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Abbreviations 

FTD: frontotemporal dementia 

GRN: progranulin 

MAPT: microtubule-associated protein tau 

C9orf72 : chromosome 9 open reading frame 72 

bvFTD: behavioural variant of frontotemporal dementia 

MRI: magnetic resonance imaging 

CNCs: cognitively normal controls 

DBM: deformation-based morphometry 

FTLDNI: frontotemporal lobar degeneration neuroimaging initiative  

T1-w: T1 weighted 

GENFI: Genetic frontotemporal dementia initiative  

MMSE: Mini mental state examination  

MOCA: Montreal cognitive assessment  

FTLD-CDR: Frontotemporal lobar degeneration Clinical Dementia Rating score 

CGI: Clinical global impression  

FRS: Frontotemporal dementia rating scale  

FDR: False Discovery Rate 

PCA: Principal component analysis 

PCs: Principal components 

SF: Semantic fluency 

ROC: Receiver operating characteristic curves  

AUC: Area under the curve 
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LR+: positive likelihood ratio 

LR-: negative likelihood ratio 
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Abstract 

INTRODUCTION: Brain structural imaging is paramount for the diagnosis of behavioral 

variant of frontotemporal dementia (bvFTD), but it has low sensitivity leading to erroneous or 

late diagnosis.  

METHODS: A total of 515 subjects from two different bvFTD databases (training and 

validation cohorts) were included to perform voxel-wise deformation-based morphometry 

analysis to identify regions with significant differences between bvFTD and controls. A random 

forest classifier was used to individually predict bvFTD from morphometric differences in 

isolation and together with bedside cognitive scores.  

RESULTS: Average ten-fold cross-validation accuracy was 89% (82% sensitivity, 93% 

specificity) using only MRI and 94% (89% sensitivity, 98% specificity) with the addition of 

semantic fluency. In a separate validation cohort of genetically confirmed bvFTD, accuracy was 

88% (81% sensitivity, 92% specificity) with MRI and 91% (79% sensitivity, 96% specificity) 

with added cognitive scores. 

DISCUSSION: The random forest classifier developed can accurately predict bvFTD at the 

individual subject level.  

 

Keywords 

Frontotemporal dementia -Magnetic resonance -Deformation-based morphometry -

Classification- Machine learning 
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1. Introduction 

The heterogeneity of frontotemporal dementia (FTD) is frequently considered a hallmark of the 

disease with significant variations in heritability, pathology and clinical presentations (1). First, 

although most cases of FTD are sporadic, there is a positive familiar history in 30-50% of the 

cases, and 10-30% are caused by an autosomal dominant mutation (most commonly progranulin 

-GRN-, microtubule-associated protein Tau -MAPT- and chromosome 9 open reading frame 72 -

C9orf72-) (2, 3). Second, in terms of the underlying pathology, there are three main groups 

according to the major protein involved, all of which are characterized by selective degeneration 

of the frontal and temporal lobes: Tau, transactive response DNA-binding protein of 43 kDa -

TDP-43-, and the tumor associated protein fused in sarcoma -FUS-.(4, 5) 

 

Finally, regarding its clinical presentation, FTD is divided into three major clinical syndromes: 

the behavioral variant (bvFTD) and two language variants (Semantic Dementia and Non-Fluent 

Primary Progressive Aphasia). As the initially focal brain involvement spreads to involve larger 

regions in the frontal and temporal lobes, the symptoms of the three variants described can 

converge (5). Yet, there is also a considerable overlap between FTD and other neurodegenerative 

diseases; i.e. some patients with FTD may develop motor neuron disease, or symptoms of a 

Parkinsonian disorder (6). 

 

Due to the aforementioned heterogeneity in pathology and heritability, as well as the syndromic 

overlap with psychiatric disorders and other dementias, a confirmed bvFTD diagnosis is often 

difficult to achieve in the absence of a dominant genetic mutation. Indeed, although brain 

imaging with magnetic resonance imaging (MRI) is paramount to increase the level of diagnostic 
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confidence, it lacks sensitivity, particularly in the initial stages of the disease, leading to 

erroneous or late diagnosis (7, 8). 

