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S4.I Supplementary Chapter of Paper 4: Calculations of T0 and T1Elas 

I 1 Preamble: homogeneity relation between discrete and continuous Uniform laws 

Hypothesis 4 in Paper 2 indicates that the lever (S1b) of a myosin head in working stroke (WS) moves 

in a fixed plane. The orientation of S1b in this fixed plane is given by the angle θ having as bounds θup 

and θdown relative to the up and down positions; the values of θup and θdown are determined in (12a) and 

(12b) in Paper 2. 

In a half-sarcomere (hs) located on the right, we consider the two angles θ1 and θ2 as follows:  

θdown ≤ θ2 < θ1 ≤ θup 

 

The random variable Θ is associated with the angle θ; see definition of a random variable in paragraph 

A.1 of Supplement S1.A to accompanying Paper 1. 

The discrete Uniform law of the discrete random variable Θ consists of Λ real values (θk) spaced by 

the same distance on the interval [θ2 ; θ1]. The probability (ak) associated with each of the Λ values θk 

verifies: 

      
Λ

= 1
ak       (I1) 

The continuous Uniform law (U ) of the continuous random variable Θ on the interval [θ2 ; θ1] is 

formulated: 

     
δθ

=θ 1
)(U )(. ];[ 12

θθθ1     (I2) 

where δθ = |θ2 - θ1| ; 1 is the indicator function defined in (A2b) in Supplement S1.A of Paper 1. 

 

We study two uniform distributions of Θ under identical conditions in a hs on the right.  

ΛA is an integer number of heads in WS. The discrete random variable Θ follows a discrete Uniform 

law according to (I1) and the ΛA values of θ are spaced the same distance (δθk) over the interval 

[θA2;θA1] such that: 

δθA = (θA2 - θA1) 

with  θdown ≤ θA2 ≤ θ ≤ θA1 ≤ θup 

ΛB is an integer number of heads in WS. The discrete random variable Θ follows a discrete Uniform 

law according to (I1) and the ΛB values of θ are spaced the same distance (δθk) over the interval 

[θB2;θB1] such that: 

δθB = (θB2 - θB1) 

with  θdown ≤ θB2 ≤ θ ≤ θB1 ≤ θup 
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We assume that ΛA and ΛB are large enough for the transition from discrete to continuous to be 

possible and that the random variable Θ is distributed uniformly on a continuous basis on δθA and δθB, 

respectively. Thus, depending on whether one considers Θ as a discrete or continuous random 

variable, by intrinsic homogeneity of the discrete and continuous Uniform laws, one checks according 

to (I1) and (I2): 

      
B

A

B

A

δθ
δθ

=
Λ
Λ

      (I3) 

 

By symmetry, the equality (I3) is valid in a hs located on the left. 

 

I.2 Case where the only actions involved are the linking forces and moments 

An instantaneous tension (T) is applied to an isolated fiber in isometry or shortening at steady velocity 

(V). The case where the only actions involved are the linking forces and moments is studied in 

paragraph F.3 of Supplement S2.F to accompanying Paper 2. It is demonstrated that at any given time, 

each hs of the fiber has an equal number of WS heads, an identical distribution of the angle θ, and an 

equality of tensions (Ths) acting on both ends of the hs alternately delimited by a Z-disk and a M-disk 

(Figure F1a). Tension Ths is calculated in modulus from equation (F14) of Supplement S2.F, 

reproduced below: 

    ∑
Λ

=
⋅

⋅
===

L

1b
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WSb1Sm
mhs SL

1

N

T
TT M

 
  (I4) 

where Tm is the tension in modulus applied to the 2 ends of each of the Nm myofibrils (Fig F1a of 

Supplement S2.F); Nm is the number of myofibrils of the fiber; LS1b is the length of the lever (S1b); 

SWS is a constant characteristic of the myosin head defined in the equations (13) and (14) of Paper 2; 

ΛL is the common  instantaneous number of WS myosin heads per hs; b is the index of a WS head; 

M(b) is the module of the instantaneous motor-moment applied to the lever of WS head n° b. 

