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Abstract 12 

Aberrant splicing is a major cause of rare diseases, yet its prediction from genome 13 

sequence remains in most cases inconclusive. Recently, RNA sequencing has proven to 14 

be an effective complementary avenue to detect aberrant splicing. Here, we developed 15 

FRASER, an algorithm to detect aberrant splicing from RNA sequencing data. Unlike 16 

existing methods, FRASER captures not only alternative splicing but also intron retention 17 

events. This typically doubles the number of detected aberrant events and identified a 18 

pathogenic intron retention in MCOLN1. FRASER automatically controls for latent 19 

confounders, which are widespread and substantially affect sensitivity. Moreover, 20 

FRASER is based on a count distribution and multiple testing correction, reducing the 21 
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number of calls by two orders of magnitude over commonly applied z score cutoffs, with 1 

a minor sensitivity loss. The application to rare disease diagnostics is demonstrated by 2 

reprioritizing a pathogenic aberrant exon truncation in TAZ from a published dataset. 3 

FRASER is easy to use and freely available. 4 

Keywords: Aberrant splicing, RNA sequencing, outlier detection, rare disorders, normalization 5 

Main 6 

It is estimated that between 15 and 60% of the variants causing rare diseases affect splicing.1–3 7 

The mechanisms include skipping, truncation, and elongation of exons as well as intron 8 

retention.4,5 Despite advances in detecting variants affecting splicing by machine learning,6–9 9 

accurate detections remain limited in particular for deep intronic variants.9 Therefore, genetic 10 

diagnosis guidelines require additional functional evidence to classify a variant as pathogenic.10,11 11 

Further, many variants affecting splicing, especially deep intronic variants, are ignored by most 12 

prediction tools,12 or are missed when whole exome sequencing or panel sequencing 13 

technologies are used.13 To overcome the limitation of genetic variant interpretation, RNA 14 

sequencing (RNA-seq) has gained popularity over the last years.14–17 RNA-seq does not only 15 

allow validating or invalidating effects on splicing of variants of unknown significance,14 but also 16 

allows detecting de novo aberrant splicing events transcriptome-wide, including the activation of 17 

deep intronic cryptic splice sites.14,15,17  18 

Three distinct methods developed by (i) Cummings et al.,14 (ii) Kremer et al.,15 and (iii) Frésard et 19 

al.16 have been employed to call aberrant splicing in RNA-seq data for rare disease diagnostics. 20 

All methods make use of the so-called RNA-seq split reads whose ends align to two separated 21 

genomic locations of the same chromosome strand and are therefore evidence of splicing events. 22 

These methods all consider RNA-seq split reads de novo, i.e. beyond annotated splice sites, 23 
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because the creation of novel splice sites has a strong pathogenic potential by leading to 1 

frameshift, ablation of protein sequences, or creation of non-functional protein sequences. The 2 

first method consists of a combination of cutoffs applied to absolute and relative RNA-seq split 3 

read counts.14,17 The limitation of this method is that statistical significance is not assessed. 4 

Furthermore, the cutoffs are not data-driven. In particular, it is unclear whether requiring that an 5 

intron occurs in no other sample14 or in less than 5 affected samples17 would generalize well to 6 

larger cohorts than the ones investigated so far. Kremer et al.15 instead tested the significance of 7 

differential splicing using Leafcutter,18 a multivariate count fraction model developed for mapping 8 

splicing quantitative trait loci. This approach allowed controlling for false discovery rate and was 9 

less dependent on cohort size. One limitation, however, was made evident by Frésard et al.,16 10 

who showed that strong covariations of split read based splicing metrics are widespread within 11 

RNA-seq compendia. The origins of these covariations may include sex, population structure, or 12 

technical biases such as batch effects or variable degree of RNA integrity. Not controlling for 13 

these latent confounders can substantially affect the sensitivity of detecting aberrant splicing 14 

events. To address this issue, Frésard et al. corrected split read based splicing metrics by 15 

regressing out principal components. Aberrant splicing events were then identified using a cutoff 16 

on z scores (|𝑧| ≥ 2) of these corrected splicing metrics. The drawback of this approach is that an 17 

absolute z score cutoff does not guarantee any control for false discovery rate. Moreover, a z 18 

score cutoff amounts to a quantile cutoff when assuming that the data distribution is approximately 19 

Gaussian. However, Gaussian approximations may be inaccurate when splicing metrics are 20 

based on low split read counts, which occurs on splice sites with low coverages and at repressed 21 

splice sites.  22 

Here, we address these issues with FRASER (Find RAre Splicing Events in RNA-seq), an 23 

algorithm that provides a count-based statistical test for aberrant splicing detection in RNA-seq 24 

samples, while automatically controlling for latent confounders (Figure 1). Unlike previous 25 
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methods, FRASER is not limited to alternative splicing but also captures intron retention events 1 

by considering non-split reads overlapping donor and acceptor splice sites. The parameters are 2 

optimized for recalling simulated outliers by training a so-called denoising autoencoder.19 3 

FRASER shows substantial improvements against former methods on simulations based on the 4 

healthy cohort dataset of the Genotype-Tissue Expression project (GTEx).20 Lastly, we 5 

demonstrate the usage of FRASER for rare disease diagnosis by reanalyzing an RNA-seq dataset 6 

of individuals affected by a rare mitochondrial disorder.15 7 

 8 

Figure 1. The FRASER aberrant splicing detection workflow. The workflow starts with RNA-seq aligned 9 

reads and performs splicing outlier detection in three steps. First (left column), a splice site map is generated 10 

in an annotation-free fashion based on RNA-seq split reads. Split reads supporting exon-exon junctions as 11 

well as non-split reads overlapping splice sites are counted. Splicing metrics quantifying alternative 12 

acceptors (𝜓
5
), alternative donors (𝜓

3
) and splicing efficiencies at donors (𝜃5) and acceptors (𝜃3) are 13 

computed. Second (middle column), a statistical model is fitted for each splicing metric that controls for 14 

sample covariations and overdispersed count ratios. Third (right column), outliers are detected as data 15 

points significantly deviating from the fitted model. Candidates are then visualized with a genome browser. 16 

 17 
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Results 1 

To identify splice sites independently of genome annotation, FRASER creates a splice site map 2 

by calling de novo introns supported by a sufficient amount of RNA-seq split reads (Figure 1, 3 