 

It has been recognized that the pattern of atrophy in sporadic bvFTD differed but also shared 

some similarities from that observed in mutation carriers. While frontal -particularly the anterior 

cingulate gyrus- and anterior temporal atrophy was associated to sporadic bvFTD, genetic 

variants showed distinct but overlapping patterns of atrophy (9-11). In MAPT mutation carriers, 

atrophy predominantly affects the anterior and medial temporal lobes, orbitofrontal lobe and 

insula; in GRN mutation carriers atrophy in the dorsolateral and ventromedial prefrontal, 

superolateral temporal and lateral parietal lobes as well as the anterior cingulate, insula, 

precuneus and striatum has been described; and C9orf72 carriers showed relatively widespread 

cortical atrophy including posterior areas, and with particular involvement of the thalamus and 

superoposterior cerebellum (11).  

 

Lately, machine learning techniques have been applied to distinguish between bvFTD and 

Cognitively Normal Subjects (CNCs), Alzheimer Disease or other psychiatric and neurologic 

disorders on an individual level using MRI based features (12-20). Studies vary greatly on the 

subjects included and the methodology. In the present study, we developed a Random Forest 

classifier (21) using features derived from Deformation Based Morphometry (DBM) maps to 

identify bvFTD subjects from CNCs. To ensure the generalizability of the results, the machine 

learning model was trained on a mainly sporadic cohort and tested in a held-out population of 

genetic bvFTD, therefore relying on one of the gold standards for bvFTD diagnosis (i.e., definite 

bvFTD)(7).  
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2. Materials and Methods 

2.1. Participants 

A total of 515 subjects were examined in this study. The first cohort (‘training cohort’) included 

bvFTD patients and CNCs from the Frontotemporal Lobar Degeneration Neuroimaging Initiative 

(FTLDNI) database who had T1-weighted (T1w) MRI scans matching with each clinical 

visit. Data was accessed and downloaded through the LONI platform in August 2018. The 

inclusion criteria for bvFTD patients was a diagnosis of possible or probable bvFTD according to 

the FTD consortium criteria (7), resulting in 70 patients with bvFTD and 123 CNCs in our study.  

The FTLDNI was funded through the National Institute of Aging and started in 2010. The 

primary goals of FTLDNI are to identify neuroimaging modalities and methods of analysis for 

tracking frontotemporal lobar degeneration (FTLD) and to assess the value of imaging versus 

other biomarkers in diagnostic roles. The project is the result of collaborative efforts at three sites 

in North America. For up-to-date information on participation and protocol, please visit: 

http://4rtni-ftldni.ini.usc.edu/  

 

The second cohort (‘validation cohort’) included bvFTD patients and CNCs from the third data 

freeze (12/2017) of the Genetic Frontotemporal Dementia Initiative 2 (GENFI2- 

http://genfi.org.uk/) (22), which consists of 23 centres in the UK, Italy, The Netherlands, 

Sweden, Portugal and Canada. GENFI2 participants included known symptomatic carriers of a 

pathogenic mutation in C9orf72, GRN or MAPT and their first-degree relatives who are at risk of 

carrying a mutation, but who did not show any symptoms (i.e., presymptomatic). Non-carriers 

were first-degree relatives of symptomatic carriers who did not carry the mutation. The inclusion 

and exclusion criteria are described in detail elsewhere (22). Since the aim of the present study 
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was to differentiate bvFTD patients from CNCs, presymptomatic carriers and symptomatic 

carriers whose clinical diagnosis was other than bvFTD were excluded. Non-carriers were 

considered as CNCs for the purpose of this study. This validation cohort contained 75 patients 

with bvFTD and 247 CNCs. 

 

2.2. Clinical assessment 

All FTLDNI subjects were regularly assessed every six-months for clinical characteristics 

(motor, non-motor and neuropsychological performance) by site investigators. 

Neuropsychological assessment included Mini Mental State Examination (MMSE), Montreal 

Cognitive Assessment (MOCA), Frontotemporal lobar degeneration clinical dementia rating 

(FTLD-CDR), Clinical Global Impression (CGI), verbal fluency, Frontotemporal dementia rating 

scale (FRS) amongst other cognitive and functional scores.  

 

2.3. Image acquisition and preprocessing 

For the FTLDNI training cohort, 3.0T MRIs were acquired at three sites. In all sites, a volumetric 

MPRAGE sequence was used to acquire T1w images of the entire brain. The acquisition 

parameters of the T1w images, using volumetric MPRAGE sequence, were RT/ET/IT: 2.3/3/900 

ms, flip angle 9°, matrix 256x240, slice thickness 1mm, voxel size 1x1mm. 

