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Summary 

 

Pyrazinamide is one of four first-line antibiotics used to treat tuberculosis, however antibiotic 

susceptibility testing for pyrazinamide is problematic. Resistance to pyrazinamide is primarily 

driven by genetic variation in pncA, an enzyme that converts pyrazinamide into its active form. 

We curated a derivation dataset of 291 non-redundant, missense amino acid mutations in pncA 

with associated high-confidence phenotypes from published studies and then trained three 

different machine learning models to predict pyrazinamide resistance based on sequence- and 

structure-based features of each missense mutation. The clinical performance of the models 

was estimated by predicting the binary pyrazinamide resistance phenotype of 2,292 clinical 

isolates harboring missense mutations in pncA. Overall, this work offers an approach to improve 

the sensitivity/specificity of pyrazinamide resistance prediction in genetics-based clinical 

microbiology workflows, highlights novel mutations for future biochemical investigation, and is a 

proof of concept for using this approach in other drugs such as bedaquiline. 
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Introduction 

 Mycobacterium tuberculosis is an evolutionarily ancient human pathogen that is the 

leading cause of death by infectious disease worldwide1. In 2017, tuberculosis was responsible 

for 1.6 million deaths and 10 million new infections1. Tuberculosis control efforts have been 

hampered by the evolution of resistance to antibiotics, threatening the efficacy of the standard 

four drug antibiotic regimen consisting of rifampicin, isoniazid, ethambutol, and pyrazinamide1,2. 

Pyrazinamide plays a critical role in tuberculosis treatment through its specific action on slow-

growing, “persister” bacteria that often tolerate other drugs due to their reduced metabolism3–6. 

This unique activity has been instrumental in shortening the standard treatment duration to six 

months, substantially increasing the effectiveness of antibiotic therapy5,6. Numerous studies 

have also found that including pyrazinamide in treatment regimens increases sputum-

conversion rates in both pan-susceptible and multidrug-resistant (defined as resistant to 

rifampicin and isoniazid) tuberculosis populations7. Due to its unique sterilizing effect and its 

synergy with new tuberculosis drugs such as bedaquiline, pyrazinamide is also included in most 

new treatment regimens targeting drug-resistant tuberculosis8–13. Therefore, accurately and 

rapidly determining whether a clinical isolate is resistant to pyrazinamide is critically important 

for the treatment of tuberculosis. 

 The majority of culture-based laboratory methods to determine pyrazinamide resistance 

are technically challenging, requiring highly-trained technicians. Even then, results are often not 

reproducible, meaning these methods are rarely employed in low-resource and/or high-burden 

clinical settings14. Even the current gold standard, the Mycobacteria Growth Indicator Tube 

(MGIT), which is relatively simple to use, can suffer from low precision, with false-resistance 

rates of 1-68% reported15–21. As the prevalence of multidrug-resistant and extensively drug-

resistant TB increases, this lack of precision will become more of a problem and hence the 

WHO is evaluating the efficacy of genetics-based approaches such as line-probe assays or 

whole genome sequencing for all first-line tuberculosis antibiotics during 201922.   
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 Resistance to rifampicin or isoniazid can be predicted in most isolates (90-95% and 50-

97%, respectively) by the presence of a small number of highly-penetrant genetic variants in 

short and well-delineated regions of one or two genes (rpoB and katG/fabG1, respectively)4. 

However, despite pyrazinamide being used to treat tuberculosis since 1952, comparatively less 

is known about which genetic variants confer resistance compared to other first-line drugs5. In a 

recent study aimed at assessing the efficacy of whole-genome-based approaches for prediction 

of resistance in M. tuberculosis, the performance for pyrazinamide was markedly lower (75.8% 

sensitivity and 92.4% specificity) than either rifampicin or isoniazid (94.5% and 93.6% or 93.1% 

and 94.1% sensitivity and specificity respectively)23. While some of this poor performance is 

likely due to inaccuracies in phenotypic testing, a comprehensive genetic catalog for 

pyrazinamide resistance mutations remains elusive.  

Pyrazinamide is a pro-drug that is converted to its active form of pyrazinoic acid by the 

action of PncA, a pyrazinamidase/nicotinamidase encoded by the pncA gene24. While other 

genetic loci have been implicated in pyrazinamide resistance (notably rpsA, panD, clpC1, and 

the putative efflux pumps Rv0191, Rv3756c, Rv3008, and Rv1667c), the majority (70-97%) of 

pyrazinamide-resistant clinical isolates harbor genetic variants in either the promoter region or 

coding sequence of pncA25–35. In contrast to the well-delineated and relatively restricted 

“resistance-determining regions” found in rpoB (rifampicin, 27 codons) and katG (isoniazid, 

single codon), pyrazinamide-resistant variants have been identified along the entire length of the 

pncA gene (Figure 1A) with no single variant predominating. 

The consequence of this is that whilst line-probe assays have been successfully 

developed that predict resistance to rifampicin and isoniazid more quickly than culture-based 

methods, it is much more challenging to develop a line-probe assay with a high sensitivity for 

predicting pyrazinamide resistance while only targeting specific regions of pncA36–38. 

Alternatively, while targeted or whole-genome sequencing approaches are capable of assaying 

the entire pncA gene, the number and diversity of resistance-conferring variants in pncA 
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fundamentally limits the sensitivity and specificity of heuristic approaches that aim to predict the 

effectiveness of pyrazinamide based on a catalogue of previously-observed genetic 

variants4,14,31,32,37,39,40. 