Methods). An intron is defined by a donor (or 5’ splice site) and an acceptor (or 3’ splice site). For 4 

each intron, FRASER computes two metrics. The 𝜓5 metric quantifies alternative acceptor usage. 5 

It is defined as the fraction of split reads from an intron of interest over all split reads sharing the 6 

same donor as the intron of interest. The 𝜓3 metric, which is analogously defined for the acceptor, 7 

quantifies alternative donor usage. FRASER also considers the donor splicing efficiency metric 8 

𝜃5, defined as the fraction of split reads among split and unsplit reads overlapping a given donor, 9 

and the analogously defined acceptor splicing efficiency metric 𝜃3. Splicing efficiency metrics 10 

(collectievly 𝜃) have lower values in case of intron retention or impaired splicing. The advantage 11 

of these four metrics against alternative splicing metrics such as the popular percent spliced-in21 12 

is that they can be quantified from short-read sequencing data without prior exon annotations.22 13 

These four metrics are read proportions and therefore range in the interval [0,1]. For modeling 14 

and visualization purposes, we used the corresponding log odds ratios that were estimated with 15 

a robust logit-transformation (Methods). 16 

To establish FRASER, we considered the Genotype-Tissue Expression (GTEx) project dataset 17 

(V7). After quality filtering, this dataset consisted of 7,842 RNA-seq samples from 48 tissues of 18 

543 assumed healthy donors.20 Even though the GTEx donors did not suffer from any rare 19 

disease, the samples may present aberrant splicing events, just as they do present genes with 20 

aberrant expression levels.23,24 After filtering for expressed junctions per tissue (Methods), the 21 

FRASER splice site map contained in average 137,058 +/- 5,848 donor sites and 136,743 +/- 22 

5,920 acceptor sites (Supplementary Figure S1), where 1.7% and 1.8% of them, respectively, 23 

were not in the GENCODE annotation (v28).25 Hierarchical clustering of intron-centered logit-24 
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transformed 𝜓5 values revealed distinct sample clusters for all GTEx tissues (Figure 2A-C). 1 

Overall, the average absolute correlation between samples per tissue was 0.10 (+/- 0.05 standard 2 

deviation across tissues, Figure 2D). Strong covariation was also observed for 𝜓3 and for the 3 

splicing efficiency metric (Supplementary Figure S2-3). This covariation structure was tissue-4 

specific (Figure 2A-D). In some tissues, samples clustered according to the RNA degradation 5 

index (e.g. heart left ventricle, Figure 2B and Supplementary Figure S2-3), in others to the 6 

sequencing center, and in others to the death classification (eg. whole blood samples, Figure 2C). 7 

However, no single known covariate could explain covariations for all tissues. Such sample 8 

covariations may arise from common genetic variation, technical artefacts or other unknown 9 

factors. These observations, consistent with Frésard et al.,16 motivated for controlling for between-10 

sample covariations prior calling to aberrant splicing events.  11 

We modeled those between-sample covariations by fitting a low-dimensional latent space for 12 

each tissue separately. The optimal dimension for the latent space was determined by maximizing 13 

the area under the precision-recall curve when calling artificially injected aberrant values 14 

independently for each splicing metric (denoising autoencoder, Methods). The method was robust 15 

to the exact choice of the encoding dimension, as the performance for recalling artificial outliers 16 

typically plateaued around the optimal dimension (Supplementary Figure S4A). The fitted 17 

encoding dimension per tissue was 15 for 𝜓5, 16 for 𝜓3, and 12 for 𝜃 in average. Moreover, the 18 

fitted encoding dimension approximately grew linearly with the number of samples 19 

(Supplementary Figure S4B). Larger encoding dimensions were typically found for tissues with 20 

more samples (Supplementary  Figure S4B). Controlling for the latent space reduced the 21 

between-sample correlation from 0.10 +/- 0.05 down to 0.02 +/- 0.01 (mean +/- standard deviation 22 

across tissues, Figure 2D and Supplementary Figure S2D and S3D). 23 
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 1 

Figure 2. FRASER corrects for covariations in alternative acceptor usage. (A-C) Intron-centered and 2 

logit-transformed 𝜓
5
 of the 10,000 most variable introns clustered by samples (columns) and introns (rows) 3 

for three representative GTEx tissues: suprapubic skin (A), left ventricle heart (B), and whole blood (C). 4 

Red and blue depict high and low intron usage, respectively. Colored horizontal tracks display sequencing 5 

center, batch, RNA integrity number (RIN), gender, age, and cause of death (DTHHRDY, Hardy scale 6 

classification) of the samples. (D) Boxplot of absolute values of between-sample correlations of row-7 
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centered logit-transformed 𝜓
5
 for 48 GTEx tissues before (orange) and after (green) correction for the latent 1 

space. These plots show that while tissue-specific correlation structures exist among samples, latent space 2 

fitting allows correcting for them. 3 

Calling aberrant splicing events using the beta-binomial distribution 4 

Having established an effective procedure to model between-sample covariations, we then 5 

addressed the issue of calling aberrant splicing events by finding statistically significant outlier 6 

data points. Based on the latent space, FRASER models the expected value of each observation 7 

(Methods). We considered the observations that significantly deviate from their expected value 8 

as outliers. To this end, we modeled random deviations from the expected values with the beta-9 

binomial distribution, a distribution for count fractions parameterized by its expected count ratio 10 

and an intra-class correlation parameter that accounts for variations exceeding sampling noise 11 

(Methods). This model allowed computing a two-sided P value for each observation (Methods). 12 

For the alternative acceptor splicing metric 𝜓5, the P values of introns with the same donor are 13 

not independent since the proportions they are based on sum to one. Therefore, we corrected the 14 

𝜓5 P values for each donor with the family-wise error rate using Holm's method, which holds 15 

under arbitrary dependence assumption (Methods).26 The same was done for 𝜓3 yielding a single 16 

P value per acceptor and sample. We additionally controlled the splice site P values for the false 17 

discovery rate (FDR) genome-wide per sample using Benjamini-Yekutieli’s method (Methods).27 18 

To showcase the application of FRASER, we used the suprapubic skin tissue from the GTEx 19 

dataset as done by Brechtmann et al.28 Figure 3A shows as an example the 𝜓5 metric of the 7th 20 

intron of SRGAP2, which exhibited a proportional relationship between the number of split reads 21 

supporting the 7th intron and the total number of split reads with the same donor site. For this 22 

example, the P values tended to be conservative yet modeling reasonably well the distribution of 23 

the data across samples (Figure 3B). Figure 3C shows as an example with an outlier the 𝜓5 metric 24 
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of the 17th intron of SRRT, with one data point exhibiting a much higher usage of this acceptor 1 

site than the other samples and a corresponding very low nominal P value (P = 1.03 x 10-10, Figure 2 