 

For the GENFI2 validation cohort, participants underwent volumetric T1w MRI at multiple 

centers, according to the GENFI imaging protocol. Sites used different types of scanners: 

Siemens Trio 3T, SiemensSkyra3T, Siemens1.5T, Phillips3T, General Electric (GE) 1.5T and 
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GE 3T. Scan protocols were designed at the outset of the study to ensure adequate matching 

between the scanners and image quality control.  

 

The T1w scans of the subjects were pre-processed through our longitudinal pipeline (23) that 

included image denoising (24), intensity non-uniformity correction (25), and image intensity 

normalization into range (0−100) using histogram matching. Each native T1w volume from each 

timepoint was linearly registered first to the subject-specific template which was then registered 

to the ICBM152 template (26, 27). All images were then non-linearly registered to the ICBM152 

template using ANTs diffeomorphic registration pipeline (28). The images were visually 

assessed by two experienced raters to exclude cases with significant imaging artifacts (e.g. 

motion, incomplete field of view) or inaccurate linear/nonlinear registrations. This visual 

assessment was performed without any knowledge of the diagnosis. Out of 1724 scans, only 43 

(2.5%, 36 scans in GENFI2, and 7 in FTLDNI) did not pass this visual quality control. For the 

purpose of this study, scans from subjects other than bvFTD or CNCs, or those that did not have 

a matching clinical visit were excluded from this analysis. This resulted in a total of 515 subjects 

that were included in this study. 

 
2.4. Deformation based morphometry 

DBM analysis was performed using Montreal Neurological Institute (MNI) MINC tools (23). 

The principle of DBM is to warp each individual scan to the template by introducing high-

dimensional deformations (29, 30). Then, the morphological differences between the two are 

encoded in the deformations estimated for the warp. The local deformation obtained from the 

non-linear transformations was used as a measure of tissue expansion or atrophy by computing 

the determinant of the Jacobian at each voxel. Local contractions can be interpreted as shrinkage 
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(e.g., tissue atrophy) and local expansions are often related to ventricular or sulci enlargement. 

DBM was used to assess both voxel-wise and atlas-based cross-sectional group related 

volumetric differences.  

 

2.5. Classification bvFTD versus CNCs 

To obtain a region of interest reflecting the difference between bvFTD and CNCs, a voxel-wise 

mixed effects model analysis was performed in the training dataset to assess the pattern of 

volumetric change according to diagnosis. The mixed effects model included age as a continuous 

fixed variable and diagnosis and sex as fixed categorical variables. Subject was included as a 

categorical random variable. The resulting maps were corrected for multiple comparisons using 

False Discovery Rate (FDR) with a P value < .05 threshold to identify regions associated with 

differences between bvFTD and CNCs; i.e. the diagnosis variable in the mixed effects model. A 

principal component analysis (PCA) was then performed on the DBM voxels within this region 

of interest. To avoid any leakage, only the training data was used for this PCA. Two sets of 

features were then used to train a random forests classifier (21) with 500 trees: 1) the first five 

principal components (PCs) as well as age and sex, and 2) the first five PCs, age, sex, and a 

neuropsychological score. The Semantic Fluency score (SF) was used as the cognitive score 

feature since it is a reliable simple bedside test associated with executive and language deficits in 

bvFTD (31) and was available for most of the subjects in both training and validation datasets. 

Executive deficits are considered a core characteristic of FTD, though in themselves, are 

insufficient to establish a diagnosis (32, 33). Classifications were run using DBM in isolation and 

DBM + SF.  Ten-fold cross validation was used to assess the performance of the classifier within 

the training data.  
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To perform classification on the held-out GENFI2 validation dataset, the coefficients calculated 

based on the PCA on the training dataset were used to calculate the first five PCs features for the 

subjects from the validation dataset. Using the random forest classifier that was trained on 

FTLDNI, we then classified all the subjects from the validation dataset as either bvFTD or 

CNCs. A probability score was also obtained from the random forest classifier, indicating the 

likelihood of each observation belonging to the bvFTD class. The mixed effects modelling, PCA, 

and random forest classification were carried out using MATLAB (version R2017b). 