Genetics-based clinical microbiology for tuberculosis depends on being able to predict or 

infer the effect of any likely occurring pncA mutation on pyrazinamide susceptibility. Recent 

studies to identify pyrazinamide-resistance determining mutations have focused on either 

classifying mutations from previously observed clinical isolates or discovering novel mutations 

through in vitro/in vivo screening approaches23,32,41,42. However, these strategies are 

constrained, respectively, by the relative paucity of sequenced clinical isolates compared to the 

number of potential resistance-causing mutations and the lack of laboratory capacity to 

systematically generate and test mutants. A computational modelling approach could potentially 

predict the effect of a significant number of missense mutations before they are observed in 

clinical isolates, allowing clinicians to more rapidly make an informed decision in the face of 

emerging resistance patterns as well as focusing future fundamental in vitro studies on the most 

important mutations to investigate. 

In this paper, we demonstrate that machine-learning models can robustly and accurately 

predict the effect of missense amino acid mutations on pyrazinamide susceptibility. The models 

were trained using a derivation dataset of 291 non-redundant, missense amino acid mutations 

in PncA collected from pooled MGIT phenotypic studies and a comprehensive in vitro/in vivo 

pyrazinamide-resistance screen (Methods, Table 1, S1)23,32,41,42. This dataset reflects the 

clinically observed distribution of mutations across the pncA gene (Figure 1A), and 

consequently, throughout the protein structure. Since the pncA gene is not essential, our 

hypothesis is that missense mutations can confer resistance by altering the folding, stability or 

function of the PncA protein. This led us to consider how each mutation perturbs the local 

chemistry and overall structure of the protein. Hence, we used information about the structural 

and chemical properties and evolutionary context of the wild-type and mutant amino acids in 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 18, 2019. ; https://doi.org/10.1101/518142doi: bioRxiv preprint 

https://doi.org/10.1101/518142
http://creativecommons.org/licenses/by/4.0/


 6 

question as inputs for several different machine-learning models (Methods). The predictions 

from the best performing model were then re-applied to an aggregated clinical dataset to 

examine their clinical relevance and also validated against a smaller, independent quantitative 

dataset of in vitro pyrazinamide minimum inhibitory concentrations (MICs) to determine their 

capacity to also predict the degree of resistance for specific mutations (Table 1). Finally, the 

model was used to predict the effect of all (1105) non-synonymous substitutions possible from 

single nucleotide polymorphisms in pncA on the action of pyrazinamide. These data were then 

used to predict the occurrence of pyrazinamide resistance in a large dataset of 47,769 M. 

tuberculosis sequences downloaded from public genetic sequence repositories (Table 1)43,44. 

This study is a proof of principle for using computational approaches to model and predict 

antibiotic resistance in other drugs, such as bedaquiline, pretomanid/delamanid, isoniazid, and 

ethionamide, where some genes implicated in resistance pathways appear to be non-essential. 
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Results 

 

Dataset Phenotype Isolate Sources # Isolates Non-redundant Missense 
Mutations 

Exploratory R/S/F Ref 23 2,651 254 

Derivation R/S Ref 23,32,41,42,45 
1,792 

+ in vitro 
isolates42 

291 

Clinical R/S Ref 23,32,41 2,292 272 

Quantitative MIC EXIT-RIF Study + US 
CDC 71 27 

Prevalence None European Nucleotide 
Archive and ref 23 47,769 480 

Table 1. Description of datasets employed in this study. (R=resistant to antibiotic, S=susceptible, F=test 

failed to return a result, MIC=Minimum inhibitory concentration) 

 

An in depth analysis of the genetic variation reported in the initial exploratory dataset 

revealed 2,651 strains with variants in the open reading frame of pncA, a substantial majority 

(2,400) of which only harbored a single variant (Table 1)23. Of these, 2,261 (94.2%) were 

substitutions, with the remaining 139 (5.8%) comprising insertions, deletions and frameshifts. 

Insertions, deletions, and frameshifts, along with nonsense substitutions (collectively 190, 7.9% 

of the single variant strains), were all associated with pyrazinamide resistance, consistent with 

their likely disruption of the PncA enzyme, thereby preventing pyrazinamide activation. Most 

synonymous substitutions (present in 758, 31.6% of the single variant strains, Figure 1B) were 

not associated with resistance, however four variants were observed in resistant isolates. S65S 

(8 resistant isolates) is a phylogenetic SNP present in Lineage 1; however, it is susceptible in 

607 strains, suggesting that these eight isolates are either phenotyping errors or that there is an 

alternative mechanism of pyrazinamide resistance at play in these strains. The remaining 
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mutations—P62P, A102A, and T168T—are each present a single time, limiting our ability to 

confidently associate these variants with resistance. Thus, non-synonymous substitution 

variants (present in 1,452, 60.5% of single variant strains) appear to represent the majority of 

the potential pyrazinamide resistance-causing variation in M. tuberculosis.  

 

  

 

Figure 1. Distribution of PncA mutations from published datasets. (A) Barplot of the impact of 

possible missense mutations in PncA by amino acid position. High confidence resistant (red) and 

susceptible (blue) mutations are overlaid on the possible missense mutations whose effect on 

resistance is unknown or unclear (grey). (B) Distribution of the types of mutations reported by the 

CRyPTIC consortium et al23. (C) Missense mutations from the dataset plotted onto the PncA structure 

(PDB ID: 3PL1) in dark grey. A pyrazinamide molecule (orange) has been modeled into the active 

site.  
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Structural and evolutionary traits correlate with mutational impact on pyrazinamide susceptibility 

 Recent studies have implicated synonymous substitutions in altering protein folding and 

thus function through changes in the rate of translation46–48. This process is mediated through 

the different availabilities of complementary tRNA in the intracellular milieu46,48. Indeed, Yadon 

et al found that some synonymous substitutions were enriched in both in vivo and in vitro 

screens, suggesting that changes in the rate of protein translation offer a bona fide route to 

pyrazinamide resistance42. As previous studies have noted that functional synonymous 

mutations are enriched for at conserved codons, we tested to see if these variants were 

similarly enriched at conserved sites in pncA, but we found no significant difference. Given the 

dearth of isolates harboring sSNPs that have resistant phenotypes, the lack of data on tRNA 

concentrations in M. tuberculosis and, the lack of any association between resistance-causing 

sSNPs and conserved codons, we have no information from which to predict the effect of 

synonymous mutations. Further work to measure pyrazinamide MICs on large numbers of 

clinical strains is needed, as the effects of these sSNPs may result in sub-MIC shifts in 

resistance that could be clinically relevant49. 

