon the primary sequence) sharing essentially the
same fold and function is in fact not a problem at all, be-
cause the biological function and structure is determined
by a strongly homologous minority of amino-acids and
supported by a large remaining fraction of similar amino-
acids at analogous positions within the homologous pro-
teins.
Presumably, the essential core of amino-acids represents
in some way the minimum description of the tertiary
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structure of a given family of homologous proteins. The
amino-acid hydrophobicity represents a similarity scale
reflecting the actual physico-chemical similarities be-
tween amino-acids, thereby reflecting the maximum de-
viation allowable in amino-acid substitutions. The def-
inition of the fHs statistic provides for reflection of in-
formation about the number of gaps introduced into an
alignment. The definition of the fHr statistic reflects infor-
mation regarding a more strict comparison between the
search sequence and another protein.
As proteins in a homologous protein diverge within a
given protein family, simultaneously new amino-acids are
being introduced as existing amino-acids are being sub-
stituted with similar amino-acids of comparable sizes,
thereby on average preserving the replaced amino-acid
aggregate volumes in order to preserve efficient packing
within the folded core of globular proteins. Using the
strict definition of hydrophobic similarity range of fHr
along with an inspection of table 2, would suggest that
any given amino-acid could be substituted on average by
3-6 other amino-acids.
If the average score Sa is used to estimate the %H match
based upon the fHst statistic, then fHst would be esti-
mated as described by the equations above. The fHst
statistic is adequate for initial database searches and
multiple alignments, as it is fairly conservative statistic.
Searching for related sequences in the protein databases
using sequence fuzzy matching based statistical scoring
calculated from the F(Zb’) based significance function on
the interval of 5%-10% will likely uncover distantly re-
lated, but homologous protein sequences. Even modest
improvements in algorithmic efficiencies make large dif-
ferences when searching many thousands of records. Effi-
ciencies of scale derive from the ability to drop the align-
ment extraction step thereby making a significant time dif-
ference with TMATCH for database searches, as the aver-
age score can be used to calculate fHst.
In discussing the three figures in this paper it is important
to note that calculated statistics will be discussed as per-
centages, which should be considered identical with their
decimal fraction equivalents that has been used indicated
using a leading ‘f’ for most variable names defined within
this paper.
Figure 1 shows the modified fHst according to the defin-
ing equations above with a threshold value of 0.69 for the
average score Sa. The linearity with a 469 member DNA
polymerase B dataset (see the companion applications pa-
per [6]) is excellent, with the regression line possessing an
obvious 45 degree angle and passing through zero. The
modified % Hst calculation eliminated fHst values above
100 % resulting from Sa values above 1. The excellent lin-
earity between Hs (calculated from the extracted, aligned
strings) and the fHst statistics (calculated from a power
law relation with the average maximum score) shows the
fundamental consistency of the alignment algorithm and
chosen weights with the underlying amino-acid procliv-
ity metric and the definition of fH strict and loose fuzzy
matches. Figure 1 illustrates the justification for substi-
tuting the fHst statistic in the Zb equation in place of the
average of the fHs and fHr statistics, thereby calculating

Figure 1. Fit of %Hs to %Hst. (R=0.9922, R2=98.44
%)

Figure 2. % Identity estimated from the average
of fHs2 and fHr2 Bovine protein search sequence.
(R=0.9068, R2=82.24 %) Sequences from [4]

the F(Zb’) test statistic for the relationship between two
proteins directly from the score matrix (using Sa) without
incurring the overhead of the alignment extraction.
As may be observed from figure 2, there is a strong rela-
tionship between the % identity (e.g. the fraction of ex-
actly matching aligned amino-acids) and the % hydropho-
bicity match defined with a definition, such as fHs or fHr.
Averaging the square of the fHs and fHr metrics results
in a strongly linear (R2 =82.2 %) relationship with the %
identity. We can see that this relationship is more than
an artifact of the TMATCH algorithm itself and represents
essential components of the underlying relationship be-
tween homologous proteins. Mathematically this result
can be explained as the number of row string matches
and the number of column string matches serving as linear
Manhattan distances corresponding to two legs of a right
triangle, and the percent identity serving analogously to
the square of the hypotenuse of the right triangle. In this
specific case, the averaging fHs and fHr is analogous to
setting the legs of the right triangle to be equal.
Not all programming languages will have a convenient
library function to implement the cumulative binomial
function. Also, due to the nature of statistical cumulative
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Figure 3. (%Match, 1-N(Zb)) is the red curve,
(%Match, 1-Bn(35%) is the dark blue curve and
(%Match, F(Zb’) is the yellow curve)