3D). Across all introns and splice sites, P values were found to be generally conservative (Figure 3 

3E and Supplementary Figure S5). An excess of low P values was detected for the most extreme 4 

ten thousands of the data, possibly reflecting genuine aberrant splicing events (Figure 3E). Similar 5 

results were found for all the investigated GTEx tissues (Supplementary Figure S6). 6 

 7 

Figure 3. Splicing outlier detection based on the beta-binomial distribution. (A) Intron split read counts 8 

(y-axis) against the total donor split read coverage for the 7th intron of SRGAP2. (B) Observed negative log-9 

transformed P values (y-axis) against expected ones (x-axis) of the 𝜓
5
 metric for the data shown in A. 10 

Under the null hypothesis, the data is expected to lie along the diagonal (red, 95% confidence bands in 11 

gray). (C) Same as A for the 17th intron of SRRT, showing an outlier (FDR < 0.1, red). (D) Same as B for 12 

the 17th intron of SRRT. The outlier is marked in red. (E) Same as in B across all introns and splice sites 13 

for 𝜓
5
 (orange), 𝜓

3
(green), and splicing efficiency (𝜃, purple). A-E is based on the suprapubic skin tissue 14 

from GTEx. 15 
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Recall benchmark of artificially injected outliers 1 

We next aimed at assessing the performance of FRASER and delineating the contribution of 2 

modeling the covariation on the one hand, and using the beta-binomial distribution on the other 3 

hand. Therefore, we simulated a ground truth dataset based on the suprapubic skin tissue in 4 

which we artificially injected splicing outliers with a frequency of 10-3, which resulted in 25,988, 5 

26,153 and 49,169 outliers for 𝜓5, 𝜓3, and 𝜃, respectively (Methods). The amplitude of the 6 

deviations from the original observed values were drawn uniformly between 0.2 and 1 and their 7 

directions (increase or decrease) were randomly assigned with equal probability (Methods). We 8 

then monitored outlier recall as well as precision, i.e. the proportion of injected outliers among the 9 

reported outliers. Methods not modeling covariation performed worse than methods modeling 10 

covariation at any level of recall and for all splicing metrics (Figure 4 and Supplementary Figure 11 

S7-8). Moreover, methods modeling covariation and using beta-binomial based P values yielded 12 

a higher precision than those using z scores (Figure 4 and Supplementary Figure S7-8). This 13 

higher precision was observed at all levels of recalls, simulated outlier amplitudes, and read 14 

coverage (Figure 4). Notably, using PCA and a z score cutoff equal to 2 instead of FRASER at 15 

FDR < 0.1 yielded two orders of magnitude more outliers across all GTEx tissues (Supplementary 16 

Figure S9) and a drastic drop in precision (3% versus 92% with FRASER) for a small increase in 17 

recall (98% versus 83% with FRASER, Supplementary Figure S10). This drastic difference of 18 

precision strongly suggests using an FDR cutoff rather than an absolute z score cutoff. 19 

The benchmark with simulated outliers also allowed investigating alternative ways to estimate the 20 

expected values by regression on the latent space. This included a beta-binomial regression, a 21 

robust version of the beta-binomial regression, as well as a least squares regression of logit-22 

transformed splicing metrics (Methods). The latter approach, which we eventually adopted for 23 

FRASER, had similarly high performance as the robust beta-binomial regression (Supplementary 24 

Figure S7-8, Methods) while being much faster to compute. The beta-binomial regression was 25 
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too sensitive to outlier data points and hence was outperformed by its robust version 1 

(Supplementary Figure S11). 2 

3 

Figure 4. Benchmark using artificially injected outliers for alternative acceptor usage. The proportion 4 

of simulated outliers among reported outliers (precision) plotted against the proportion of reported simulated 5 

outliers among all simulated outliers (recall) for increasing P values (FRASER, green and beta binomial, 6 

purple) or decreasing absolute z scores (PCA, orange). Additionally, all events with |𝛥𝜓5| < 0.1 are ranked 7 

last. The data is stratified by the mean coverage of the intron (columns) and by the injected absolute 𝛥𝜓5 8 

value (rows). The cutoffs for each method are marked (FDR < 0.1, circle, and absolute z score > 2, triangle). 9 

Light ribbons around the curves depict 95% confidence bands estimated by bootstrapping. These results 10 

show the importance of controlling for latent confounders, using a count-based distribution, and correcting 11 

for multiple testing. 12 
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Rare variant enrichment analysis 1 

We further evaluated the performance of FRASER by assessing the enrichment of rare genetic 2 

variants among splicing outlier genes with the rationale that some aberrant splicing events are 3 

caused by rare genetic variants. For this analysis, we defined a variant to be rare when having a 4 

minor allele frequency (MAF) less than 0.05 within GTEx20 and gnomAD29 as done for gene 5 

expression in Li et al.23 We annotated these variants in two ways. First, we considered splice 6 

region variants (Methods), which we defined as variants located within 1-3 bases of an exon or 7 

1-8 bases of an intron. This correspond to the union of the splice site dinucleotide and splice 8 

region variants as defined by the sequence ontology through the variant effect predictor 9 

(VEP).30,31 We found on average 299.4 +/- 207.6 rare splice region variants. Second, we 10 

considered rare variants predicted to affect splicing by MMSplice,8 a machine learning algorithm 11 

that scores variants as far as 100 base pairs away from splice sites (on average 66.0 +/- 48.0 12 

rare MMSplice variants, Methods). The consequences of a genetic variant on splicing may spread 13 

across splice sites of a gene, due to complex effects including competition between splice sites, 14 

or coordinated splicing between distant exons.32 Hence, the detectable effects of a variant 15 

affecting splicing may not necessarily be at its closest splice sites. Therefore, we computed the 16 

enrichment at the gene level. To this end, we computed gene-level P values using a family wise 17 

error rate correction across all splice sites within a gene (Methods). Additionally to the previously 18 

benchmarked methods, we also applied the method of Kremer et al.,15 which is based on the 19 

gene-level differential splicing algorithm Leafcutter.18  20 

Across all 48 GTEx tissues, FRASER showed higher enrichments than Leafcutter, Gaussian-21 

based P values, and non-corrected beta-binomial P values. The higher enrichments observed 22 

held for different nominal P value cutoffs and both for rare variants in the splice regions, as well 23 

as for those predicted to affect splicing by MMSplice (Figure 5 and Supplementary Figure S12). 24 