 We built a preliminary set of 722 non-synonymous substitutions in pncA that had either 

been observed multiple times in clinical isolates for which antibiotic susceptibility testing data 

was available or were generated in a high-precision laboratory screening study of pncA 

resistance variants (Methods). To create a high confidence dataset for model training, we 

discarded mutations for which there was any uncertainty around whether they conferred 

resistance (or not), which left us with a final derivation dataset of 291 missense mutations 

(Table 1, Methods). To understand the structural features that determine a mutation’s effect on 

pyrazinamide susceptibility, we mapped our derivation dataset onto the PncA structure. No 

obvious clustering was revealed, consistent with the previously observed distribution of resistant 

mutations across the gene sequence and protein structure (Figure 1A,C)14,31,32,39,42. 

Interestingly, there were a significant number of pncA codons where different mutations 
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associated with either resistance or susceptibility were seen, suggesting that the change in local 

chemistry introduced by the mutant amino acid is an important factor in determining resistance 

(Figure 1A). The amino acid positions with the highest mutational diversity in the dataset were 

all residues involved in active site formation or metal binding, suggesting that, consistent with 

our hypothesis, loss or alteration of these functions is a common mechanism for gaining 

pyrazinamide resistance. Indeed, previous studies have noted a negative correlation between a 

mutation’s distance from the active site and its tendency to cause resistance (Figure S1)32,42,50. 

Examining the PncA structure also suggested that resistant mutations were more likely 

to be buried in the protein core, consistent with findings from previous in vitro and in vivo 

screens (Figure 2A)32,42. Alterations in the hydrophobic core of a protein are likely to be 

destabilizing51–54. Indeed, some pyrazinamide-resistant mutations result in reduced production 

of functional PncA, perhaps due to impaired protein folding/stability42,55. To assess a pncA 

mutation’s impact on the stability of PncA, we employed a meta-predictor that calculates the 

predicted change in free energy of protein unfolding in silico56. This is a fast, heuristic method; 

although other more accurate methods exist, these require vastly greater computational 

resources57. 

In addition to these chemical and structural properties, we also included information on 

the evolutionary variation at each position obtained from multiple sequence alignments of 

related orthologs (Methods). Unsurprisingly, increased conservation at a position was 

associated with a higher potential of a mutation at that position to confer resistance (Figure S1). 

Finally, we applied a recent computational method, called Multivariate Analysis of Protein 

Polymorphism (MAPP), that quantifies the evolutionary constraints imposed on a given position 

in a protein58. MAPP does this by combining the range of physicochemical amino acid 

properties observed at a particular position in a multiple sequence alignment with weights 

generated from the branch lengths of a phylogenetic tree58. Resistant mutations had 
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significantly higher MAPP scores, indicating that resistance-conferring mutations in pncA are 

less conservative in amino acid chemistry and function (Figure 2B, S1). 

 

Machine-learning models accurately predict pyrazinamide resistance 

Univariable logistic regression over the derivation dataset revealed that most of the 

individual predictors were associated with resistant phenotypes (Table S2, Figure 2F). The 

MAPP score and solvent accessibility proved to be the most discriminatory individual features. 

As PncA can be inactivated through defects in protein folding, reduced stability, distortion of 

 
Figure 2: Structural and evolutionary traits correlate with mutational impact on pyrazinamide 

susceptibility. (A) PncA with resistant (red) or susceptible (blue) missense mutations shown. (B) 

PncA residue’s median MAPP scores are shown (red denotes more deleterious). (C-E) Distributions of 

structural features that separate resistant (red) and susceptible (blue) missense mutations. (F) 

Performance of the individual features for prediction of pyrazinamide resistance plotted on a ROC 

curve. Grey line denotes random guessing. 
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active site geometry, abrogation of metal binding, or some combination of these, we expected a 

machine-learning approach to be ideally suited to simultaneously consider all these possible 

mechanisms of PncA inactivation, and hence more accurately predict pyrazinamide 

resistance/susceptibility. 

 

 

To evaluate the different models, we randomly divided our derivation dataset mutations 

(184 resistant, 107 susceptible) into a 70% training set and a 30% testing set, preserving the 

overall distribution of resistant and susceptible mutations. Models were then trained using 

repeated 10-fold cross validation (Methods). Since the models output a probability of resistance 

between 0 and 1, we defined three categories; resistant (R, p<0.4), susceptible (S, p>0.6) and 

uncertain (U, 0.4≤p≤0.6) (Figure S2A). A model call of uncertain (U) was considered a minor 

error for the purposes of comparing to binary (R/S) phenotypic data. The models were able to 

call ~87-99% (183-190) of the mutations in the training set using these thresholds. As expected, 

 

Figure 3: Machine learning models predict pyrazinamide resistance from structural features. 