PDF functions, they will take significant amounts of com-
putation time if used hundreds or thousands of times as
in large protein sequence database searches. Therefore it
is desirable to estimate the cumulative binomial distribu-
tion Bn(Zb) in the form of a fitted function F(Zb’), using
the form of a general five parameter hyperbolic function
as stipulated above.
The plot in figure 3 is showing the relationship between
the percent hydrophobic fuzzy match and the probability
of two sequences not being related using one minus cu-
mulative PDF functions, to invert the cumulative PDF’s to
give the correct sense of the tail. We see that 1-Bn(35%,
Zb) versus the normal approximation 1-N(Zb) shows an
excellent fit. We also see that one minus the cumulative
binomial function (Zb’,35%) with the fitted five parame-
ter hyperbolic function F(Zb’,18.6%) is a very good fit up
to 20%, which is really the whole range that the hyper-
bolic approximation is designed to fit with F(Zb’,18.6%),
but also notice that the F(Zb’,18,6%) rises faster than the
inverted cumulative binomial PDF. The centering/location
of the two curve knees and the angle of each function roll
off matches to very high degree as can be seen in figure 3.
For the purposes of figure 3, an N of 100 was used. Sub-
stituting other N’s in the range of typical globular pro-
tein sizes shows that the cumulative binomial function to
hyperbolic function relation is still reasonably close and
should not affect the validity of the approximation.
The fitting of the five parameter F(Zb’) function to the
Bn(Zb) function was done manually and iteratively to
minimize the sum of the square of errors using a num-
ber of select basis points on the two curves. The shape of
the cumulative Binomial function Bn(Zb) function in fig-
ure 3 is actually determined by computing the outer single
tail area past the specific Zb or Zb’ values; therefore this
presentation of the cumulative PDF is an inverse of the
typical presentation formed by computing the cumulative
area less than the specific Zb (or Zb’) value, so the sum
of these two presentations is equal to 1 for all Zb >= 0.
The right half of the Bn(Zb) curve area has been divided
by 0.5 to normalize the entire right half area to one so
as to effectively represent the entire cumulative PDF by
artificially precluding any Zb value from being less than
zero.
The F(Zb’,18.6%) was calibrated against the E() expecta-

tion function used in BLAST and in the tryptophan like
serine proteases and alignments reported in [4]. The
Zb statistic was used in the cumulative binomial (and
normal approximation) and it represents a traditional Z
score statistics transformation. For the cumulative bino-
mial function a value of Zb corresponding to 35% aligns
the F(Zb’) and 1-Bn(Zb) significance functions. The Zb’
transform denominator is the variance of a population av-
erage 18.6%, rather than the traditional standard devia-
tion, which was a necessary modification to get the hyper-
bolic significance approximation function slope to match
that of the one minus cumulative binomial function and
that of the E() significance function. Note that 0.35%1.6022

=18.6%, which is near a theoretically expected exponent
of 2 reflecting a variance versus standard deviation rela-
tionship.

3 Conclusion
The essential core of amino-acids needed for a particular
function is revealed within the homologous amino-acid
positions within the alignment sequences. In the limit of
homology (e.g. the twilight zone), it can be seen that
similar structures have been achieved in nature by sub-
stituting similar amino-acids, especially for the essential
core set of amino-acids. We have shown in the compan-
ion hydrophobicity paper [5] as well as in the results of
this paper, that our hydrophobicity proclivity scale pro-
vides an excellent numerical definition of similarity be-
tween two amino-acids. The TMATCH algorithm mixes
the key algorithmic features of dynamic programming al-
gorithms and the key aspects of the dot-matrix/dot plot
method in a way to take excellent advantage of the ex-
tra structural/functional information implicit within our
hydrophobicity proclivity scale. The current form of the
TMATCH algorithm described in this paper has been op-
timized for efficient search of large protein databases re-
turning match results of higher sensitivity and reliability
in cases of low sequence percent identity than searches
based upon finding sequences of local homology because
the TMATCH algorithm can access information about the
overall structural information of the protein sequences be-
ing compared since TMATCH is a global alignment algo-
rithm in the same vein as is the Needleman-Wunch algo-
rithm.
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