Notably, the MMSplice variant set showed 2 to 10 times higher enrichments across all methods 25 
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compared to the splice region variant set, emphasizing the importance of considering exonic or 1 

deep intronic variants as potential splice-affecting candidates. Altogether, this gene-level 2 

benchmark on non-simulated data confirms the importance of controlling for covariation and using 3 

a count fraction distribution to identify aberrant splicing. This benchmark also shows that FRASER 4 

outperforms both state-of-the-art methods, which are the Leafcutter based approach15 and the z 5 

score based approach.16 6 

 7 

Figure 5. Enrichment for rare variants. (A) Enrichment using FRASER (y-axis) against enrichment using 8 

the splicing detection approach from Kremer et al.15 (x-axis) for rare variants located in a splice region or 9 

for rare variants predicted to affect splicing by MMSplice8 (column). The enrichment is calculated for 10 

different nominal P value cutoffs (rows). Each dot represents a GTEx tissue. (B) The same as A 11 

but the enrichment of FRASER (y-axis) is compared against Gaussian based P values on top of 12 

PCA controlled splicing metrics (x-axis). In every panel, the enrichment for each of the 48 GTEx tissues 13 

is equal or higher for FRASER (points above the diagonal line). 14 
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Application to rare disease diagnosis 1 

Having established FRASER using a large cohort of healthy donors, we next reanalyzed the 119 2 

RNA-seq samples from skin fibroblasts of 105 individuals with a suspected rare mitochondrial 3 

disorder of Kremer et al. (hereafter the Kremer dataset).15 In a rare disease diagnosis context, the 4 

aim is to identify aberrant splicing events that could be disease causing, typically by disrupting 5 

the function of a phenotypically relevant gene. To this end, gene-level statistics are handier entry 6 

points than splice-site level statistics. Moreover, we suggest combining statistical significance 7 

cutoffs with effect size cutoffs because larger effects are more likely to have strong physiological 8 

impacts. For the Kremer dataset, FRASER reported a median of 12, 7, and 10 genes with at least 9 

one aberrant splicing event per sample for 𝜓5, 𝜓3, and splicing efficiency, respectively, at a 10 

significance level of FDR < 0.1 and an effect size greater than 0.3 (absolute difference between 11 

observed and expected value, Figure 6A). Similar amounts were found on all 48 GTEx tissues 12 

(Supplementary Figure S9). These criteria yielded slightly less splicing outliers than in the original 13 

study (1666 versus 1725, Figure 6B) yet detecting all novel pathogenic splice events reported in 14 

the original study (CLPP, TIMMDC1 in 2 individuals, and MCOLN1, Figure 6B). Notably, the intron 15 

retention event in the gene MCOLN1 was missed by the aberrant splicing pipeline used by Kremer 16 

et al.15 because it was based on Leafcutter which does not consider non-split reads. (Kremer et 17 

al. identified the event through mono-allelic expression of the heterozygous intronic variant.) 18 

Generally, including the splicing efficiency metrics with FRASER led to a two-fold increase of 19 

detected aberrant events over considering the alternative splicing metrics 𝜓5, and 𝜓3 alone 20 

(Figure S13). Altogether, these findings show the clinical relevance and the complementarity of 21 

using both splicing efficiency and alternative splicing metrics. 22 

 23 
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1 

Figure 6. Aberrant splicing detection in a rare disease cohort. (A) Number of aberrantly spliced genes 2 

within the Kremer dataset (FDR < 0.1 and |𝛥𝜓| > 0.3) per sample ranked by the number of events for 𝜓
5
 3 

(orange), 𝜓
3
 (green), and 𝜃 (purple). (B) Venn diagram of the aberrant splicing events detected by FRASER 4 

using alternative splicing (orange, 𝜓) or splicing efficiency (violet, 𝜃) only and by Kremer et al. (green).15 5 

Pathogenic splicing events are labelled with the gene name.  6 

 7 

Moreover, the reanalysis of the rare disease dataset highlighted aberrant alternative donor usage 8 

in the gene TAZ for the undiagnosed individual 74116 (difference 𝜓3 =  −0.88 and FDR = 1.98 x 9 

10-9, Figure 7A), which was overlooked in the original study.15 The nearly complete loss of the 10 

canonical donor site usage of the 4th exon (Figure 7B-D) resulted in the usage of a newly created 11 

donor site located 22 bp inside the 4th exon (Figure 7E). Usage of the new donor site leads to an 12 

ablation of 8 amino acids of the protein encoded by TAZ, Tafazzin. Tafazzin catalyzes maturation 13 

of cardiolipin, a major lipid constituent of the inner mitochondrial membrane involved in energy 14 

production and mitochondrial shape maintenance.33 Moreover, individual 74116 harbors a rare 15 

homozygous synonymous variant (c.348C>T) that creates the new upstream donor site by 16 

introducing a GT dinucleotide (Figure 7E). This variant had not been prioritized by WES analysis 17 

as it was synonymous and not indexed by ClinVar.34 However, the variant had been previously 18 
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associated with a splicing defect in TAZ and dilated cardiomyopathy,35 consistent with individual 1 

74116’s myopathic facies and arrhythmias, thereby establishing the genetic diagnosis. 2 

. 3 

4 

Figure 7. Detection of a pathogenic splicing defect using FRASER. (A) Gene-level significance (-5 

log10(P), y-axis) versus effect (observed minus expected 𝜓
3
, x-axis) for alternative donor usage for the 6 

individual 74116. Five genes (red dots, among them TAZ) passed both the genome-wide significance cutoff 7 

(horizontal dotted line) and the effect size cutoff (vertical dotted lines). (B) Number of split reads spanning 8 

from the 4th exon to the 5th exon (y-axis) against the total number of split reads at the acceptor site of the 9 