 

2.6. Statistical analyses 

All statistical analyses were also conducted using MATLAB (version R2017b). Two-sample t-

Tests were conducted to examine demographic and clinical variables at baseline. Categorical 

variables were analysed using chi-square analyses. Results are expressed as mean ± standard 

deviation and median [interquartile range] as appropriate. Receiver Operator Characteristics 

(ROC) analysis was used to define sensitivity and specificity at different cut-points within the 

validation cohort. The optimal cut-point was estimated by the use of Youden index (J= 

Sensitivity+Specificity-1). Positive and negative likelihood ratios were also estimated for 

different cut points. 

 

3. Results 

3.1. Demographics  

Table 1 shows the demographic and cognitive testing performances in bvFTD and CNCs. There 

was no difference in age between bvFTD patients and CNCs (62±6 and 63±6 years respectively, 
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P value = 0.36), but there was a higher proportion of males in bvFTD patients than CNCs (67% 

vs 43%, P value = .001). As expected, bvFTD subjects showed greater cognitive and functional 

impairment: significant differences were found between the two cohorts in MMSE, FTLD-CDR, 

MOCA, letter fluency Z-score and semantic fluency Z-score (all P value < .001).  

 

Demographic differences and cognitive testing performances between patients and controls for 

the GENFI cohort are also shown in Table 1. Considering the CNCs from this dataset comes 

from non-carrier members of families at risk of genetic mutation related to FTD, they were, as 

expected,  significantly younger than bvFTD subjects. The mean age was 48±14 years for CNCs 

and 64±8 years for bvFTD (P value < .001). The mean estimated disease duration for the bvFTD 

group was 5.2±5.7 years. Compared to non-carriers, bvFTD subjects showed greater cognitive 

and functional impairment. Significant differences were found between the two cohorts in 

MMSE, FTLD-CDR, MOCA, FRS,  letter fluency Z-score and semantic fluency Z-score (P 

value < .001). Regarding the mutated gene, half of the bvFTD subjects carried a C9orf72 

mutation, while 22.7% and 25.3% belonged to the MAPT and GRN groups respectively.  
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Table 1. Demographic and clinical characteristics in bvFTD and healthy controls 
 

 Training cohort (FTLDNI) 
N=193 

Validation cohort (GENFI) 
N=322 

CNCs 
N= 123 

bvFTD 
N=70 

P value CNCs 
N=247 

bvFTD 
N=75 

p-Value 
 

Age, y 63±6 62±6 .36 48±14 64±8 < .001 
Male sex 53(43%) 47(67%) .001 106(43%) 41(55%) .07 
Education, y 17.5±1.9 15.6±3.4 < .001 13.9±3.5 11.8±4.03 < .001 
Years of onset, y - N/A - - 5.2±5.7 - 
MMSE score 29.4±0.8 23.6±4.9 < .001 29.4±1.1 21.9±7.2 < .001 
FTLD-CDR Score  
 

0.04±0.2 6.3±3.3 < .001 0.21±0.7 9.7±1.4 < .001 

MOCA Score  
 

23.6±11 16.8±8.3 < .001 N/A N/A  

FRS % N/A N/A  88.01±28.7 33.5±26.6 < .001 
Letter Fluency Z-score 0.7±0.7 -0.9±0.6 < .001 -0.03±1 -1.3±1.4 < .001 
Semantic Fluency Z-
score 

0.6±0.6 -1.06±0.7 < .001 0.1±1 -2.2±1.02 < .001 

Genetic Group C9orf72 - -  87(35.2%) 39(52%)  
MAPT - -  40(16.2%) 17(22.7%)  
GRN - -  120(48.6%) 19(25.3%)  

        
 
NOTE: Values expressed as mean ± standard deviation, median [interquartile range]. Data available is specified for 
each clinical variable as N. N/A: data not available from the original databases. 
Abbreviations: FTLD: frontotemporal lobar degeneration neuroimaging initiative; GENFI: genetic frontotemporal 
dementia initiative; bvFTD:  behavioural-variant frontotemporal dementia. CNCs: cognitively normal controls; 
MMSE: Mini Mental State Examination. FTLD-CDR: Frontotemporal lobar degeneration clinical dementia rating. 
MOCA: Montreal Cognitive Assessment. CGI: Clinical Global Impression. FRS: Frontotemporal dementia rating 
scale.  
 

3.2. Voxel-wise DBM group differences.  

Greater gray and white matter atrophy were found in the medial and inferior lateral portions of 

the frontal lobes as well as dorsolateral prefrontal cortex, insula, basal ganglia, medial and 

anterior temporal regions bilaterally and regions of brainstem and cerebellum in bvFTD. 