Performance of (A) logistic regression (LR), (B) support vector machine with radial kernel (SVM) and (C) 

neural network (NN) models for prediction of pyrazinamide resistance. Dotted lines represent 95% 

confidence intervals from bootstrapping (n=10,000) and the area under the curve is reported for training and 

testing sets. Truth tables are shown for the combined training and test sets. 
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drops in performance (as measured by area under the ROC curve) were observed for all 

models when applied to the independent testing set, however the 95% bootstrap confidence 

intervals for training and testing overlapped for all three methods (Figure 3, Table S3). The 

neural network (NN) model had the highest diagnostic odds ratio (119), followed by logistic 

regression (LR, 45) and then the support vector machine (SVM, 24, Figure 3). As the best 

performing model, the predictions from the neural network model were used for all further 

analyses. 

 

Analysis of model errors on the derivation set 

 Clinical diagnostic errors for antibiotic resistance are categorized into three classes: very 

major errors, which represent truly resistant isolates that are called susceptible, major errors 

(true susceptible cases called resistant), and minor errors, which are not called by the method 

being tested but are determined as resistant or susceptible by the reference method59. 

Collectively, the three models made 107 incorrect calls (28 very major errors, 29 major errors, 

and 50 minor errors); however, only 14 of these were shared between all three models (8 very 

major errors and 6 major errors, Figure 4A, Table S4). The best performing model (neural 

network) had a sensitivity of 93% (89-97%), a specificity of 86% (79-93%), and a positive 

predictive value of 94% (91-97%) with minor errors considered equivalent to major and very 

major errors where appropriate (Table S3). 

 Although the mutations responsible for the very major errors (predicted susceptible, 

phenotypically resistant) of the neural network model were dispersed throughout the protein 

structure, most (10/11) were surface exposed (Figure 4B). All these mutations were predicted 

to either not affect or slightly increase the stability of PncA, suggesting these errors may be due 

to inaccuracies in the predicted free energy change of unfolding (Figure S2). Major errors 

(predicted resistant, phenotypically susceptible) were typically driven by overestimation of a 

mutation’s potential to effect PncA structure or function. Mapping the mutations responsible for 
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these major errors onto the sequence and structure revealed one cluster near the active site 

and the coiled turn between the a-1 and a-2 helix (residues 15, 21, 23, 131, and 133) (Figure 

4B, C). Major errors appear to be caused in part by a combination of overestimation of the 

MAPP score at invariant positions that are near the active site or buried in the protein core. 

Interestingly, several major errors occurred in a region of the active site termed the 

“oxyanion hole” (residues 131-138) which coordinates the carbonyl group of pyrazinamide in the 

active site50. The effects of mutations that lie in this region could be over-estimated due to their 

proximity to the active site and relatively lower solvent exposure. As the interaction between the 

oxyanion hole and pyrazinamide is mediated by the peptide backbone, and is therefore 

sidechain-independent, there is likely to be less stringent selection of the residues at these 

positions as long as the overall peptide backbone structure is maintained. Interestingly however, 

Gly132 and Ala134 are invariant in the alignment used to generate the MAPP score, which 

would suggest that these sites are under strong selective pressures. It has been shown 

previously that specific residues are favored in the positions surrounding cis peptide bonds, so 
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future work could attempt to model the mutations occurring in this functional region more 

specifically60. 

Minor errors are cases where the model could not confidently call a mutation resistant or 

susceptible and represented 34% (47/104) of errors collectively made by all three models. The 

model features for mutations that were called U tended to be intermediate compared to those of 

resistant and susceptible isolates, which raised the intriguing possibility that these are mutations 

with an intermediate effect on protein stability and/or enzyme activity (Figure S2). 

 

 

Figure 4. Very major errors are concentrated on the surface of PncA. (A) Major (ME) and very major 

(VME) errors shared between the models. Errors from logistic regression are shown in red, support vector 

machines in blue, and neural network in green (B) PncA with major (pink) and very major (magenta) 

errors shown as spheres. (C) Major (pink) and very major (magenta) errors mapped onto the PncA 

primary sequence. 
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As the neural network model does not clearly indicate which PncA features drive its 

predictions, we used logistic regression with backwards elimination (Methods) on the training 

dataset to gain further insight into the complex interplay between these factors. This analysis 

revealed that solvent accessibility, distance to the active site, the evolutionary conservation of 

the wild-type amino acid, the number of hydrogen bonds formed by the wild-type residue, 

significant changes in protein stability (measured as a change in free energy of protein unfolding 

of >2 kcal/mol), and the MAPP score were all independent explanatory factors. In addition, 

interactions between both the MAPP score and number of hydrogen bonds were found to 

moderate the effect of the distance to the active site. A higher MAPP score increased the 

deleterious effect of a mutation near the active site, while the importance of the number of 

hydrogen bonds a residue was involved in decreased with greater distance from the active site. 

This may be due to the requirement of hydrogen bonding interactions for proper active site 

geometry. There was weak evidence for two other interactions (between protein destabilization 

and either the number of hydrogen bonds or solvent accessibility, p=0.073 and p=0.054 

respectively). These results suggest that interactions between model features are important for 

the prediction of resistance, which may be why the neural network model outperforms logistic 

regression in classifying mutations. 
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Neural network predictions generalize to a large clinical dataset 

 To assess the generalizability of our best model, the neural network, we applied its 

predictions to a clinical dataset of 2,292 pncA gene sequences with MGIT antibiotic 

susceptibility results (Table 1), each representing a unique isolate collated from published 

studies of clinical isolates23,32,41,42. In addition to the clinical isolates that were used to build the 

derivation dataset, this dataset also included 500 isolates with mutations that were only 

observed once or isolates with mutations whose phenotype appeared to vary between isolates 

tested. Thus, this dataset includes noisier phenotypic data that encapsulates both the uncertain 

phenotypes of some mutations and the real-world variability of culture-based phenotypic 

methods for pyrazinamide susceptibility testing. As the models were trained on high-confidence 

phenotypes derived from pooled MGIT phenotypes for each mutation, the 204 mutations used in 

the training set represented 1,096 isolates (48%) of the clinical dataset, while 1,196 isolates 

