
 

Figure 8. Putative ORFs in Deinococcus radiodurans str. R1 with matching proteogenomic evidence. 

(A) Categorization of 59 putative ORFs with at least two matching peptides not present in Ensembl or 

NCBI annotation (assembly ASM856v1). (B-F) Genome view by IGV (Robinson et al. 2011) showing 

identified annotated (dark grey) or novel (orange) peptides and their matching (longest) ORFs. 

Putative novel translation start sites were indicated by arrows with the respective start codon. In 

addition, stranded mRNA-seq coverage was displayed from unstressed wild-type D. radiodurans str. 

R1 (Lin et al. 2016). Respective genome region coordinates were (B) 1:1,396,647-1,396,869, (C) 

1:2,419,754-2,421,036, (D) 1:264,080-266,689, (E) 1:2,162,416-2,163,711, and (F) 1:2,518,399-

2,519,021. 
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DISCUSSION 

Automated prokaryotic genome annotation is indispensable given the exponential increase 

of sequenced bacterial genomes. Despite their utility, they can propagate inconsistent gene 

annotations across bacterial species (Poptsova and Gogarten 2010; Richardson and Watson 2013; 

Breitwieser et al. 2019; Salzberg 2019). Here, we apply an optimized proteogenomics workflow for 

bacteria to identify, unannotated protein-coding ORFs and correct existing annotations. 

Proteogenomic searches solely require a genome sequence, for which all possible canonical or near-

cognate start codon initiated ORFs are searched (≥ 30 bp). Similar annotation-less searching for such 

small protein products has been performed before in Mycobacterium pneumoniae (Miravet-Verde et 

al. 2019). However, we perform class-specific FDR estimation of annotated and novel peptides, which 

is a basal guideline in and essential to achieve high sensitivity in proteogenomics searches 

(Nesvizhskii 2014; Li et al. 2016). Whereas a threshold of two unique peptides was posed to filter 

true novel ORFs (Miravet-Verde et al. 2019), high-scoring peptides nonetheless revealing true 

positive ORFs were not considered further. For instance, of the 49 putative ORFs in S. Typhimurium 

matched by a single peptide (with at least 2 PSMs), 35 were labeled high-confidentwhen considering 

additional meta-data such as matching ribo-seq data (Ndah et al. 2017), de novo ORF predictions 

(Ndah et al. 2017; Clauwaert et al. 2019; Miravet-Verde et al. 2019), protein homology of the 

unannotated ORF and quality of the corresponding fragmentation spectrum. Comparing the 

fragmentation of synthetic peptides can additionally be used to validate such one-hit wonders 

(Friedman et al. 2017). Due to the recent development and accuracy of peak intensity prediction 

tools such as MS²PIP (Degroeve and Martens 2013) or Prosit (Gessulat et al. 2019) - the latter trained 

on synthetic peptides - the comparison of predicted and empirical peptide fragmentation spectra is 

automated and can deliver additional PSM scoring metrics to be used by semi-automated machine 

learning tools such as Percolator (Gessulat et al. 2019; Silva et al. 2019). Notably, we used correlation 

to MS²PIP-predicted spectra before to discriminate high-confidence unannotated peptides in 

Arabidopsis thaliana (Willems et al. 2017). In line with our previously reported findings when making 
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use of the PROTEOFORMER pipeline (Verbruggen et al. 2019),  our proteogenomic pipeline , 

illustrates how Percolator rescoring increases the number and confidence of (un)annotated peptide 

identifications (Figure 2, 4).  

Co-fragmenting peptides are widespread in MS² spectra and several algorithms have been 

developed to mine this traditionally untapped source of peptides. In our proteogenomic effort, we 

used an iterative search strategy similar to Shteynberg et al. (Shteynberg et al. 2015) that removes 

fragment peaks identified in a previous search round (Figure 1). Such iterative searching identified 

19,283 and 7,585 non-redundant peptides in a second and third search round when searching S. 