 

LM  is the module of the instantaneous average moment of the ΛL motor-moments, equal by definition 

to: 

     
L

1b

(b)

L

L

Λ
=
∑
Λ

=
M

M      (I5) 

The combination of (I4) and (I5) provides: 

     L
WSb1S

L
hs SL

T M⋅
⋅

Λ
=       (I6) 
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I.3 Isometric case 

In each hs of a fiber stimulated under isometric conditions, hypothesis 5 enacted in accompanying 

Paper 3 states that the angle θ of the levers belonging to the WS heads is distributed over the interval 

[θ2 ; θ1] according to the same Uniform law (UL ): 

     
L

L
1

)(
δθ

=θU [ ] )(
12; θ⋅ θθ1      (I7) 

where δθL is the angular range equal to: 

      δθL = |θ2 - θ1|     (I8) 

and where θ1 and θ2 are two angles that in a hs on the right check the following inequalities: 

     θdown ≤ θ2 ≤ θ ≤ θ1 ≤ θup     (I9) 

 

The equality (16) of Paper 3 introduces the angle θT (Fig I1) and the angular range δθT equal to about 

50°, observed during the isometric tetanus plateau. The spatial density of θ has been postulated as 

uniform on δθT by various authors [1,2,3,4,5]. The geometric study developed in Paper 3 leads to a 

similar resolution formulated in (19) and reproduced here: 

     
T

T
1

)
δθ

=θ(U [ ] )(.
upT ; θθθ1     (I10) 

The density UT  is represented in Fig I2a by a green rectangle of width δθT and height (1/ δθT). 

 

During the isometric tetanus plateau, the common number of WS myosin heads per hs is Λ0 and the Λ0 

values of θ are spaced the same distance (δθ0) over the δθT range. 

The experimental conditions being identical to those leading to the isometric tetanus plateau, we 

consider the common number of WS myosin heads per hs (ΛL) such that the ΛL values of θ are spaced 

the same distance (δθ0) over the δθL range defined with (I8) and (I9). We assume that ΛL is important 

enough to consider the transition from discrete to continuous, i.e. the random variable Θ associated 

with the angle θ is interpreted indifferently as a discrete or continuous random variable. With relations 

(I7), (I8) and (I10), the formula (I3) becomes: 

      
T

L
0L δθ

δθ⋅Λ=Λ       (I11) 

 

Hypothesis 6 postulates that the motor-moment (M ) is an affine function of θ given in equation (3) of 

Paper 4 and reproduced below: 

    ( ) ( )
Max

down
up δθ

θ−θ
⋅=θ MM [ ] )(.

updown ; θθθ1    (I12) 

where Mup is the maximum moment relating to up position; δθMax= |θup - θdown|. 
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By definition of the average of a variable (M ) that is a bijective function of another variable (θ)  

associated with a continuous random variable (Θ) distributed according to (I7), the calculation of the 

average moment ( LM ) is written with (I9): 

     ( ) ( ) θ⋅θ⋅θ= ∫
θ

θ
d

1

2

LL UMM      (I13) 

The integration of (I13) with (I12) gives: 

     
Max

down
21

up

L
2

δθ








 θ−
θ+θ

⋅
=
M

M      (I14) 

 

When the angle θ is distributed uniformly between the 2 angles θ1 and θ2, discretely or continuously in 

each hs of an isometrically stimulated fiber, the calculation of Ths is formulated after rewriting the 

relationship (I6) by juxtaposing the expressions (I5) and (I14): 

   






 θ−
θ+θ

⋅










δθ⋅⋅

⋅Λ
= down

21

MaxWSb1S

upL
hs 2SL

T
M

   (I15) 

 

The calculation of Ths is performed with angular positions taken in a hs on the right. By symmetry we 

obtain an identical result in a hs on the left, hence the generic index "hs". 

 

 

I.3.1 Application to the isometric tetanus plateau 

During the isometric tetanus plateau, the terminals θ1 and θ2 are θup and θT and we check: 

      δθL = δθT     (I16a) 

      ΛL = Λ0     (I16b) 

 

The angle θ0 is located at the middle of δθT (Fig I1) such that: 

      
2

Tup
0

θ+θ
=θ      (I17) 

 

T0hs is the tension at the ends of any hs during the isometric tetanus plateau. The calculation of T0hs is 

done with equation (I15) combined with equations (I16a), (I16b) and (I17): 