5th exon (x-axis) of the TAZ gene. Sample 74116 (red) deviates from the cohort trend. (C) Observed (y-10 

axis) against FRASER-predicted (x-axis) 𝜓
3
values for data in B. (D) Quantile-quantile plot of observed P 11 

values (-log10(P), y-axis) against expected P values (-log10(P), x-axis) and 95% confidence band (gray) for 12 

data in B. Sample 74116 (red) shows an unexpected low P value. (E) Sashimi plot of the exon-truncation 13 

event in RNA-seq samples of the TAZ-affected (red) and three representative TAZ-unaffected (orange) 14 

individuals. The RNA-seq read coverage is given as the log10 RPKM-value (Reads Per Kilobase of transcript 15 

per Million mapped reads, y-axis) and the number of split reads spanning an intron is indicated on the exon-16 

connecting line. At the bottom, the gene model of the RefSeq annotation is depicted in black and the 17 
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aberrantly spliced exon is coloured in red. The insert depicts the donor-site creating variant of the affected 1 

individual 74116. 2 

Implementation 3 

FRASER is implemented as an R/Bioconductor package.36,37 It contains functions to count RNA-4 

seq reads, fit the model, calculate P values, as well as to extract and visualize the results. The 5 

workflow and functionalities of the FRASER package are aligned with the previously published 6 

OUTRIDER package.28 The package allows for a full analysis to be made with only a few lines of 7 

code and comes along with a comprehensive vignette guiding through a typical analysis. It is 8 

available as open source through https://github.com/gagneurlab/FRASER. 9 

Discussion 10 

We have introduced FRASER, an algorithm specifically developed for detecting aberrant splicing 11 

events in RNA-seq data. The combination of three features make FRASER unique: (i) it considers 12 

non-split reads overlapping splice sites, allowing for detecting intron retention, (ii) it automatically 13 

controls for latent confounders, and (iii) it assesses statistical significance with a count distribution. 14 

Extensive benchmarks with artificially simulated aberrant splicing events, enrichment of rare 15 

variants with a splicing effect potential, as well as reanalysis of a rare disease cohort 16 

demonstrated the importance of each of these features. FRASER is provided as an easy-to-use 17 

R/Bioconductor package. 18 

We implemented FRASER in a modular way so that the procedures for fitting the latent space 19 

and for estimating expected values given the latent space can be independently chosen as well 20 

as the distributions used to define splicing outliers. The best performing model was obtained using 21 

a hybrid combination in which fitting the latent space and estimating expected values are 22 
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performed with a least-squared loss while the beta-binomial distribution is used for assessing the 1 

significance of the outlier. This combination does not correspond to a maximum likelihood fit of a 2 

particular distribution we are aware of, but it gave the best empirical results. Future research could 3 

investigate whether some other classes of models such as a multivariate logit-normal binomial 4 

distribution could provide good maximum likelihood fits to splicing metrics. 5 

FRASER is based on splicing metrics defined at the level of individual splice sites. In theory, using 6 

a gene model that integrates data across entire splice isoforms can increase sensitivity because 7 

all reads supporting an isoform over another contribute to the test statistic. However, the difficulty 8 

is that either a gene model must be known beforehand or it has to be assembled de novo. While 9 

we were developing FRASER, a preprint described a splicing outlier detection method that fits a 10 

Dirichlet-Multinomial distribution at the gene level on all split read counts of alternatively spliced 11 

exon-exon junctions called de novo.24 The method appears to require robust gene models in the 12 

first place, because data preprocessing and filters yielded only 6,000 genes analysed on a typical 13 

GTEx tissue. This filtering and clustering may be appropriate to investigate healthy populations 14 

and basic biology of aberrant splicing,24 but limits the usability in rare disease diagnostics, where 15 

a single event could be the disease-causing one.     16 

One limitation of RNA-seq for diagnosis of rare diseases is that the affected tissue may not be 17 

accessible. Nonetheless, a causal splicing defect may also be detectable in a clinically accessible 18 

tissue such as blood or skin, while its pathological consequence may be revealed only in the 19 

affected tissue. The TAZ gene is such an example with pathological effects in heart but with 20 

normal gene expression levels in skin despite the splice defect. We suggest investigators to check 21 

the gene and exon overlap with tissues of interest, using the MAJIQ-CAT web interface38 or to 22 

refer to the full splice site map of the GTEx tissues we have compiled here (Web Resources). 23 

Moreover, this GTEx splice site map can be used to extend RNA-seq compendia for users with 24 

only a few samples. In conclusion, through the easy to use R/Bioconductor package and the ability 25 
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to utilize the preprocessed GTEx dataset, we foresee FRASER to become an important tool for 1 

the growing field of RNA-seq based diagnosis of rare diseases.  2 

Methods 3 

Datasets 4 

We considered two RNA-seq datasets: (i) a dataset consisting of 119 RNA-seq samples from skin 5 

fibroblasts of 105 individuals with a suspected rare mitochondrial disease15 (the Kremer dataset) 6 

and (ii) 7,842 RNA-seq samples from 48 tissues of 543 assumed healthy individuals of the 7 

Genotype Tissue Expression Project V720 (hereafter the GTEx dataset). Both datasets are not 8 

strand-specific. Read mapping files in the BAM file format were obtained for the Kremer dataset 9 

by mapping the RNA-Seq reads to the UCSC hg19 genome assembly39 with the STAR aligner 10 

(version 2.4.2a).40 To detect novel exon junctions, we ran STAR in the two-pass mode (option 11 

twopassMode=Basic) with minimal chimeric segment length of 20 (chimSegmentMin=20). For 12 

GTEx, we obtained the BAM files from dbGaP (phs000424.v7.p2), which were already aligned 13 

with STAR (version 2.4.2a). The GTEx consortia used the same parameters except mapping 14 

against the GRCh37 genome assembly based on the GENCODE v19 annotation.25 We 15 

considered only samples with an RNA integrity number of 5.7 or higher and marked as usable by 16 

the GTEx consortia (SMRIN and SMAFRZE column, respectively) and discarded tissues with less 17 

than 50 samples. 18 

Read Counting and splicing metrics 19 

The set of acceptor and donor splice sites (or the splice site map) of a dataset was defined by 20 

calling all introns including de novo events based on RNA-seq split reads. To this end, the split 21 
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reads were extracted from the BAM files and counted using the R/Bioconductor packages 1 

