SA.1 Supplementary Chapter of Paper 4: Calculationsof TO and T1gas

| 1 Preamble: homogeneity relation between discrete and continuous Uniform laws
Hypothesis 4 in Paper 2 indicates that the levéb)®f a myosin head in working stroke (WS) moves
in a fixed plane. The orientation of S1b in thiefil plane is given by the andldaving as bound,,
anddgow, relative to theup anddown positions; the values &, andf,.., are determined in (12a) and
(12b) in Paper 2.

In a half-sarcomere (hs) located on the right, aes@ler the two anglés andd, as follows:

edownS e2 < e1S eup

The random variabl® is associated with the andlgsee definition of a random variable in paragraph

A.1 of Supplement S1.A to accompanying Paper 1.

The discrete Uniform law of the discrete randomalzle ® consists ofA real valuesf) spaced by
the same distance on the interv@l;[04]. The probability (g associated with each of tiievalue,
verifies:

1
a, =— 11
K=" (11)
The continuous Uniform law( ) of the continuous random variabe on the interval ; ; 6] is

formulated:
1
v(e) = = Aio,:0,1(0) (12)

wheredd = p,- 0,] ; 1is the indicator function defined in (A2b) in Sigment S1.A of Paper 1.

We study two uniform distributions @f under identical conditions in a hs on the right.

An is an integer number of heads in WS. The disaaatdom variable® follows a discrete Uniform
law according to (I1) and tha, values of6 are spaced the same distand®)(over the interval
[0a2;041] such that:

00 = (Oa2- 0a1)

with Ogown< 0p2 <0 <01 < Gup

Ag is an integer number of heads in WS. The disagaatdom variable® follows a discrete Uniform
law according to (I1) and thAg values of6 are spaced the same distané®)(over the interval
[0g2;0g1] such that:

00g = (OB2- 081)

With Ogown< 0g2 < 0 < 01 < Gup



We assume that, and Ag are large enough for the transition from discretecontinuous to be
possible and that the random varia®lés distributed uniformly on a continuous basissén anddbg,
respectively. Thus, depending on whether one cersi® as a discrete or continuous random
variable, by intrinsic homogeneity of the discratel continuous Uniform laws, one checks according
to (11) and (12):

Ap _30a

Ng 80 (13)

By symmetry, the equality (13) is valid in a hsabed on the left.

|.2 Case wheretheonly actionsinvolved arethelinking for ces and moments

An instantaneous tension (T) is applied to an tedldiber in isometry or shortening at steady vigjoc
(V). The case where the only actions involved dre linking forces and moments is studied in
paragraph F.3 of Supplement S2.F to accompanyipgrPA It is demonstrated that at any given time,
each hs of the fiber has an equal number of WSdheadidentical distribution of the andgleand an
equality of tensions ([) acting on both ends of the hs alternately de#ichity a Z-disk and a M-disk
(Figure Fla). Tension yJ is calculated in modulus from equation (F14) ofpament S2.F,
reproduced below:
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(14)

where T, is the tension in modulus applied to the 2 endsawh of the N myofibrils (Fig Fla of
Supplement S2.F); Nis the number of myofibrils of the fiber;sly is the length of the lever (S1b);
Sws is a constant characteristic of the myosin hedihel@ in the equations (13) and (14) of Paper 2;
AL is the common instantaneous number of WS myosad$ per hs; b is the index of a WS head,;

M® is the module of the instantaneous motor-momepliegbto the lever of WS head n° b.

M_L is the module of the instantaneous average moaigheA, motor-moments, equal by definition

to:
A
Zm(b)
. = b=l
M, =
L AL (15)
The combination of (14) and (15) provides:
AL —

7 (16)



|.3 1sometric case
In each hs of a fiber stimulated under isometrinditions, hypothesis 5 enacted in accompanying
Paper 3 states that the anglef the levers belonging to the WS heads is distetd over the interval

[62; 64] according to the same Uniform law)():
1
UL(9) = 55— To,0,](®) (17)

whered0, is the angular range equal to:

60 = P2- 04 (18)
and wherd; andf, are two angles that in a hs on the right checkdhewing inequalities:

Odown< 02 < 0 < 0, < Oy (19)

The equality (16) of Paper 3 introduces the afgl@-ig I1) and the angular rangér equal to about
50°, observed during the isometric tetanus platd&e. spatial density o has been postulated as
uniform ond6d by various authors [1,2,3,4,5]. The geometric wtddveloped in Paper 3 leads to a

similar resolution formulated in (19) and reprodilibere:

v (9= 5 Aori0,,](©) (120)

The densitytr is represented in Fig [12a by a green rectangieidth 66+ and height (136+).