Correspondingly, volume increase was shown in the ventricles and sulci, being more evident in 

frontal horns and lateral sulcus (34). 

 

3.3. Random forest classification 

3.3.1. Cross-validation results within the training cohort 
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The accuracy achieved for discrimination between bvFTD and CNCs using solely morphometric 

MRI features (DBM) was 89%, with a sensitivity of 82% and specificity of 93%. When adding 

one cognitive score (i.e., DBM+SF) the classifier accuracy reached 94%, with 89% sensitivity 

and 98% specificity.  

 

3.3.2. Classification within the validation cohort using solely DBM and DBM + SF 

The application of the random forest classification model based on the training cohort to the 

validation cohort resulted in an accuracy of 88% when discriminating bvFTD patients from 

CNCs. Sensitivity and specificity were 81% and 92%, respectively using a probability score with 

an optimal cut point of 0.4 as threshold. This led to a positive likelihood ratio (LR+) of 10.13 and 

negative likelihood ratio (LR-) of 0.21. 

 

The inclusion of semantic fluency in the classification model resulted in an accuracy of 91%, 

sensitivity of 79% and specificity of 96%; resulting in LR+ of 19.75 and LR- of 0.22. The ROC 

for DBM and DBM + SF classifiers are shown in Figure 1. Figure 2 shows the true positive rates 

for bvFTD and CNCs according the probability score for DBM (panel A) and DBM+SF (panel 

B). Table 2 shows the corresponding accuracy, sensitivity, specificity and likelihood ratios for 

the two models (DBM and DBM+SF) using different thresholds on the probability scores (e.g., 

for probability scores > 0.4).  
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Figure 1. Receiver operating characteristic curves (ROC) for DBM and DBM+SF classifiers  
 

 
Abbreviations: DBM: deformation-based morphometry; SF: semantic fluency; AUC: area under the curve 
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Figure 2. True positive rates for bvFTD and controls according to the probability score threshold for classification 
using DBM (panel A) or DBM + SF (panel B) 

Abbreviations: bvFTD:  behavioural-variant frontotemporal dementia. CNCs: cognitively normal controls  
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Table 2. Classification performance using DBM and DBM + SF 

 
 
NOTE: *Performances for each probability score threshold above which a subject is identified as bvFTD. Shaded 
rows correspond to the optimal cut-point estimated by Youden index.  
Abbreviations: DBM: deformation-based morphometry; SF: semantic fluency score; LR+: positive likelihood ratio; 
LR-: negative likelihood ratio.  
 

3.3.3. False negative cases within the validation cohort 

The classification using DBM resulted in 19% of false negatives. These subjects were 

significantly younger than the bvFTD subjects correctly classified (57±10 vs. 66±7 years 

respectively, P value < .001) and the estimated time from onset was also smaller (2±7 years vs 

6±5 years; P value = .01). However, no significant differences were found in FTLD-CDR score 

between true positives and false negatives (P value = .07). The distribution of the genetic 

mutations did not show significant differences either between the false negatives and true 

  Accuracy Sensitivity Specificity LR+ LR- 
DBM 

Probability score 
Threshold* 

      

 0.60 0.90 0.53 0.98 26.50 0.48 
 0.55 0.91 0.64 0.97 21.33 0.37 
 0.50 0.90 0.71 0.96 17.75 0.30 
 0.45 0.89 0.77 0.93 11.00 0.25 
 0.40 0.88 0.81 0.92 10.13 0.21 
 0.35 0.86 0.81 0.91 9.00 0.21 
 0.30 0.84 0.83 0.88 6.92 0.19 
 0.25 0.81 0.87 0.87 6.69 0.15 
 0.20 0.78 0.89 0.83 5.24 0.13 
 0.15 0.70 0.91 0.74 3.50 0.12 
 0.10 0.60 0.95 0.64 2.64 0.08 
       

DBM + SF 
Probability score 
Threshold* 

      