GenomicAlignments and GenomicRanges.41 Having defined the splice site map, non-split reads 2 

overlapping splice sites were counted in order to compute the splicing efficiency, which can be 3 

used to detect intron retention. Specifically, the non-split reads were counted for each splice site 4 

using the R/Bioconductor Rsubread package42 requiring at least 5 nt aligned on each side of the 5 

splice site to be robust against mapping errors of very short overhangs as done in Braunschweig 6 

et al.43 7 

As described by Pervouchin et al.,22 we compute for each sample, for donor D (5’ splice site) and 8 

acceptor A (3’ splice site) the 𝜓5 and 𝜓3 values, respectively, as: 9 

𝜓5(𝐷, 𝐴) =  
𝑛(𝐷,𝐴)

∑ 𝑛(𝐷,𝐴′)𝐴′

 and    (Equation 1) 10 

𝜓3(𝐷, 𝐴)  =  
𝑛(𝐷,𝐴)

∑ 𝑛(𝐷′,𝐴)𝐷′

,     (Equation 2) 11 

where 𝑛(𝐷, 𝐴) denotes the number of split reads spanning the intron between donor 𝐷 and 12 

acceptor 𝐴 and the summands in the denominators are computed over all acceptors found to 13 

splice with the donor of interest (Equation 1), and all donors found to splice with the acceptor of 14 

interest (Equation 2). To not only detect alternative splicing but also partial or full intron retention, 15 

we considered a splicing efficiency metric. Multiple related definitions exist including 3’ SS ratio,44 16 

completeness of splicing index,45 and percent intron retained.43 We used the 𝜃5 and 𝜃3 values as 17 

defined by Pervouchin et al.22 Specifically: 18 

𝜃5  =  
∑ 𝑛(𝐷,𝐴′)𝐴′

𝑛(𝐷) + ∑ 𝑛(𝐷,𝐴′)𝐴′

 and    (Equation 3) 19 

𝜃3  =   
∑ 𝑛(𝐷′,𝐴)𝐷′

𝑛(𝐴) + ∑ 𝑛(𝐷′,𝐴)𝐷′

,     (Equation 4) 20 

where 𝑛(𝐷) is the number of non-split reads spanning exon-intron boundary of donor D, and 𝑛(𝐴) 21 

is defined as the number of non-split reads spanning intron-exon boundary of acceptor A.  While 22 
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we calculate 𝜃 for the 5' and 3' splice sites separately, we do not distinguish later in the modeling 1 

step between 𝜃5 and 𝜃3 and hence call it jointly 𝜃. 2 

For robust fitting of the model, we restricted the analysis to splice sites of introns supported by at 3 

least 20 split reads in at least one sample. Further, we filtered out splice sites and introns where 4 

more than 95% of the samples had zero coverage. 5 

Statistical Model 6 

The metrics 𝜓5, 𝜓3, and 𝜃 are count proportions. For each of these metrics, we model the 7 

distribution of the numerator conditioned on the value of the denominator using the beta-binomial 8 

distribution. Unlike the binomial distribution, the beta-binomial distribution can account for 9 

overdispersion. Specifically, for 𝜓5, we assume that the split read count 𝑘𝑖𝑗  of the intron 𝑗 = 1, . . . , 𝑝 10 

in sample 𝑖 = 1, . . . , 𝑁 follows a beta-binomial distribution with an intron-specific intra-class 11 

correlation parameter 𝜌𝑗 and a sample- and intron-specific proportion expectation 𝜇𝑖𝑗: 12 

𝑃(𝑘𝑖𝑗)  =  𝐵𝐵(𝑘𝑖𝑗|𝑛𝑖𝑗 , 𝜇𝑖𝑗 , 𝜌𝑗),    (Equation 5) 13 

where 𝑛𝑖𝑗 defines the total number of split reads having the same donor site than intron j. The 14 

metrics 𝜓3 and 𝜃 are modeled analogously. For ease of writing we will refer in the following with 15 

𝜓 always to the site-specific 𝜓5 and 𝜓3 form. Both 𝜇𝑖𝑗 and 𝜌𝑗 are limited to the range [0,1]. The 16 

parametrization of the beta-binomial distribution we used can be found in the Supplemental 17 

Material and Method section.  18 

The proportion expectation 𝜇𝑖𝑗 is jointly modeled using a latent space that captures covariations 19 

between samples. Specifically, we model: 20 

𝜇𝑖𝑗 = 𝜎(𝑦𝑖𝑗) =
𝑒𝑥𝑝(𝑦𝑖𝑗)

1 + 𝑒𝑥𝑝(𝑦𝑖𝑗)
,    (Equation 6) 21 
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𝐲𝑖 = 𝐡𝑖𝐖𝑑 + 𝐛,    (Equation 7) 1 

𝐡𝑖 = �̃�𝑖𝐖𝑒,      (Equation 8) 2 

where the vectors 𝐡𝑖 are the rows of the matrix 𝐇, the 𝑁 × 𝑞 projection of the data onto the q-3 

dimensional latent space with 1 <  𝑞 <  𝑚𝑖𝑛(𝑝, 𝑁), 𝐖𝑒 is the 𝑝 × 𝑞 encoding matrix, 𝐖𝑑 the 𝑞 × 𝑝 4 

decoding matrix, and the 𝑝-vector 𝐛 is a bias term. The input vector �̃�𝑖 is given by the centered 5 

and logit-transformed pseudo-count ratios. We define �̃�𝑖 as:  6 

�̃�𝑖𝑗 = 𝑥𝑖𝑗 − �̅�𝑗,      (Equation 9) 7 

   𝑥𝑖𝑗 = logit (
𝑘𝑖𝑗 + 1

𝑛𝑖𝑗 + 2
),      (Equation 10) 8 

   logit(𝑎) = log
𝑎

1−𝑎
.      (Equation 11) 9 

Fitting of the latent space and the distribution 10 

Four parameters must be fitted, namely 𝐖𝑒, the encoding matrix, 𝐖𝑑, the decoding matrix, 𝐛, the 11 

bias term, and 𝜌𝑗, the intra-class correlation of the beta-binomial distribution. The fitting of these 12 

parameters is achieved in two steps. First, the latent space 𝐇 and the expected splicing 13 

proportions 𝜇𝑖𝑗 are fitted with a principal component analysis (PCA). To this end, a PCA is 14 

computed on the input matrix 𝐗 using the pcaMethod package.46 The latent space 𝐇 is then 15 

computed with Equation (8) by setting the encoder matrix 𝐖𝑒 to the first 𝑞 loadings of the PCA. 16 