(52% of the clinical dataset) harbored mutations that were not used in model training. Predicting 

 

Figure 5. Model predictions based on mutations generalize to MGIT phenotypes. (A) Truth table 

of the predictions’ performance on a dataset of M. tuberculosis strains tested by MGIT. Brackets 

denote predictions based on missense mutations not in the training set. (B) Truth table of model 

predictions versus average mutation phenotypes. “I” is defined as mutations that are not R or S in 

>75% of isolates tested (n≥4). Brackets denote phenotypes for mutations for which there were 

enough MGIT results to be confident in the assigned phenotype (177/272, 65%, Methods). 
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resistance/susceptibility based on the mutation present, the model correctly predicted 74.1% 

(1,181/1,593) of MGIT-resistant isolates with pncA mutations; however, it performed more 

poorly for MGIT-susceptible isolates, correctly predicting only 53.5% (374/699) of strains 

(Figure 5A). 68.1% (287/421) of U calls made by the model were associated with resistance, 

which suggests that clinically a U call could be interpreted as possible pyrazinamide resistance 

contingent upon further testing (Figure 5A). 

Intriguingly, 30 mutations (present in 385 strains, 16.8% of strains classified) had 

variable MGIT results (defined as having a resistant MGIT phenotype in 25-75% of cases with at 

least 4 observations). To understand our model performance with these possible “intermediate” 

mutations, we compared the model predictions with the average phenotypes of the 272 unique 

missense mutations found in clinical dataset, which we classified as resistant (MGIT resistant in 

>75% of isolates with this mutation tested), susceptible (MGIT susceptible in >75% of isolates 

with this mutation tested) and intermediate (I), the remainder. The model classified 14 (47%) of 

these high-confidence “intermediate” mutations as resistant, leading to 76 strains (40% of major 

errors made by the model) with susceptible MGIT phenotypes being misclassified as resistant 

(Figure 5B). While the model predicted U for 10 (33%) of the intermediate mutations, there was 

no clear relationship between U calls and intermediate mutations, which is consistent with the 

fact that the model was trained on binary data (Figure 5B). Overall, the model more accurately 

(as assessed by the diagnostic odds ratio) predicted the average phenotypes of mutations than 

the individual MGIT phenotypes of clinical isolates. The model still made 11 very major errors on 

the average phenotypes; however, some of these errors may be due to errors in MGIT antibiotic 

susceptibility testing. Alternatively, these errors could result from resistance that is determined 

by factors upstream of protein folding and function and is therefore outside the scope of our 

model. These results collectively suggest that the model predictions could be used to confirm 

MGIT susceptibility test results, with a discordant result suggesting that culture-based testing 

should be repeated. 
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Comparison of model predictions with pyrazinamide minimum inhibitory concentrations in vitro 

 Since it is difficult to assess how much of the discordance in the previous section can be 

attributed to either error in the measured clinical phenotype or deficiencies in our model, we 

compared its predictions to minimum inhibitory concentration (MIC) data taken from a small but 

high-quality dataset of 71 M. tuberculosis isolates (59 unique missense mutations, quantitative 

dataset, Table 1, Methods). This also enabled us to test the model’s capacity to predict the 

degree of pyrazinamide resistance conferred by a particular mutation, by comparing the calls 

and predicted probabilities of our model with the pyrazinamide MICs. Overall, our model 

correctly predicted the binary (R/S) phenotype for 56 of 71 isolates with single missense 

mutations in PncA, and, crucially, predicted the correct phenotype for 11 out of 14 mutations (18 

isolates in total) that were not in either the derivation or clinical datasets (Table S6). One of 

these errors is likely due to a MGIT testing error, as the same mutation (Gly97Asp) is observed 

in another resistant isolate and has been classified as conferring resistance in other studies 

(Table S1). Interestingly, of the seven isolates with mutations previously cataloged as 

susceptible (Table S1), four had MICs that were above the R/S cutoff of 100 µg/mL, highlighting 

the variability in MIC determination for pyrazinamide using MGIT. Out of the 18 isolates with 

mutations that lacked previously classified R/S phenotypes, 10 harbored mutations with 

disputed effects, and 8 harbored mutations that had previously lacked sufficient evidence to be 

classified. In addition, several samples with large deletions in pncA were also observed; these 

strains had extremely high (>900 µg/mL) MICs, which is consistent with the loss of functional 

PncA protein (Table S6). These data, taken together with the results for isolates harboring 

insertions/deletions in the study by the CRyPTIC Consortium et al, confirm it could be 

reasonable to assume that nearly all large insertion/deletion mutations and frameshifts in pncA 

confer resistance to pyrazinamide23. 
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Predicting the effect of all possible non-synonymous pncA mutations on pyrazinamide 

susceptibility 

 Since trained machine learning models require very little computational resource, we 

applied our model to the set of missense mutations resulting from every possible non-

synonymous single nucleotide polymorphism (SNP) in pncA (coding for 1,105 unique amino 

acid changes, 814 previously unclassified missense mutations), thereby estimating the 

probability that each mutation confers pyrazinamide resistance (Table S5). Overall, 22% (244) 

of missense mutations were predicted to confer resistance, while 63% (691) were predicted to 

have no effect on the action of pyrazinamide and the remaining 14% (158) were predicted to 

have an uncertain effect. Interestingly, the proportion of predicted resistant mutations from all 

possible non-synonymous SNPs was much lower than that in the derivation set (22% versus 

63% respectively). This may be due to an increased likelihood of sequencing pyrazinamide-

resistant clinical isolates, leading to an over-representation of resistance-conferring mutations in 

our derivation dataset as opposed to susceptible ones. This estimate is also more consistent 

with the proportion of resistant mutations identified in the Yadon et al screen (31%)42. As more 

unselected studies of whole genome sequencing are conducted, we expect this bias to unwind 

and consequently more susceptible mutations will be found for most established drugs. 