 0.60 0.92 0.71 0.98 35.50 0.30 
 0.55 0.92 0.73 0.98 36.50 0.28 
 0.50 0.92 0.77 0.98 38.50 0.23 
 0.45 0.91 0.77 0.96 19.25 0.24 
 0.40 0.91 0.79 0.96 19.75 0.22 
 0.35 0.91 0.80 0.96 20.00 0.21 
 0.30 0.90 0.80 0.95 16.00 0.21 
 0.25 0.88 0.81 0.93 11.57 0.20 
 0.20 0.83 0.87 0.87 6.69 0.15 
 0.15 0.78 0.91 0.92 11.38 0.10 
 0.10 0.65 0.93 0.68 2.91 0.10 
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positives.  GRN corresponded to 22.7 % of all false negatives and 25.4% of all true positives (P 

value = .7); for C9orf72 the distribution was 45.5% and 54.7% respectively (P value = .5) while 

for MAPT it was 31.8% of the false negatives and 18.9% of the correctly classified bvFTD (P 

value =  .3) 

 

3.3.4. False positive cases within the validation cohort 

Only 10 out of 247 CNCs (4%) were erroneously classified as bvFTD. These subjects were 

significantly older than the subjects accurately classified as healthy subjects (70±12 years vs. 

47±13 years, respectively; P value < .001). No significant differences were found in the mean 

FTLD-CDR score (P value  = .9). There was a small difference between the MMSE score for the 

false positives (28.27±2.2) and for true negatives (29.4±1; P value  < .001).  

 

3.3.5. Defining strategic cut-points 

Three cut-offs for both DBM and DBM+SF were defined by giving consideration to the 

sensitivity, specificity, positive and negative likelihood ratios of different points of the ROC: 1) 

the optimal cut-point according to Youden index; 2) a sensitive (i.e., “rule-out”) cut-point; and 3) 

a specific (i.e., “rule-in”) cut-point (Figure 3). The sensitivity, specificity, LR- and LR+ 

expressed in the figure were estimated for each of these defined cut-points (e.g., for probability 

score = 0.4)  

 

Proposed thresholds for clinical decision-making for each classifier according to their likelihood 

ratios are proposed in Figure 3 (lower panels). A LR- <0.1 allows to reliably exclude (i.e., rule-

out) bvFTD when the probability score is below 0.2 and 0.1 for DBM and DBM+SF, 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2019. ; https://doi.org/10.1101/2019.12.19.883462doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.19.883462
http://creativecommons.org/licenses/by-nd/4.0/


respectively. Probability scores over 0.4 for DBM and 0.25 for DBM+SF allow to confidently 

diagnose (i.e., rule-in) the disease with a LR+ >10. Corresponding likelihood ratios for different 

thresholds are shown in table 2.  

 

Figure 3. Strategic ROC cut-points   

 
NOTE: A, upper panel: Cut-points for DBM classifier. A, lower panel: Thresholds for diagnosis using DBM 
classifier in relation to LR+ and LR-. B, upper panel: Cut-points for DBM+SF classifier. B, lower panel: 
Thresholds for diagnosis using DBM+SF classifier in relation to LR+ and LR-.  
Abbreviations: DBM: deformation-based morphometry; SF: semantic fluency; J: Youden index; Sens: sensitivity; 
Spec: specificity; LR+: positive likelihood ratio; LR-: negative likelihood ratio 
 

4. Discussion 

In the present study we built a random forest classifier using morphometric MRI features for the 

individual prediction of bvFTD. The main findings are: 1) our random forest algorithm yielded 

areas under the curve of 0.90 and 0.92 using DBM and DBM+SF, respectively, in the 

independent validation cohort of genetically confirmed bvFTD cases; 2) the inclusion of a simple 

cognitive score (SF) improved the accuracies and specificity regardless of the probability 
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threshold chosen, while reducing the false negative rate for probability scores > 0.5; 3) we 

provide three cut-off values (a “statistically optimal” cut-point, a sensitive (“rule-out”) cut-point 

and a specific (“rule-in”) cut-point) for both DBM and DBM+SF classifiers; and 4) our results 

show good positive and negative likelihood ratios proving its reliability in ruling in and out the 

disease.  

 

The likelihood ratio is the percentage of patients with a given test result divided by the 

percentage of controls with the same results. Meaning that ill people should be more likely to 

have an abnormal result of a given test than healthy individuals(35, 36). For DBM only classifier 

in the independent validation cohort, the optimal threshold yielded an area under the curve 

(AUC) of 0.9 with 81% sensitivity and 92% specificity leading to a positive LR+ of 10.13 and 

negative LR- of 0.21. Whereas, the AUC, sensitivity and specificity using the DBM+SF model 

were 0.92, 79% and 96%, respectively. These values result in LR+ of 19.75 and LR- of 0.22. To 

keep in mind, a test is moderately good at ruling in disease when LR+ is greater than 2 and very 

good at doing it when LR+ is greater than 10 (37). Furthermore, a test is moderately good at 

ruling out the disease with LR- below 0.5 and very good below 0.1. Hence, using the optimal 

thresholds, both models are very good at excluding non bvFTD subjects and moderately good at 

confirming the disease.  