During the isometric tetanus plateau, the commanbar of WS myosin heads per h\igand theAq
values ofd are spaced the same distarifig)(over the30 range.

The experimental conditions being identical to thdsading to the isometric tetanus plateau, we
consider the common number of WS myosin heads $éx,) such that the\, values of6 are spaced
the same distancéfp) over thedd, range defined with (18) and (19). We assume thats important
enough to consider the transition from discretedntinuous, i.e. the random varialieeassociated
with the anglé is interpreted indifferently as a discrete or amndus random variable. With relations
(17), (18) and (110), the formula (I13) becomes:

AL = Ao EL (111)
307

Hypothesis 6 postulates that the motor-momenj {s an affine function 0@ given in equation (3) of

Paper 4 and reproduced below:

1(8) = 3y a‘egﬁﬂ o0 84| (8) (112)
Max

whered,, is the maximum moment relatingup position;56yax= Bup - Odowrl-



By definition of the average of a variabl@s() that is a bijective function of another varialf6d

associated with a continuous random variafiledistributed according to (17), the calculationtbé

average momenti, ) is written with (19):

w = [(0)w, (6) e (113)

M = (114)

When the anglé is distributed uniformly between the 2 angdesind6,, discretely or continuously in
each hs of an isometrically stimulated fiber, tladcglation of T is formulated after rewriting the

relationship (16) by juxtaposing the expressioid énd (114):

AL Dn 6,+6
Thsz( = JEE L2 _edown} (115)

L sib BBws [00Max 2

The calculation of s is performed with angular positions taken in ahghe right. By symmetry we

obtain an identical result in a hs on the left,deethe generic index "hs".

1.3.1 Application to the isometric tetanus plateau
During the isometric tetanus plateau, the termibatnd6, are6,, andér and we check:

50, = 501 (116a)
A|_ = Ao (|16b)

The angld, is located at the middle 66 (Fig I1) such that:

Bypt+0
8 :upTT (117)

TOs is the tension at the ends of any hs during thédric tetanus plateau. The calculation ofsT9
done with equation (115) combined with equatiod$4), (116b) and (117):

/\0 ElMup
L sio BBws [90Max

TOhs = [ J 180 - Bdown] (118)



I.3.2 Relative tension of a fiber stimulated in isometric conditions
The relative value of f[Eto TO,s (pThs) is deduced from the equations (115) and (I118peissed with the
relationship (111):

8, +0, 0 }
~Ydown
T o0 2
PThs = = :( LJ (119)
Tohs 69T (90 - edown)

TO is the tension at the extremities of the fiberiry the isometric tetanus plateau. Accordinghi® t

equality (14), the relative tension of the fibertviespect to TO (pT) is:

_l_ NmOm _ Ths
TO N[00, TOp

pT =pThs (120)

Tensions at the endpoints of the muscle fiber, byt and all hs are equal when expressed in

relation to the tensions of the isometric tetaragepu referring to each of these elements.

I.4 Linear relationship between the displacement of the half-sarcomere and the rotation of the

lever belonging to a WS head

To characterize the hs displacement along the tiodigial axis of the myofibril, it is resorted toeth
abscissa X of point A representing the site ofchtteent of the WS head to the actin filament
relatively to point D representing the ball joirdtlveen the myosin filament and the rod (Fig D2b of
Supplement S2.D to the accompanying Paper 2). Bigranily matching the zero of the abscissa X
with the angled, defined in (117) and after integrating equatio®)(bf Paper 2, the relationship

between X and is formulated:
X =Lgp Rws0-60) Tpe, . :0,,1(8) (121a)

where s is a constant characteristic of the myosin hedohe@ in the equations (13) and (14) of

Paper 2; @sis equal to Rs.