    [ ]down0
MaxWSb1S

up0
hs SL

0T θ−θ⋅









δθ⋅⋅

⋅Λ
=

M
   (I18) 
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I.3.2 Relative tension of a fiber stimulated in isometric conditions 

The relative value of Ths to T0hs (pThs) is deduced from the equations (I15) and (I18) associated with the 

relationship (I11): 

    ( )down0

down
21

T

L

hs

hs
hs

2

0T

T
pT

θ−θ








 θ−
θ+θ

⋅








δθ
δθ

==

 

  (I19) 

 

T0 is the tension at the extremities of the fiber during the isometric tetanus plateau. According to the 

equality (I4), the relative tension of the fiber with respect to T0 (pT) is: 

    hs
hs

hs

mm

mm pT
0T

T

0TN

TN

0T

T
pT ==

⋅
⋅

==     (I20) 

Tensions at the endpoints of the muscle fiber, myofibrils and all hs are equal when expressed in 

relation to the tensions of the isometric tetanus plateau referring to each of these elements. 

 

 

I.4 Linear relationship between the displacement of the half-sarcomere and the rotation of the 

lever belonging to a WS head 

To characterize the hs displacement along the longitudinal axis of the myofibril, it is resorted to the 

abscissa X of point A representing the site of attachment of the WS head to the actin filament 

relatively to point D representing the ball joint between the myosin filament and the rod (Fig D2b of 

Supplement S2.D to the accompanying Paper 2). By arbitrarily matching the zero of the abscissa X 

with the angle θ0 defined in (I17) and after integrating equation (15) of Paper 2, the relationship 

between X and θ is formulated: 

    ( )0RLX WSb1S θ−θ⋅⋅= )(. ];[ updown
θθθ1    (I21a)  

where SWS is a constant characteristic of the myosin head defined in the equations (13) and (14) of 

Paper 2; SWS is equal to RWS. 

 

Conversely θ is expressed as a function of X according to:     

    








⋅
+θ=θ

WSb1S
0 RL

X )(. ];[ updown
θθθ1     (I21b) 

 

The relationships (I21a) and (I21b) imply affine scale correspondence between X and θ in the linear 

domain framed by θdown and θup (Fig I1).   
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Fig I1. Affine relation in the linear domain defined by θup and θdown between the θ angle of lever 

S1b and the relative position X of the binding-site on the actin molecule with respect to the 

myosin filament along the longitudinal axis of a half-sarcomere on the right. 
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From the above, the following expressions are deducted: 

    TWSb1STupT RL)XX(X δθ⋅⋅=−=δ     (I22) 

    EWSb1SdownTE RL)XX(X δθ⋅⋅=−=δ     (I23) 

   ( ) MaxWSb1SETdownupMax RLXX)XX(X δθ⋅⋅=δ+δ=−=δ    (I24) 

     
2

X
XX T

Tup
δ=−=      (I25) 

   ( ) 






 δ+δ−=






 δ−δ=δ−=
2

XX
X

2

X
XXX EMax

Max
T

Maxupdown    (I26) 

   








 δθ
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 δ
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1

T
MaxWSb1S

T
Max

down

  

   (I27) 

 

The importance of the relationship (I27) will thereafter be noted. 

 

 

I.4.1 Application to the isometric tetanus plateau 

The tension T0hs is exerted by the Λ0 WS heads on both sides of a hs during the isometric tetanus 

plateau. The expression (I18) is rewritten with the transformation of variables between θ and X 

provided by (I21b): 

    
Max

down

WSb1S

up0
hs X

X

SL
0T

δ
⋅









⋅

⋅Λ
=

M
    (I28a) 

 

With (I27), T0hs is also formulated according to δXMax and δXT: 
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With (I4), the tension of the isometric tetanus plateau is: 

    








δ⋅
δ

−⋅









⋅
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I.4.2 Application to a fiber stimulated in isometric conditions 

The 2 abscissa X1 and X2 correspond to the 2 angles θ1 and θ2 defined in (I9). With (I21a), they are equal to: 

( )10WSb1S1 RLX θ−θ⋅⋅=
 

( )20WSb1S2 RLX θ−θ⋅⋅=  

 

The linear range (δXL) between X1 and X2 is calculated using (I8): 

    LWSb1S21L RLXXX δθ⋅⋅=−=δ     (I30) 