 

Our results show that the random forest classifier we developed in our training cohort can 

accurately predict bvFTD in individual subjects in a completely independent validation cohort 

coming from a different and independent database. Furthermore, the GENFI2 validation cohort 

includes bvFTD patients with a definite diagnosis (positive genetic mutation). Of note, our 
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algorithm was able to accurately classify patients with genetic bvFTD even though they tend to 

have more atypical atrophy patterns(11). The performance of our classifier is superior than the 

performance reported in several articles that have analyzed the standard diagnostic methods 

currently used in the clinical practice. Within a pathology-confirmed cohort the sensitivity 

reported for the revised diagnostic criteria for bvFTD was 86% for possible diagnosis and 75% 

for probable bvFTD (with neuroimaging support) (7). However, these criteria reported a 

sensitivity of 85% and specificity of 27% for possible bvFTD diagnosis in a clinically relevant 

cohort of patients with mixed behavioral changes, reaching 82% specificity when adding a 

compatible MRI scan (38). Within a cohort with late onset behavioral disorders, 70% sensitivity 

and 93% specificity have been reported for structural MRI alone for bvFTD assessed by an 

experienced neuroradiologist (8). The latter results have comparable positive and negative 

likelihood ratios to ours, even though our method does not rely on the expertise of the 

radiological observer.   

 

Previous studies classified bvFTD from a control group (12-16). The best AUC was reported by 

Raamana et al (AUC 0.938, 100% sensitivity and 88% specificity). However, the main limitation 

of that study is that the bvFTD diagnosis from the validation cohort was based on clinical criteria 

(39). Contrarily, the bvFTD subjects from our validation cohort are known carriers of a 

pathogenic mutation and have therefore, definite bvFTD diagnosis.  

 

The performance of the classifier was tested on a held-out database which included multi-center 

and multi-scanner data from different scanner models of both 1.5T and 3T field strengths. This 

further reinforces the generalizability (i.e., external validity) of our results and ensures their 
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applicability in a clinical scenario with different scanners, even with different magnetic field 

strengths.  This certainly constitutes one of the main strengths of this study along with the fact 

that our performance was estimated using one of the gold standards for FTD diagnosis (i.e., 

definite FTD supported by the presence of a pathogenic mutation). Of significant value, our 

algorithm is based on standard structural T1w MRI and a simple cognitive test that are already 

routinely acquired clinically, making for strong translational potential. On the other hand, the 

main limitation is that these results are yet to be validated prospectively in a clinically 

representative cohort including patients with diverse primary psychiatric disorders (a common 

differential diagnosis from bvFTD) (40). The classification accuracy also remains to be 

demonstrated in cohorts with other types of dementias and cardiovascular comorbidities, as these 

were uncommon in our dataset and could have influenced our very high specificity. Finally, in 

our results the false negatives/positives were significantly younger/older than the subjects that 

were correctly classified. This is likely due to the fact that the age range for the validation dataset 

(GENFI: minimum age: 39, maximum age:79) was larger than the training set (FTLDNI, 

minimum age 46, maximum age 75). Subjects that were outside the operating range of the 

classifier were therefore more likely to be misclassified. Adding subjects with similar ages to the 

training dataset will likely improve the results. In addition, specifically for the false negative 

cases, although the difference did not reach statistical significance (p=0.07), the false negatives 

had lower FTLD-CDR scores than the true positive cases, implying an earlier stage of the 

disease. It is plausible that such subjects with milder symptoms were not as well represented in 

NIFD given the difficulty of diagnosing bvFTD in the very mild stages when there is no known 

genetic mutation.  
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To conclude, we propose an automatic method using structural MRI alone (already available and 

routinely used in the clinic) and including a simple cognitive test that could be administered by 

any physician in few minutes for reliable individual prediction of bvFTD at the individual 

subject level. If validated in a prospective study, this algorithm has the potential to improve 

diagnostic accuracy, particularly in setting without access to specialized FTD care. 
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