Alternatively, it could be caused by a global underestimation of resistance by our model, which 

underpredicted resistance by ~10% in the clinical dataset. Finally, this difference could 

represent the fact that phenotypically intermediate mutations classified as U by our model are 

classified as resistant in the catalogs/screens used to develop the dataset.  

 To try and get an understanding of how these predictions could improve our capacity to 

identify resistant mutations in pncA, we queried a bacterial index of the European Nucleotide 

Archive (ENA) to identify all single nucleotide polymorphisms (SNPs) coding for missense 

mutations in the M. tuberculosis pncA coding sequence (Table S5)43. We found 37,560 

sequences classified as M. tuberculosis, with 4,102 strains harboring single missense mutations 
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in PncA (Methods). We supplemented this ENA dataset with the pncA sequences collected by 

CRyPTIC et al23 as these sequences were not deposited when the index of the ENA was built, 

bringing the total number of strains with single missense mutations to 6,193 (47,769 total 

sequences, prevalence dataset, Table 1). We are using this dataset as the largest available 

sample of the genetic diversity in PncA existing in clinical infections; this is almost certainly 

biased to some degree due to oversampling of outbreak strains and other factors, however, until 

very large unselected clinical datasets are collected, it is the best dataset available. 

Out of the 480 unique missense mutations observed in the prevalence dataset, 237 were 

observed in at least two lineages. After applying our predictions, we found that homoplastic 

(observed in at least two lineages) missense mutations in PncA were associated with resistance 

(odds ratio = 4.4, p<0.0001). 327 (68%) mutations were observed 10 or fewer times and 111 

(23%) only once, highlighting again the need for approaches capable of predicting the effect of 

rare missense mutations. We classified the prevalence dataset using a published heuristic 

catalog45, supplemented with our resistant and susceptible model predictions, to quantify how 

much our machine learning model improves our capacity to screen for potential pyrazinamide 

resistance using whole genome sequencing. While the heuristic catalog alone was able to 

classify 4,022 strains (73%, 291 mutations), our model classified an additional 983 strains (17%, 

47 mutations), allowing us to provisionally classify 90% of the strains with missense mutations in 

the prevalence dataset. 
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Discussion 

 De novo prediction of 814 pncA mutations’ effects on pyrazinamide resistance 

constitutes a significant step forward in our ability to predict pyrazinamide resistance from 

genetics and a proof of concept for using structural approaches to infer the effects of pncA 

SNPs on pyrazinamide resistance. While improvements to the model are necessary to achieve 

the sensitivity and specificity required for routine clinical use, this work increases our ability to 

classify rare resistance mutations, thereby potentially increasing the capability of whole genome 

sequencing based diagnostic susceptibility testing to respond to emerging and rare resistance 

patterns, as well as prioritizing rare resistance mutations for in vitro validation. Additionally, 

improving the classification of susceptible pncA mutations will allow us to begin to disentangle 

the involvement of other genes in pyrazinamide resistance, including determining the effect of 

mutations in other pyrazinamide resistance-associated genes such as panD and rpsA. 

 There are two principal limitations of this approach: (1) since the training set uses a 

binary resistant/susceptible phenotype, the models can only predict whether a mutation confers 

high-level resistance (>100 µg/mL) or not and (2) it can only make predictions for missense 

mutations in the coding sequence of pncA. It is known that genetic variation can lead to small 

changes in MIC for pyrazinamide and other first-line antitubercular compounds and that, whilst 

these may not change the binary phenotype, they do affect clinical outcome49,61. Models that 

predict the change in MIC due to genetic variation would be very helpful and interesting, 

however, until very large datasets of pyrazinamide MICs and their associated genomes become 

available, we must be content with predicting binary phenotypes. In addition, while we have 

shown that missense mutations represent most (60.5%) of the possible resistant genetic 

variants in pncA, insertions/deletions and nonsense mutations (7.9%) must also be considered, 

as they are generally associated with resistance. Likewise, promoter mutations that result in 

reduced transcription of pncA will likely also lead to resistance. While no synonymous mutation 

has yet been observed to cause clinical pyrazinamide resistance, the possibility remains that a 
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synonymous mutation could have an effect on RNA stability, ribosomal stalling, or codon usage 

and confer resistance. Indeed, Yadon et al do pick up 18 sSNPs that are enriched both in vivo 

and in vitro in their pyrazinamide resistance screens42. The model also does not take into 

account the introduction of protease cleavage sites or other processing abnormalities. Finally, 

while most pyrazinamide resistance is caused by mutations in pncA, recent studies have also 

implicated other genes, notably rpsA, panD, and the putative efflux pumps Rv0191, Rv3756c, 

Rv3008, and Rv1667c in pyrazinamide resistance4,25-31. Further research is needed to 

determine if mutations in these genes can be reliably inferred to confer pyrazinamide resistance. 

 Several predictive features used in the model could be improved upon in future work. 