 

When θ is uniformly distributed between θ1 and θ2, the tension (Ths) exerted by the Λ myosin heads in 

WS on both sides of a hs belonging to an isometrically stimulated fiber is rewritten according to (I15) 

and (I21b):  

   






 +
+

⋅









δ⋅⋅
⋅Λ

= down
21

MaxWSb1S

upL
hs X

2

XX

XSL
T

M

 
  (I31a) 

 

The equalities (I19) and (I20) become: 

    
( )













⋅
+

+⋅








δ
δ

==
down

21

T

L
hs X2

XX
1

X

X
pTpT     (I31b) 

 
 
I. 5 Calculation of the tension at the end of phase 1 of a length step in the absence of 
viscosity (pT1Elas ) 

During the isometric tetanus plateau, the angle θ is associated with the random variable Θ which 

follows the Uniform law UT, defined in (I10) and represented by a green rectangle in Fig I2a. The 

relative tension (pT0) associated with this uniform density is equal to 1 (Fig I2a'). The fiber is then 

quickly shortened by a length step (∆L) at constant velocity (V) during τp1, the time of phase 1. Any hs 

is shortened by a length step (∆X) at constant speed (u) during τp1. The Λ0 levers S1b belonging to the 

Λ0 WS heads all undergo the same angular variation (∆θ) according to the linear relationship (I21b) as: 

     
WSb1S RL

X

⋅
∆=θ∆      (I32) 

 

At the end of phase 1, the relative tension exerted on both edges of the hs is called as pT1Elas. 

We assume, as many authors do [3,5,6], that no new head has time to initiate a WS during phase 1 

since the average rapid initiation duration is about 1 ms [3,7,8,9,10,11,12], a time much greater than 

0.2 ms, the recommended duration for τp1 [13]. 
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There are two zones for the calculation of pT1Elas 

I.5.1 Calculation of pT1Elas in Zone 1 ≡ [ -δXE ; 0 ] 

The range δXE is shown in Fig I1. The hs shortening (∆X) checks for inequalities: 

     -δXE ≤ ∆X < 0      (I33a) 

With (I21a) and (I23), the corresponding inequalities for the rotation ∆θ of the Λ0 S1b are: 

     -δθE ≤ ∆θ < 0      (I33b) 

In Zone 1, the Λ0 WS heads at the beginning of phase 1 are still in WS at the end of phase 1 since the θ 

angles of the Λ0 levers are all between θdown and θup. Switching from discrete to continuous, the angle θ 

is associated with Θ, the continuous random variable uniformly distributed over the interval [θT+∆θ ; 

θup+∆θ] represented by a green rectangle in Fig I2b. The Uniform law (Uz1) is stated: 

    
T

1z
1

)(
δθ

=θU [ ] )(
upT ; θ⋅ θ∆+θθ∆+θ1     (I34) 

The two abscissa X1 and X2 relative to the two angles (θup+∆θ) and (θT+∆θ) are calculated with (I21a) 

and (I32): 

     X1 = Xup + ∆X      (I35a) 

     X2 = XT + ∆X      (I35b) 

In support of (I30) and (I22), we deduce: 

     δXL = δXT      (I36) 

Thanks to (I25), we obtain: 

     X1 + X2 = 2⋅∆X      (I37) 

 

At the end of phase 1 of the length step, the velocity is cancelled and the fiber is again in isometry. At 

this precise time, the conditions are met to apply (I31b), and the relative tension in Zone 1 (pT1Elas,z1) 

is formulated using (I36) and (I37): 

     
down

1z,Elas X

X
11pT

∆+=      (I38) 

 

In isometric conditions, the tensions exerted on each side of the hs of the fiber are all equal in 

modulus. From this assertion we deduce with (I38) that the shortening ∆X is a constant and it is 

concluded that all hs are shortened by the same variation in length belonging to Zone 1 and equal to: 

     
hsN

L
X

∆=∆        (I39) 

where Nhs is the number of hs per myofibril. 
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Fig I2. Uniform distributions of θ in a hs on the right at the origin of the calculations of pT1Elas 
as a function of the hs length step (∆∆∆∆X). 
(a) Uniform density of θ between θT and θup for Λ0 WS heads, characteristic of the isometric tetanus plateau. (b) 