Typhimurium proteomics data, respectively (Figure 2).  Comparison to the 678 peptides identified 

thanks to the second peptide search by Andromeda (Cox et al. 2011) shows 568 out of 678 co-

fragmenting peptides (83.8%) to be identified by our search strategy (Figure S3). It should be noted 

that the second search in Andromeda is more strict as it is solely performed in case overlapping 

precursor peptides are detected in 3D LC-MS maps (Cox et al. 2011), whereas in our iterative search 

strategy all identified MS² spectra (PSM Q-value 1%) are re-searched. Supporting co-fragmenting 

peptide identifications, 78.6% of the chimeric identifications match peptides identified in the first 

search round. Furthermore, 2,064 out of 2,175 peptides (94.9%) exclusively identified in iterative 

searches match proteins with supportive MS-evidence obtained in the first search round, which 

overall indicates the power of our approach to increase proteome coverage. Furthermore, the other 

111 co-fragmenting peptides led to the discovery of 102 additional proteins that showed lower 

translation levels by ribo-seq than proteins identified in the first search round (Figure 3B). Similar 

results have been reported, though based on mRNA-seq expression levels (Dorfer et al. 2018). As 

such, identification of co-fragmenting peptides increases protein coverage as well as proteome depth 

and thus enables the additional identification of of proteins with low abundance. The occurrence of 

co-fragmented peptides is dependent on several factors such as sample complexity, employed liquid 

chromatography set-up and MS instrument settings. For instance, broadening the precursor m/z 

isolation width and/or shortening the dynamic exclusion time will favor the identification of co-
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fragmented peptides (Dorfer et al. 2018). In case of our proteomics datasets, an isolation width of 

1.5 m/z and a 12 s exclusion time were used on a Q Exactive HF instrument. Although not performed 

here, MS instrument settings can be tuned to facilitate the identification of chimeric spectra (Dorfer 

et al. 2018). Another alternative to avoid the preferential selection of more abundant peptide 

precursors is to operate in data-independent acquisition (DIA) modus. Here, no precursor selection is 

performed but consecutive m/z ranges are scanned and recorded in total, reducing the 

discrimination of low-abundant peptides and increasing reproducibility. Also in this endeavor, MS² 

spectrum prediction tools can prove resourceful for proteogenomics by creating spectral libraries 

that include potential unannotated peptides. 

We first applied our proteogenomic pipeline to S. Typhimurium, for which we earlier 

reported ribo-seq assisted de novo ORF predictions (Ndah et al. 2017; Clauwaert et al. 2019). Our 

pipeline showed a drastic improvement in the proteomic detection of new protein start sites and 

intergenic ORFs. In our S. Typhimurium proteome analysis, correct protein start annotation was 

proven to be a major issue as we obtained evidence of 38 Nt-extended protein forms or proteoforms 

were corrected (Figure 5). Such correct delineation of protein start sites is a known challenge in 

prokaryotic annotation (Haft et al. 2018). However, comparing to the annotation of the related S. 

Typhimurium LT2 strain, 32 out of 38 Nt-extensions corresponded to annotated LT2 ORFs. Likely, the 

misannotation of protein N-termini in case of SL1344 originates from historical reasons, as the 

genome assembly of S. Typhimurium LT2 used an updated gene annotation strategy including the 

reassessment of start predictions (McClelland et al. 2001). Notably, the updated annotation of the 

SL1344 by PGAP (version 4.4, updated October 2018) resolved these 32 protein start sites, 

emphasizing the need to compare and select the most optimal genome assembly. Next to protein 

start sites, we also identified several novel ORFs. These ORFs encode hypothetical proteins predicted 

by PGAP, but also proteins experimentally characterized before in S. Typhimurium or related species. 

For instance, the small protein MntS (Figure S5C) described in E. coli (Waters et al. 2011) or the VapB 

and VapC proteins discovered on the virulence plasmid of S. Typhimurium Dublin (Pullinger and Lax 
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1992) and later experimentally verified in S. Typhimurium (Winther and Gerdes 2009). Notably, the 

small size (42 amino acids) of mntS is likely a determining factor hindering its automated gene 

annotation, as small ORFs are under-represented in prokaryotic genomes (Miravet-Verde et al. 

2019). However, also a 199 amino acid-long ORF Chr:2,819,729-2,820,325 could be identified, likely 

missed due to its location antisense to annotated ORFs for which no translation evidence was found 

in our sampled conditions (Figure 6B). Other unannotated ORFs well-supported by experimental 

evidence include alternative protein forms or proteoforms. For instance, the identified frameshift of 

prfB (Figure S6A) is a pioneering example of an efficient frameshift in E. coli (Craigen and Caskey 

1986) and an evolutionary study showed that for ~70% of 86 analyzed bacterial species such 

frameshifting is conserved (Baranov et al. 2002). Next to frameshifting, alternative translation 

initiation sites downstream of the canonical start codon can give rise to Nt-truncated proteoforms. 