Conversely is expressed as a function of X according to:

X
X g (8
L [,RWSJ [8soun :8up1 (8) (121b)

0 :[90+
Slb

The relationships (121a) and (121b) imply affinealeccorrespondence between X @nith the linear
domain framed b¥gown and0,, (Fig I11).
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Fig I 1. Affinerelation in the linear domain defined by 6., and 04..» between the 6 angle of lever
Slb and the rélative position X of the binding-site on the actin molecule with respect to the

myosin filament along the longitudinal axis of a half-sarcomereon theright.



From the above, the following expressions are dedtic

6XT :(XUD_XT):LSIb[RWS[éeT (|22)
OXg = (X1 = Xgown) = L gp (Rs (86 (123)
X max = (Xup = Xdown) = (X1 +8X ) =L gp [Ryys [3Byiax (124)
X
oX oX +OX
Xdown= (Xup - 6XMax) = (TT - axMaxj = _(%] (126)
L - L = ! (127)
X oX o6
Xaour (5X Max ~ 2T ] L gnh Rws [E5GMax _ZTJ

The importance of the relationship (127) will thefter be noted.

1.4.1 Application to the isometric tetanus plateau
The tension TQ is exerted by thé\, WS heads on both sides of a hs during the isomegttanus

plateau. The expression (I118) is rewritten with thensformation of variables betwe®nand X
provided by (121b):

Ao Ou X g
TOps =[ up jﬂ o (128a)
L s BBws ) X Max

With (127), TQs is also formulated according &X y.x anddX-:

No M dX
TOps = - 1T (128b)
L s BBws 2 (DX Max
With (14), the tension of the isometric tetanust@édau is:

N OM
TO=N, 07 up 1_6X—T (129)
L s BBws 20X pax




1.4.2 Application to a fiber stimulated in isometric conditions
The 2 abscissapand X% correspond to the 2 angkesand6, defined in (19). With (121a), they are equal to:

X1 = Lgp Rws {80 -61)

X5 =Lgp Rys {6 —07)

The linear ranged,) between Xand X is calculated using (18):

OX | =|X1 =X 5| =L gp Ryg 56, (130)

When6 is uniformly distributed betweeh and6,, the tension () exerted by thé\ myosin heads in

WS on both sides of a hs belonging to an isoméfyistimulated fiber is rewritten according to ()15

and (121b):
N\ L v X4+ X
Ths 2( up J EE 1 2+ |Xdown|} (131a)

L sib BBws [OX max 2

The equalities (119) and (120) become:

_ [ OX (X1+X2)
[ =pThe = 1
PT =pThs (5XTJ + 2|:p>(down| (131b)

I. 5 Calculation of the tension at the end of phase 1 of a length step in the absence of
viscosity (pT 1gjas)

During the isometric tetanus plateau, the artgie associated with the random varial@lewhich
follows the Uniform lawtr, defined in (I110) and represented by a green mgttain Fig 12a. The
relative tension (pT0) associated with this unifatensity is equal to 1 (Fig 12a"). The fiber isrthe
quickly shortened by a length steld | at constant velocity (V) during,, the time of phase 1. Any hs
is shortened by a length stepX) at constant speed (u) durimg. The/, levers S1b belonging to the

No WS heads all undergo the same angular variafibhgccording to the linear relationship (121b) as:

AX

N=——"——
L gp Rws

(132)

At the end of phase 1, the relative tension exestedoth edges of the hs is called asgl1

We assume, as many authors do [3,5,6], that nohead has time to initiate a WS during phase 1
since the average rapid initiation duration is dakbms [3,7,8,9,10,11,12], a time much greater than

0.2 ms, the recommended durationdgr{13].



Therearetwo zonesfor the calculation of pT 1gas

1.5.1 Calculation of pT1g,sin Zone1=[-0Xg.0]
The rangéXg is shown in Fig I11. The hs shortenig<) checks for inequalities:

OXg<AX<O0 (133a)
With (121a) and (123), the corresponding inequeditior the rotatiod\6 of the/A, S1b are:

e <AO<0 (133b)

In Zone 1, the\o WS heads at the beginning of phase 1 are stif$at the end of phase 1 since @he
angles of the\, levers are all betwedh,., andd,, Switching from discrete to continuous, the artgle
is associated witl®, the continuous random variable uniformly disttdmiover the intervab+Ao ;

0.,1A0] represented by a green rectangle in Fig 12b. Ohiéorm law (U,,) is stated:

1
Uﬂ(e)zﬁ D'[GT+AG;GUP+AG](9) (134)

The two abscissaand X relative to the two angle$ {+A0) and ¢++A0) are calculated with (121a)
and (132):
X1 = Xyp + AX (135a)
Xo = Xy + AX (135b)

In support of (130) and (122), we deduce:
6X|_ = SXT (|36)

Thanks to (125), we obtain:
X1+ Xz = 2AX (137)

At the end of phase 1 of the length step, the Wglie cancelled and the fiber is again in isomekiy
this precise time, the conditions are met to ald¥b), and the relative tension in Zone 1 (pdl)
is formulated using (136) and (137):

PTlgjasn =1+ (138)

|Xd0wr4

In isometric conditions, the tensions exerted ooheside of the hs of the fiber are all equal in
modulus. From this assertion we deduce with (I138% the shortening\X is a constant and it is
concluded that all hs are shortened by the sanatiear in length belonging to Zone 1 and equal to:

_ AL
Nhs

AX

(139)

where Ngis the number of hs per myofibril.
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Fig I2. Uniform distributions of 8 in a hs on the right at the origin of the calculations of pT 1gas
asafunction of the hslength step (AX).

(a) Uniform density ob betweerfr and6,, for Ac WS heads, characteristic of the isometric tetqiateau. (b)
Uniform density ofd between §; +A6) and @,,+A6) after the rotatiod\d of theA, levers. (c) and (d) Uniform
densities 0B betweerbyown and @,,+A0) after the rotatio\d of theAws and A levers, respectively. (a') Unit
relative tension. (b") Line segment representirgréiative tension (pTeks .9 as a function oAX betweendXg
and 0. (c') and (d") Parabolic arc and straight lgegment representing, respectively, the relagwsions
PTlgns 22 and pT s .5 as a function cAX between 8X ., and 8Xe.
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In Zone 1, the affine function (I38) is representsda dark green straight line segment in Fig 12b’.
The slope,;) is based on (127):
1 1

|Xdowfl Lgp Rws EéESGMax - ézT]

Xa = (140)

The slopey,; depends on several geometric parameters (see Taifl®aper 2) characteristic of the

myosin Il head, i.e. &1, 60uax, 001, Rws. The last term s itself depends on the geometric parameters
Lsz, Dawit, Xag @nd Yag.

I.5.2 First calculation of pTlgasin Zone2 =[ -0Xuax; -0Xe [
The hs shortening\X) checks for inequalities:
OXpax £ AX < -8Xg< 0 (141a)

From (121a) and (124) result the corresponding uaditjes for the rotatiodd of the/\q levers:

30pax < AD < 90 < 0 (141b)

Aws Is the number of heads still in WS at the endladge 1 among the initial, heads, i.e. thAws

heads whose angle of their lever verifies the condition:

Oup < (0 + AD) (142)

The (Ao-Aws) heads whos@ angle of their lever does not achieve the comulifid2) have a zero

contribution to the tension in accordance with {112

The 6 angle of the\ws levers S1b is associated with the random vari@bkehich follows a discrete
uniform law on the interval®fown ; 6,,+A6] according to hypothesis 5 of uniformity. By passtog
continuous, the angkeis associated witl, a continuous random variable following the Umnifioiaw

(Uy) which is formulated:

1

V(@) ==7———— 1 : ) 14
22(6) (59 Vax + AO) [edown, Gup+Ae]( ) ( 3)
The U, law is represented in Fig 12c by a green rectarglewidth (©0ua.+A6) and height
1/(80pmaxt0).

The two abscissa and X% relative to the two angle$ {+A0) and6qown are calculated with (121a)
and (132):
X1 = Xyp + AX (144a)
Xo = Xdown (144b)
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The sum gives:
X1+ Xz = Xgown + Xyp + AX (145)

It is deduced with (124) and (130):
XL = |X1 - X2| =5X pax + AX (146)

At the end of phase 1 of the length step, the shorg velocity is cancelled and the fiber is again
isometry. At this precise time, the conditions et to apply (I31b) and the relative tension in €@n
(an.aSZz ; P for Parabola) is formulated by introducing (l45d (146):

(5X Max * Ax)z
208X T EI]X down|

p
PTlgjasz2 = (147)

The expression (147) is represented by a parabaotic (Fig 12¢'; purple line).