Uniform density of θ between (θT +∆θ) and (θup+∆θ) after the rotation ∆θ of the Λ0 levers. (c) and (d) Uniform 

densities of θ between θdown and (θup+∆θ) after the rotation ∆θ of the ΛWS and Λ0 levers, respectively. (a') Unit 

relative tension. (b') Line segment representing the relative tension (pT1Elas,z1) as a function of ∆X between -δXE 
and 0. (c') and (d') Parabolic arc and straight line segment representing, respectively, the relative tensions 

pT1Elas,z2
P and pT1Elas,z2

S as a function of ∆X between -δXMax and -δXE.  
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In Zone 1, the affine function (I38) is represented by a dark green straight line segment in Fig I2b’. 

The slope (χz1) is based on (I27): 

    







 δθ−δθ⋅⋅
==χ

2
RL

1

X

1

T
MaxWSb1S

down
1z     (I40) 

The slope χz1 depends on several geometric parameters (see Table 1 of Paper 2) characteristic of the 

myosin II head, i.e. LS1b, δθMax, δθT, RWS. The last term RWS itself depends on the geometric parameters 

LS2, dAMfil , XAB and YAB. 

 

 

I.5.2 First calculation of pT1Elas in Zone 2 ≡ [ -δXMax ; -δXE [ 

The hs shortening (∆X) checks for inequalities: 

     -δXMax ≤ ∆X < -δXE < 0     (I41a) 

From (I21a) and (I24) result the corresponding inequalities for the rotation ∆θ of the Λ0 levers: 

     -δθMax ≤ ∆θ < -δθE < 0     (I41b) 
 

ΛWS is the number of heads still in WS at the end of phase 1 among the initial Λ0 heads, i.e. the ΛWS 

heads whose θ angle of their lever verifies the condition: 

     θup ≤ (θ + ∆θ)      (I42) 

The (Λ0-ΛWS) heads whose θ angle of their lever does not achieve the condition (I42) have a zero 

contribution to the tension in accordance with (I12). 

The θ angle of the ΛWS levers S1b is associated with the random variable Θ which follows a discrete 

uniform law on the interval [θdown ; θup+∆θ] according to hypothesis 5 of uniformity. By passing to 

continuous, the angle θ is associated with Θ, a continuous random variable following the Uniform law 

(Uz2) which is formulated: 

    ( )θ∆+δθ
==θ

Max
2z

1
)(U [ ] )(

updown ; θ⋅ θ∆+θθ1    (I43) 

The Uz2 law is represented in Fig I2c by a green rectangle of width (δθMax+∆θ) and height 

1/(δθMax+∆θ). 

The two abscissa X1 and X2 relative to the two angles (θup+∆θ) and θTdown are calculated with (I21a) 

and (I32): 

     X1 = Xup + ∆X      (I44a) 

     X2 = Xdown      (I44b) 
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The sum gives: 

     X1 + X2 = Xdown + Xup + ∆X    (I45) 

It is deduced with (I24) and (I30): 

     δXL = |X1 - X2| = δXMax + ∆X    (I46) 

At the end of phase 1 of the length step, the shortening velocity is cancelled and the fiber is again in 

isometry. At this precise time, the conditions are met to apply (I31b) and the relative tension in Zone 2 

( P
2z,Elas1pT  ; P for Parabola) is formulated by introducing (I45) and (I46): 

     
( )

downT

2
MaxP

2z,Elas XX2

XX
1pT

⋅δ⋅
∆+δ

=      (I47) 

 

The expression (I47) is represented by a parabolic arch (Fig I2c'; purple line). 

In isometric conditions, the tensions exerted on each side of the hs of the fiber are all equal in 

modulus. From this assertion we deduce with (I47) that the hs shortening (∆X) is a constant and it is 

concluded that all hs are shortened by the same variation in length belonging to Zone 2 according to 

equality (I39). 