For instance, identification the well-characterized truncated form of SpaO (Bzymek et al. 2012; Notti 

et al. 2015) was supported by an N-terminal peptide matching translation at the internal translation 

site, despite not being annotated in the LT2 and SL1344 genome annotations thus far. During 

inspection of putative ORFs, ribo-seq serves as a useful complementary evidence track as illustrated 

for mntS (Supplemental Figure S5C), the truncated glpR gene (Figure 6A), the intergenic antisense 

ORF Chr:2,819,729-2,820,325 (Figure 6B) and a multitude of other examples. Recent developments in 

studying translation initiation in bacteria will further facilitate precise N-terminal protein start site 

delineation, and concomitantly the identification of (alternative) Nt-proteoforms (Meydan et al. 

2019). Taken together, with the recently discovered omnipresence of bacterial sORF translation, the 

translation of multiple proteoforms per gene and alternative translational decoding events such as 

frameshifting are largely neglected by current annotation pipelines and concomitantly, annotation 

databases are not properly equipped to handle these cases. 

 Given the ever-increasing wealth of accessible mRNA-seq, ribo-seq and proteomics data, 

experimental data can be adopted to improve the confidence of protein and gene annotation. In an 

attempt to create a representative snapshot of the bacterial proteomic datasets captured in PRIDE 
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(Vizcaino et al. 2016), we plotted 924 datasets (accessed June 2018, Supplemental Table S8) across 

the bacterial kingdom phylogeny (Figure 7). We demonstrate the potential of proteogenomics in 

improving annotation of bacterial species based on publicly available datasets for Deinococcus 

radiodurans (Lin et al. 2016; Ott et al. 2019). This extremophile is part of the Thermo-Deinococcus 

phylum, which is, despite its interesting application potentials, relatively under-represented in terms 

of available proteomic datasets (Figure 7). We identified 59 high-confident ORFs with at least two 

matching peptides. However, very likely, many ORFs with a single peptide hit are true positives, as 

for instance ‘ELEDLSEAEWLR’ suggesting a 82 amino acid part of an antisense transcript (Figure 8D). 

Interestingly, the strong tendency for leaderless transcripts proved useful as we observed strong 

mRNA-seq coverage starting at N-termini of putative ORFs we identified (Figure 8B, E-F). In fact, this 

leaderless expression has previously been utilized to pinpoint unannotated start sites and to identify 

(small) proteins in Deinococcus desertii (de Groot et al. 2014). We also observed several, erroneous 

gene interruptions due to sequencing errors, such as in case of dncA (Figure 8C), which was in fact 

experimentally corrected (Das and Misra 2012). Taken together, systematic (re-)analysis of 

proteomic and high-throughput sequencing datasets can provide strong annotation potential. 

Focusing these efforts on less-characterized species or phyla will be extremely useful to strengthen 

reference model species that could extrapolate annotations to close relatives. 
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METHODS 

Peptide database construction 

Six-frame translation (6-FT) of the S. Typhimurium SL1344 genome (Ensembl ASM21085v2) 

was performed, storing all ORFs ≥ 30 basepairs initiated from ‘ATG’, ‘GTG’ and ‘TTG’ (encoding the 

presumed initiator Met (iMet)). The resulting 324,010 ORFs were in silico digested by the ‘generate-

peptides’ function using the Crux toolkit (v3.2) (Park et al. 2008) using Trypsin/P specificity with two 

missed cleavages and N-terminal methionine excision enabled. In addition, peptide length was set 

from 7 to 50 amino acids and peptide mass between 500 and 5,000 m/z. Decoy peptides were 

generated by random shuffling of peptide sequences while maintaining the C-terminal amino acid. In 

total, this delivered 2,170,335 target and 2,169,158 non-overlapping decoy peptide sequences. 

Target peptides, and their respective decoy peptides, matching proteins of the S. Typhimurium 

Ensembl proteome (ASM21085v2, 4,672 proteins) were labeled as annotated peptides. For 

comparison of database size, the same digestion rules were applied to the latest human Ensembl 

proteome (GRCh38 annotation). 