The MAPP score relies on the maintenance of function between diverse homologs to determine 

the evolutionary constraints on each position in a protein. While we selected sequences that 

contained the residues involved in active site formation and metal binding, we did not 

experimentally confirm pyrazinamide conversion by each homolog. Additionally, the in silico 

method that we employed to estimate each mutation’s effect on protein stability could be 

improved by comparison and calibration with in vitro biochemical data. Finally, as the active site 

of PncA is formed in part by a cis peptide bond between Ile133 and Ala134, more detailed 

modeling of the evolutionary constraints at this site could more accurately assess the functional 

impact of a mutation at these positions. Despite the fact that most features we investigated were 

associated with pyrazinamide resistance, not all were retained as independent predictors in our 

final logistic regression model. The change in hydropathy and sidechain volume as well as the 

Rogov score are all likely encapsulated by the MAPP score, as this takes into account the wild-

type and mutant amino acids in its calculation. 

 The accuracy of model predictions based on structural features suggests that the 

underlying hypothesis of predicting pyrazinamide resistance based on predicted PncA function 

is valid. Mapping the potential of each position to harbor a predicted or bona fide resistance 

mutation onto the structure reveals that many resistance-prone positions are associated with the 
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active site or metal binding, as noted previously (Figure 1C). Interestingly, however, most of the 

other resistance-prone positions are involved in packing interactions between secondary 

structure elements in PncA, supporting the assertion that a major mechanism of pyrazinamide 

resistance is loss of protein stability. All susceptibility-prone positions are highly solvent-

exposed and many are on flexible loops, consistent with our expectation that these regions 

experience lower selective pressures and have a lower/negligible effect on PncA stability and 

function. The effect of perturbing the protein core appears to be more dependent on the specific 

amino acid chemistries involved, as many codons harbor nearly equal numbers of resistant and 

susceptible mutations, which is consistent with the ability of a conservative, hydrophobic 

mutation to be tolerated in a region that relies on non-specific, volume-mediated packing driven 

by the hydrophobic effect. 

One major question that remains is whether the mutations not called by the model (U) 

represent inaccuracies in the calculation of model features, breakdowns in the model, or have 

an intermediate effect on protein stability and/or enzyme activity. Most of the un-called 

mutations have intermediate features that lie in between the resistant and susceptible 

distributions (Figure S2). The MAPP score has been shown to be capable of delineating 

mutations that have mild and severely deleterious effects in other genes, suggesting that 

mutations with intermediate MAPP scores may indeed be intermediate in effect58. In addition, 

some of the mutations that are called U appear to not be reproducible when experimentally 

tested using the chosen gold-standard culture-based method, MGIT, supporting the possibility 

of an intermediate class (Figure 5B). One previous study has shown associations between 

reductions in PncA stability/function in vitro and outcomes in infected mice, but more work is 

necessary to fully understand whether this relationship extends to clinical outcomes in 

patients42. While mutations have historically been classified using a binary system, this study 

supports the view of mutations as conferring a spectrum of resistance. This is evidenced by the 

variable effects on MIC for some of the mutations investigated in this study, three of which 
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range from susceptible to above the MGIT breakpoint for pyrazinamide (100 µg/mL, Table S6). 

Future approaches could examine either probabilistic modelling or multi-class classification to 

attempt to encapsulate the uncertainty in phenotype associated with certain pncA mutations. 

Additionally, mutations could also be weighted in training by their relative prevalence in the 

ENA, which would prioritize accuracy for abundant mutations. However, this may result in bias 

toward highly sequenced variants that are a part of outbreak strains. 

Predictions made by this model could potentially provide clinicians with an initial 

estimate of pyrazinamide susceptibility after a novel mutation is observed but before traditional 

phenotypic testing has been completed. Given the latter can take weeks or even months, this 

could help guide initial therapy and further antibiotic susceptibility testing. In addition, the 

putative classification of additional pncA mutations potentially enables genetic variants 

conferring pyrazinamide resistance that do not involve the pncA gene to be discovered. The 

identification of pyrazinamide-susceptible mutations is also crucial, as it has been suggested 

that any non-synonymous mutation in pncA that is not cataloged as susceptible confers 

resistance, an incorrect assumption that would lead to overprediction of pyrazinamide 

resistance62. 

This study constitutes a proof-of-concept for the computational prediction of 

pyrazinamide resistance, a critically important drug in the treatment of tuberculosis. However, 

this approach is not limited to pncA but should in theory be extensible to any pro-drug system 

where the converting enzyme is non-essential, such as delaminid, protaminid, or ethionamide 

as well as to pro-drug systems outside of M. tuberculosis. Interestingly, a recent study has 

highlighted similar trends in the features used in this study for resistance-conferring mutations in 

katG (isoniazid), rpoB (rifampicin), and alr (D-cycloserine), suggesting that this approach may 

even be applicable to non-prodrug systems63. One promising area for future work is in the 

tuberculosis drug bedaquiline, where resistance is caused in part by mutations in a 

transcriptional repressor (Rv0678) that cause loss of DNA binding and upregulation of efflux 
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pumps64,65. Rv0678 has shown a high degree of mutational promiscuity in published sequencing 

studies, which would highlight the value of a computational approach66–70. The ability of this 

approach to identify the major mechanisms of resistance to pyrazinamide highlights the need for 

continued basic research to determine the structures of other bacterial proteins implicated in 

antibiotic resistance. Additionally, the efficacy of this approach highlights the value of including 

evolutionary constraints for prediction of mutational effects. Further understanding of the effect 

of pncA mutations also increases the ability of whole genome sequencing approaches to move 

to the forefront of global tuberculosis control efforts. 
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Methods 

 

Mutation phenotype thresholds 

 Mutations included in the derivation (training and testing) dataset were selected from 

four large studies/reviews that included phenotypic diagnostic susceptibility testing of clinical 

isolates for pyrazinamide and one in vitro/in vivo phenotypic screening study23,32,41,42,45. Briefly, 

phenotypes for strains with single missense mutations in pncA from the four studies of clinical 

isolates were aggregated by mutation, tallying the results of the phenotypic testing. Mutations 

that were resistant or susceptible at least 75% of the time and that had been phenotyped at 

least 4 times were included as derivation phenotypes. Additionally, mutations that had been 

phenotyped at least twice with no discrepancies were also included. These mutations were then 

cross-referenced and supplemented with mutations from Yadon et al. that were either enriched 

(resistant) or depleted (susceptible) in both the in vitro and in vivo screens performed in that 

study42. Mutations that had conflicting clinical and laboratory phenotypes (n=2) were removed 

from the derivation dataset. Mutations that were only present in either clinical isolates or in vitro 

isolates but that met the criteria for inclusion from that set were included. This led to a final total 

of 291 mutations with high-confidence phenotypes of which 184 were resistant and 107 were 

susceptible to pyrazinamide. 