 

I.5.3 Second calculation of pT1Elas in Zone 2 ≡ [ -δXMax ; -δXE [ 

When the lever is in the down position, a landmark event at the end of the working stroke, the next 

step in the chemical-mechanical cycle of the cross-bridge [14,15] is the detachment of a myosin head 

that takes effect over a period of a few milliseconds. This event named as {FastDE} is presented in 

paragraph B.5 and discussed in paragraph B.6 of Supplement S1.B to accompanying Paper 1. The 

occurrence delay of {FastDE} is 1 ms and the time constant of {FastDE} is between 3 and 5 ms (Table 

B1), which is much longer than τp1. Subsequently, at the end of phase 1, the Λ0 WS heads are still 

strongly bound to the actin filament, including the (Λ0-ΛWS) heads whose lever is assumed to have 

reached and exceeded the down position. The (Λ0-ΛWS) heads initially in WS are likely to contribute to 

the tension. We conjecture an extreme situation where all Λ0 heads would be in WS at the end of phase 

1 and where the angle θ of the Λ0 levers is associated with Θ, a random variable distributed uniformly 

over the interval [θdown ; θup+∆θ] according to Uz2 defined in (I43); see Fig I2d identical to Fig I2c. The 

expressions (I44a), (I44b), (I45) and (I46) remain valid but the homogeneity relationship stated in 

(I11) is no longer verified. It is necessary to use the formulation (I31a) which brings with (I16b), (I24) 

and (I45) a new expression of the tension en Zone 2 (
S

2z,hs1T ; S for Straight line): 

    








δ⋅
∆+δ

⋅









⋅
⋅Λ

=
Max

Max

WSb1S

up0S
2z,hs X2

XX

SL
1T

M
   (I48) 
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The relative tension in Zone 2 (
S

2z,Elas1pT ) is calculated by dividing 
S

2z,hs1T  with T0hs whose 

calculation is provided in (I28a) as follows: 

    ( )XX
X2

1
1pT Max

down

S
2z,Elas ∆+δ⋅

⋅
=     (I49) 

In Zone 2, the affine function (I49) is a straight line segment (Fig I2d'; blue line). The slope (χz2) is: 

    
2X2

1 1z

down
2z

χ=
⋅

=χ       (I50) 

That is half of the one found for Zone 1. 

I.6 Redefining of Zones 1 and 2 

Depending on the conditions of realization of phase 1, in particular the duration τp1, and the internal 

geometry of the myofibril, in particular the inter-filament space, the value of the real tension in Zone 2 

lies between the 2 extreme cases, 
P

2z,Elas1pT  and 
S

2z,Elas1pT , determined in (I47) and (I49), respectively. 

We propose a compromise modeling between these 2 borderline cases (Fig I3). 

The linear abscissa -δXz1 is a parameter depending on the experimental conditions, defined as: 

     -2⋅δXE ≤ -δXz1 ≤ -δXE     (I51) 

Zones 1 and 2 are redefined in relation to the abscissa -δXZ1. 

Zone 1 ≡ [ -δXz1 ; 0 [ 

The relationship between pT1 and ∆X determined in (I38) remains valid:  

     X11pT 1z1z,Elas ∆⋅χ+=      (I52a) 

Equality (I52a) is a straight line segment extended to -δXz1 and represented by a dark green 

straight line in Fig I3. The slope (χz1) is formulated in (I40) and reproduced below: 

     
down

1z X

1=χ        (I52b) 

2/ Zone 2 ≡ [ -δXMax ; -δXz1 [ 

The relation between pT1 and ∆X is represented by a straight line segment that connects the 

coordinate point (∆X= -δXz1 ; pT1=1-χz1⋅ δXz1) to the coordinate point (∆X= -δXMax ; pT1=0):  

     ( )XX1pT Max2z2z,Elas ∆+δ⋅χ=     (I53a) 

The slope (χz2) is equal to: 

     
( )

1zMax

1z1z
2z XX

X1

δ−δ
δ⋅χ−

=χ      (I53b) 

The straight line segment appears as light green in Fig I3. 

In the particular case where δXz1 = δXE, the relationship (I50) is found using (I26) and (I27). 
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Fig I3. Redefinition of Zones 1 and 2 with the abscissa -δXz1 between -2⋅⋅⋅⋅δXE  and -δXE. 

The relative tension (pT1) calculated according to ∆X in (I52a) and (I52b) is represented by a straight 

line segment colored dark green for Zone 1 and light green for Zone 2. The two extreme cases 
P

2z,Elas1pT  and 
S

2z,Elas1pT , determined in (I47) and (I49), are represented in pink and blue dotted lines, 

respectively. 
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