Post-processing proteogenomics pipeline 

First round search and post-processing 

Thermo RAW files were converted to peak lists using ThermoRawFileParser (bioRxiv 

10.1101/622852). Resulting MGF (Mascot generic format) files were searched against the 

constructed peptide database using MS-GF+ (v2019.04.18) with enzymatic cleavage disabled. 

Methionine oxidation was set as fixed and the top 3 PSMs were considered per scan. Using the 

‘msgf2pin’ function provided by Percolator-converter package, a Percolator (Kall et al. 2007) tab-

delimited input file was extracted from the MS-GF+ mzid result files, delivering in total 22 features 

per PSM (supplemental Table S1). For each sample, the retention time (RT) of the top 1,000 ranked 

unique peptide sequences (highest MS-GF+ score) was used to train a peptide RT model by ELUDE 
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(v3.02.1) (Moruz et al. 2010). This model was used to predict the RT for all matched peptides and the 

absolute deviation of the predicted and experimental RT (in mins) was used as additional scoring 

feature in the auxiliary feature set (supplemental Table S1). In addition, the reScore algorithm (Silva 

et al. 2019) was used to compare the fragment peak intensities of empirical spectra with those 

predicted MS²PIP (algorithm v20190312, HCD trained model v20190107) (Degroeve and Martens 

2013). Of the resulting features, ‘spec_pearson_norm’, ‘dot_prod_norm’ and ‘spec_mse’ were used 

in the auxiliary feature set given their relatively high weights in Percolator learning. The auxiliary 

feature set was further expanded with six features, including the number of Arg/Lys residues (i.e. 

reflecting trypsin missed cleavages) in the peptide, as well as features reflecting the number of 

matched b/y-ions (supplemental Table S1). Using the MS-GF+, auxiliary and combined feature sets, 

Percolator (v3.02.1) (Kall et al. 2007) was used to re-score PSMs for every MS-GF+ search. The 

feature weights of the combined feature set were displayed in Supplemental Figure S1. 

Subsequently, the obtained Percolator recalibrated PSM scores were used for class-specific 

confidence estimation for annotated (Ensembl) and unannotated peptides. To this end Percolator 

was ran without any learning iterations (“--max-iterations 0”) and initial weight assigned to the 

recalibrated Percolator score. Resulting peptide identifications were filtered at a 1% peptide Q-value 

for annotated peptides and 5% peptide Q-value for unannotated peptides. 

Iterative searches for identification of co-fragmented peptides 

To identify co-fragmented peptides in a MS² spectrum we used an iterative search strategy 

resembling the rationale followed in the reSpect algorithm (Shteynberg et al. 2015). For MS² spectra 

with an assigned PSM (Q-value ≤ 0.01) in the prior search, matching (tolerance ≤ 0.02 m/z) b/y-ions 

were omitted from the spectrum (including double charged fragment ions and/or ions with neutral 

losses). Spectra were re-searched for charge states 2+ and 3+ using MS-GF+ with parameters as 

described above, except setting a wider precursor mass tolerance of 3.1 Da. Such wider tolerance 

allows identification of non-monoisotopic peptides in the isolation window (Shteynberg et al. 2015). 
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PSM feature generation and Percolator post-processing was performed as described above, except 

that the peptide RT model trained in the first search by ELUDE was used. 

Public data re-processing 

Thermo RAW files from the PRIDE accession PXD011868, a Deinococcus radiodurans vacuum stress 

response dataset (Ott et al. 2019), were downloaded and processed as described above for S. 

Typhimurium. In addition, we downloaded raw sequencing data from the Sequence Read Archive 

(SRA) study SRP057959, studying the transcriptomic response of D. radiodurans to hydrogen 

peroxide [41]. Reads were aligned to the same Ensembl genome and reference assembly (ASM856v1) 

as used for the proteogenomics analysis using STAR version 2.7.3a (Dobin et al. 2013) allowing 2 

mismatches. Read pairs matching to forward strand were filtered based on flags 99 and 147 and flags 

83 and 163 for the reverse strand (-f option, samtools). 

DATA ACCESS 

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium 

via the PRIDE (Vizcaino et al. 2016) partner repository with the dataset identifier PXD016377 

(username: reviewer74566@ebi.ac.uk, password: sTdgODcP). 
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