Given the latent space 𝐇, 𝜇𝑖𝑗 is computed by using the transpose of 𝐖𝑒 for 𝐖𝑑 and setting the 17 

bias term to �̅�𝑗 . In the second step, the intra-class correlation parameter 𝜌𝑗 is fitted given the count 18 

proportion expectations using a beta-binomial loss function. Specifically, we use the optimize 19 

function from R37 and minimize the average negative beta-binomial log-likelihood in parallel 20 

across introns (Supplemental Material and Method). 21 
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Additionally, we implemented an alternative approach to fit the distribution parameters given the 1 

latent space 𝐇. To this end, we use a weighted negative beta-binomial log-likelihood loss function 2 

to model in an iterative fashion the decoding matrix 𝐖𝑑 and the bias term 𝐛 on the one hand and 3 

the intra-class correlation parameter 𝜌 on the other hand. First, we initialize the parameters as 4 

described before using PCA. Given the latent space, these parameters can be fitted 5 

independently for each intron j. We start by optimizing 𝜌𝑗 given the weights 𝐰𝑗
𝑑 and the bias 𝑏𝑗 6 

(step 1). Then, we optimize 𝐰𝑗
𝑑 and 𝑏𝑗 given 𝜌𝑗 in step 2. Steps 1 and 2 are repeated until the 7 

average weighted negative log-likelihood of each step in one iteration does not differ more than 8 

the convergence threshold of 10−5 from the last step of the previous iteration, or 15 iterations are 9 

reached, which triggers a warning. We use the L-BFGS method implemented in the R function 10 

optim to fit the decoder weights and the bias.47 A detailed derivation of the used loss functions 11 

and the respective gradients can be found in the Supplemental Material and Method section. 12 

Robust distribution fitting using a weighted log-likelihood 13 

Outlier data points can have strong effects on the model fitting. We use weights in the loss function 14 

to decrease the influence of outliers on the model, following the edgeR approach.48 Specifically, 15 

we define the weight for each observation based on its Pearson residual. The Pearson residual 16 

of the observed data point 𝑥𝑖𝑗 (Equation 10) with respect to the beta-binomial distribution including 17 

the pseudocounts is defined as follows: 18 

𝑟𝑖𝑗 =  
observed− expected

√Var(expected)
 =  

𝑥𝑖𝑗 − 𝜇𝑖𝑗

√
𝜇𝑖𝑗(1 − 𝜇𝑖𝑗)(1 + (𝑛𝑖𝑗−1)𝜌𝑗)

𝑛𝑖𝑗 + 2

 . (Equation 11) 19 

The weights 𝑤𝑖𝑗 for sample 𝑖 and intron 𝑗 are obtained from these residuals using the Huber 20 

function:42 21 
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𝑤𝑖𝑗 =  {
1 for |𝑟𝑖𝑗| ≤  𝑘,
𝑘

|𝑟𝑖𝑗|
, otherwise     

 ,    (Equation 12) 1 

where we use 𝑘 = 1.345 as suggested in the edgeR package,48 which leads to downweighting of 2 

about 5% of the data points. These weights are then included in the calculation of the log-3 

likelihood yielding the average weighted log-likelihood 𝐿𝑊: 4 

𝐿𝑊 =
1

𝑝×𝑚
∑ 𝑤𝑖𝑗𝐿𝑖𝑗𝑖,𝑗 ,     (Equation 13) 5 

𝐿𝑖𝑗 = − log (𝐵𝐵(𝑘𝑖𝑗|𝑛𝑖𝑗 , 𝜇𝑖𝑗 , 𝜌𝑗)),   (Equation 14)   6 

where 𝐿𝑖𝑗 is the beta-binomial log-likelihood of sample 𝑖 and intron 𝑗 as defined in the 7 

Supplemental Material and Method section. 8 

Finding the Hyperparameters 9 

The model fitting procedure described above leaves one hyperparameter that remained to be 10 

optimized: the latent space dimension 𝑞. In order to find the optimal latent space dimension 𝑞, we 11 

implemented a denoising autoencoder approach.19 Specifically, we generated corrupted data by 12 

injecting aberrant read count ratios with a frequency of 10−2 into the original data. The injection 13 

scheme is laid out in detail in the next section. We then select 𝑞 as the dimension maximizing the 14 

area under the precision-recall curve for identifying corrupted read ratios. This is done for each 15 

splicing metric separately. To speed up the fitting procedure of the hyperparamtere, we randomly 16 

subset the input matrix 𝐗 to 15,000 introns out of the 30,000 most variable introns with a mean 17 

total coverage greater than 5. This subsetting is done before the injection of aberrant read count 18 

ratios. 19 
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Injection of artificial outliers 1 

To fit the FRASER hyperparameter as well as to compare the outlier detection performance 2 

between FRASER and other methods, we developed a procedure to inject artificial outliers into a 3 

given dataset. For injection, we considered all expressed introns or splice sites within the dataset 4 

and injected only one outlier per splice site and sample. Outliers were randomly injected with a 5 

frequency of 10−2 for the hyperparameter optimization and with a frequency of 10−3 for the 6 

benchmarking. 7 

To create aberrant splicing ratios, we inject in silico a splicing outlier count 𝑘𝑖𝑗
𝑜
 by changing the 8 

original read count 𝑘𝑖𝑗  such that the value of 𝜓𝑖𝑗 changes by 𝛥𝜓𝑖𝑗
𝑜
. 𝛥𝜓𝑖𝑗

𝑜
 is drawn from a uniform 9 

distribution: 10 

𝛥𝜓𝑖𝑗
𝑜  ∼  ±𝑈(0.2, 𝛥𝜓𝑖𝑗

𝑚𝑎𝑥),    (Equation 15) 11 

where 𝛥𝜓𝑖𝑗
𝑚𝑎𝑥

 is the maximal possible 𝛥𝜓𝑖𝑗 for intron 𝑗 in sample 𝑖. The value of 𝛥𝜓𝑖𝑗
𝑚𝑎𝑥

 is 12 

dependent on the randomly sampled injection direction: 𝛥𝜓𝑖𝑗
𝑚𝑎𝑥 = 1 − 𝜓𝑖𝑗 and 𝛥𝜓𝑖𝑗

𝑚𝑎𝑥 = 𝜓𝑖𝑗 for 13 

up- or downregulation, respectively. To ensure that an aberrant splice ratio can be injected the 14 

direction is switched if 𝛥𝜓𝑖𝑗
𝑚𝑎𝑥 < 0.2. We injected outliers only for introns harboring 10 reads or 15 

more in the considered sample. 16 

Taking the pseudocounts into account, the outlier count 𝑘𝑖𝑗
𝑜
 is then given by  17 