In isometric conditions, the tensions exerted ooheside of the hs of the fiber are all equal in
modulus. From this assertion we deduce with (143} the hs shortening\X) is a constant and it is
concluded that all hs are shortened by the samatiear in length belonging to Zone 2 according to

equality (139).

1.5.3 Second calculation of pT1gsin Zone2 =[ -0Xyax; -0Xe [

When the lever is in thdown position, a landmark event at the end of the wuaylgtroke, the next
step in the chemical-mechanical cycle of the clwsdge [14,15] is the detachment of a myosin head
that takes effect over a period of a few millisedsnThis event named as {FastDE} is presented in
paragraph B.5 and discussed in paragraph B.6 opl&ment S1.B to accompanying Paper 1. The
occurrence delay of {FastDE} is 1 ms and the timestant of {FastDE} is between 3 and 5 ms (Table
B1), which is much longer tham,. Subsequently, at the end of phase 1,Ah&VS heads are still
strongly bound to the actin filament, including tfae-Aws) heads whose lever is assumed to have
reached and exceeded tlvn position. The fo-Aws) heads initially in WS are likely to contribute to
the tension. We conjecture an extreme situatiorrevhlt/\q heads would be in WS at the end of phase
1 and where the angteof the/\, levers is associated with, a random variable distributed uniformly
over the intervalfgown; 6,,+A0] according tot,, defined in (143); see Fig 12d identical to Fig |dhe
expressions (l44a), (144b), (145) and (146) remaatid but the homogeneity relationship stated in
(112) is no longer verified. It is necessary to tise formulation (131a) which brings with (116b)24)

and (145) a new expression of the tension en Zoﬁélasyzz ; S for Straight line):

Ao O X nraw + AX

S 0 u

Tlhszzz( P H Z“é'g;M } (148)
ax

12



The relative tension in Zone 2p‘(1§|as’22) is calculated by dividinngﬁsyzZ with TO,s whose

calculation is provided in (128a) as follows:

S 1
pTL =——[oX +AX 149
Elasz2 2 EIJX down| [ﬂ Max ) ( )

In Zone 2, the affine function (149) is a straigjhe segment (Fig 12d"; blue line). The slopeg)(is:

_ 1 _Xa
-+ Xz 150
Xz2 20X dowr] 2 (150)

That is half of the one found for Zone 1.

|.6 Redefining of Zones 1 and 2
Depending on the conditions of realization of phasen particular the duratiory;, and the internal
geometry of the myofibril, in particular the intilament space, the value of the real tension ineZd

lies between the 2 extreme caspﬂgaszz and p'|'1§_|aszz, determined in (I147) and (149), respectively.

We propose a compromise modeling between thesed2tione cases (Fig 13).

The linear abscissaX,; is a parameter depending on the experimental tondj defined as:

-2A8X g < -0X,1 < -0XE (151)
Zones1and 2 areredefined in relation to the abscissa -6 X z;.
Zonel=[-6Xz1.0[

The relationship between pT1 afAX determined in (138) remains valid:
PTlgjasn =1+X 2 [AX (152a)

Equality (152a) is a straight line segment extentedX,; and represented by a dark green

straight line in Fig 13. The slopg4) is formulated in (140) and reproduced below:

Xa = (152b)

|Xdown|
2/1Zone2=[ -6Xyax; -0Xz [
The relation between pT1 aikX is represented by a straight line segment thaheots the

coordinate point4X= -6X; ; pT1=1X,:[6X;;) to the coordinate poinAK= -6Xyax ; pT1=0):

PTlgasz2 =Xz2 [(EX Max * AX) (153a)
The slopeXz,) is equal to:
1- [dX
oo =¥ X ) (153b)
X Max —OX

The straight line segment appears as light gre&git3.
In the particular case whes&X,; = 6Xg, the relationship (150) is found using (126) ati7j.

13
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Fig | 3. Redefinition of Zones 1 and 2 with the abscissa -6X,; between -2[@Xg and -8Xk.

The relative tension (pT1) calculated accordingXoin (I152a) and (I152b) is represented by a straight
line segment colored dark green for Zone 1 andt lgfleen for Zone 2. The two extreme cases
PTJEP|aszz and I0T1§_|aszz, determined in (147) and (149), are representepimk and blue dotted lines,

respectively.
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