 

In silico structural measurements 

 The change in mass, volume, charge, hydrophobicity, distance from the Fe2+ ion and 

pyrazinamide molecule, solvent accessibility, MAPP score, Rogov score, degree of hydrogen 

bonding, and predicted change in the free energy of protein unfolding were determined for each 

mutation. Hydrophobicity was estimated using the Kyte-Doolittle scale. Distances were 

calculated as the minimum distance between each residue and the Fe2+ ion or pyrazinamide 

molecule using UCSF Chimera. Solvent accessibility and predicted number of hydrogen bonds 
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were calculated in UCSF Chimera. In silico calculation of the change in free energy of protein 

unfolding was calculated using a meta-predictor as described in Broom et al56. The MAPP score 

was calculated using software available at 

(http://mendel.stanford.edu/SidowLab/downloads/MAPP/index.html) using related orthologs. 

 

Statistical modelling procedures 

Logistic regression, support vector machines with radial kernels, and multi-layer perceptron 

neural networks were implemented using the R caret package. Briefly, 70% of the derivation 

dataset was randomly selected (maintaining the ratio of resistant to susceptible phenotypes) as 

a training set and 30% was reserved as a test set. All three model types were trained using 

repeated (n=10) 10-fold cross validation with class weights to compensate for the class 

imbalance. Model performance was evaluated by the area under the receiver-operating 

characteristic curve. After model selection for each method, generalizability was determined 

using an independent test set. The final model was selected by calculating the diagnostic odds 

ratio for each method over the entire derivation set. In order to select the variables used for 

logistic regression, backwards stepwise elimination (exit p=0.15) was performed on the entire 

derivation dataset to select the main effects and then interactions between the significant terms 

were manually investigated, retaining any with heterogeneity p<0.05. Two additional weak 

interactions (between the protein destabilization factor and either number of hydrogen bonds 

(p=0.073) or solvent accessibility (p=0.054)) were not included in the final model. The final 

logistic regression model was trained using the identified main effects with the two significant 

interactions on the training set using repeated (n=10) 10-fold cross validation to select 

hyperparameters before being applied to the test set. The training set along with all relevant R 

code is publicly-available (https://github.com/carterjosh/PZA-machine-learner). This allows the 

reader to either load the three machine-learning models described, or to repeat the training 

process thereby creating their own models.  
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Prevalence Dataset Construction 

 The European Nucleotide Archive was queried using pygsi and the H37Rv reference 

sequence for pncA with 10 nucleotides padded on either side43,44. This allowed for sequence 

search of all possible single nucleotide mutations in pncA that have been deposited in the ENA. 

In total, 38,440 pncA sequences classified as originating from Mycobacterium tuberculosis were 

extracted. These were combined with pncA sequences determined by the CRyPTIC Consortium 

et al and filtered for single missense mutations to form the final prevalence dataset23. 

 

Pyrazinamide minimum inhibitory concentration determination 

 Isolates used for MIC determination came from two sources, the EXIT-RIF study and US 

Centers for Disease Control. All EXIT-RIF isolates were collected in South Africa. Of the 366 

Mycobacterium tuberculosis clinical isolates, 333 were collected as part of a prospective cohort 

study (“EXIT-RIF”) aimed at comparing the outcome of patients diagnosed with rifampicin 

resistant tuberculosis by MTBDRplus (Hain LifeSciences) or Xpert MTB/RIF between November 

2012 and December 2013 in three South African provinces (Free State, Eastern Cape and 

Gauteng). A Mycobacterium tuberculosis databank housed at the SAMRC Centre for 

Tuberculosis Research, consisting of ~45,000 drug resistant isolates collected in the Western 

Cape province since 2001, was queried to identify isolates containing both PZA MIC data and 

pncA genotypic data, this produced the remaining 33 Mycobacterium tuberculosis clinical 

isolates. Isolates that harbored single amino acid substitutions in PncA (39 out of 366 total) 

were selected for comparison to model predictions. An additional 32 clinical isolates (collected 

from 2000 to 2008) harboring single missense mutations in pncA came from the culture 

collection at the Laboratory Branch, Division of Tuberculosis Elimination, US CDC.   

All MICs were determined using the non-radiometric BACTEC MGIT 960 method (BD 

Diagnostic Systems, NJ, USA) with manufactured supplied pyrazinamide medium/supplement 
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as previously described71. This system makes use of modified test media which supports the 

growth of mycobacteria at a pH of 5.9. MICs determined for isolates from the EXIT-RIF study 

were tested at 900, 600 and 300 µg/ml for the large deletion isolates and 100, 75, 50, 25 µg/ml 

for the rest. MICs determined by the Center for Disease Control were determined using PZA 

concentrations of 50, 100, 200, 300, 400, 600 and 800 µg/ml. A fully susceptible MTB laboratory 

strain H37Rv (ATCC 27294) was included as a control for all isolates tested. 
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