𝑘𝑖𝑗
𝑜  = round((𝜓𝑖𝑗 ± 𝛥𝜓𝑖𝑗

𝑜) ⋅ (𝑛𝑖𝑗 + 2) − 1).  (Equation 16) 18 

In order to provide a biologically realistic outlier injection scheme that preserves the total amount 19 

of reads, the counts for the introns 𝑙 sharing the same donor or acceptor, respectively, with 𝑘𝑖𝑗
𝑜
 20 

are changed accordingly, where the 𝛥𝜓𝑖𝑗
𝑜
 change is distributed equally over all secondary introns 21 

𝑙 as follows: 22 
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𝛥𝜓𝑖𝑙
𝑠 = −𝛥𝜓𝑖𝑗

𝑜 ⋅
𝜓𝑖𝑙

1−𝜓𝑖𝑗
 and    (Equation 17) 1 

𝑘𝑖𝑙
𝑠 = round((𝜓𝑖𝑙 ± 𝛥𝜓𝑖𝑙

𝑠) ⋅ (𝑛𝑖𝑙 + 2) − 1).  (Equation 18) 2 

Statistical significance 3 

Statistical significance of outliers is performed by testing the null hypothesis that the count 𝑘𝑖𝑗  with 4 

𝑛𝑖𝑗 trials follows a beta-binomial distribution with parameters fitted as described above for every 5 

pair of sample 𝑖 and intron 𝑗. We compute two-sided P values 𝑝𝑖𝑗 using the mean probability of 6 

success 𝜇𝑖𝑗 and the fitted intra-class correlation parameter 𝜌𝑗 as follows: 7 

𝑝𝑖𝑗  =  2 ⋅ min { 
1

2
, ∑ 𝐵𝐵(𝑘|𝑛𝑖𝑗 , 𝜇𝑖𝑗 , 𝜌𝑗)

𝑘𝑖𝑗

𝑘=0
, 1 − ∑ 𝐵𝐵(𝑘|𝑛𝑖𝑗 , 𝜇𝑖𝑗 , 𝜌𝑗)

𝑘𝑖𝑗

𝑘=0
 }. (Equation 19) 8 

The term ½ is included to prevent getting P values greater than 1, which can happen due to the 9 

nature of the discrete distributions. 10 

The P values of introns sharing a splice site are not independent since the proportions they are 11 

based on sum to one. We therefore correct the P values for each splice site with the family-wise 12 

error rate (FWER) using Holm's method, which holds under arbitrary dependence assumption,26 13 

and report the minimal corrected P value per splice site. An additional FWER step is performed 14 

on the gene level if gene-level P values are requested. To correct for multiple testing genome-15 

wide, we use the Benjamini-Yekutieli false discovery rate (FDR) method27 as both splice site 16 

corrected P values and the gene-wise corrected P values can still be correlated due to biological 17 

effects that are not completely removed by the model. All P value corrections are done per 18 

sample. 19 
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Z Score and 𝛥𝜓 Calculation 1 

Z scores 𝑧𝑖𝑗 are calculated per intron on the difference on the logit scale between the measured 2 

𝜓 value including pseudocounts and the proportion expectation 𝜇𝑖𝑗 as: 3 

𝑧𝑖𝑗 =
𝛿𝑖𝑗−�̅�𝑗

sd(𝛿𝑗)
,     (Equation 20) 4 

𝛿𝑖𝑗 = logit (
𝑘𝑖𝑗 + 1

𝑛𝑖𝑗 + 2
) − logit(𝜇𝑖𝑗).  (Equation 21) 5 

 6 

The 𝛥𝜓 values are calculated as the difference between the observed 𝜓𝑖𝑗 value on the natural 7 

scale including pseudocounts and the proportion expectations 𝜇𝑖𝑗: 8 

𝛥𝜓𝑖𝑗 = 𝜓𝑖𝑗 − 𝜇𝑖𝑗 =
𝑘𝑖𝑗 + 1

𝑛𝑖𝑗  + 2
− 𝜇𝑖𝑗.  (Equation 22) 9 

Alternative Splicing Outlier Detection Methods 10 

We implemented different alternative splicing outlier detection methods to assess the 11 

performance of FRASER. As the baseline for our approach, we used a simple beta-binomial 12 

distribution (BB) with no correction for existing covariation and the parameters 𝜇𝑖𝑗 and 𝜌𝑗 were 13 

estimated with the R package VGAM.49 Further, we implemented a Z score approach similar to 14 

the approach described by Frésard et al.16 Instead of regressing out the top 𝑞 principal 15 

components accounting for 95% of the variation within the data, we used the top 𝑞 loadings of the 16 

PCA maximizing the precision-recall of in silico injected splicing outliers and computed the Z 17 

scores according to Equation (16). Finally, we implemented the Leafcutter18 approach described 18 

by Kremer et al,15 where one sample is compared against all others within the dataset and no 19 

control for latent sources of sample covariation is considered. 20 
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Enrichment analysis 1 

For the GTEx enrichment analysis, we obtained all rare variants (MAF < 0.05 within all 635 GTEx 2 

samples and in gnomAD29) from the GTEx whole genome sequencing genetic variant data (V7). 3 

From this rare variant set, we extracted on the one hand all annotated splicing variants 4 

(splice_donor, splice_acceptor, and splice_region) according to the sequencing ontology and 5 

VEP.30,31 This covers all variants around the exon-intron and intron-exon boundary, which is 1-3 6 

bases within the exon and 1-8 bases within the intron. On the other hand, we extracted variants 7 

predicted to affect splicing by MMsplice.8 To this end, we scored all variants within 100 bp of an 8 

annotated exon (GENCODE v30)25 with MMSplice in an exon-centric way. Then, variant-exon 9 

pairs with a score of |𝛥logit(𝜓)| > 2 were selected. We then computed enrichments for rare 10 

splicing variants found within outlier genes as the proportion of outliers having a rare splicing 11 

variant over the proportion of non-outliers having a rare splicing variant. 12 

Description of Supplemental Data 13 

The Supplemental Data includes 13 figures. The Supplemental Material and Methods section 14 

includes detailed derivations of the used loss functions and their respective gradients. 15 
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