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Abstract 

Human brain development involves spatially and temporally heterogeneous changes, 

detectable across a wide range of magnetic resonance imaging (MRI) measures. Investigating 

the interplay between multimodal MRI and polygenic scores (PGS) for personality traits 

associated with mental disorders in youth may provide new knowledge about typical and 

atypical neurodevelopment. We derived independent components across cortical thickness, 

cortical surface area, and gray/white matter contrast (GWC) (n=2596, 3-23 years), and tested 

for associations between these components and age, sex and-, in a subsample (n=878), PGS 

for neuroticism. Age was negatively associated with a unimodal component reflecting higher 

global GWC, and additionally with components capturing common variance between global 

thickness and GWC, and several multimodal regional patterns. Sex differences were found for 

components primarily capturing global and regional surface area (boys>girls), but also 

regional cortical thickness. For PGS for neuroticism, we found weak and bidirectional 

associations with a component reflecting right prefrontal surface area. These results indicate 

that multimodal fusion is sensitive to age and sex differences in brain structure in youth, but 

only weakly to polygenic load for neuroticism.  
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Introduction 

The cerebral cortex and subjacent white matter undergo substantial modifications and 

refinement during childhood and adolescence 1-3, paralleled by the qualitative and quantitative 

evolution of cognitive abilities 4, 5. These developmental changes coincide with increasing risk 

for mental disorders 6, 7. Mapping variation in brain development using magnetic resonance 

imaging (MRI) may therefore not only inform ontogenetic models of neurocognitive 

development, but also delineate aberrant spatiotemporal patterns related to emerging 

psychopathology. 

Cortical development is multifaceted, with cortical volume and its subcomponents 

thickness and surface area showing distinct developmental patterns 8-10, and genetic 

underpinnings 11, 12. Less explored measures of signal intensity variation in the T1-weighted 

image may reflect additional and partly distinct neurobiological properties 13-16. Specifically, 

the contrast between cortical grey matter (GM) and closely subjacent white matter (WM) 

intensities, the grey/white matter contrast (GWC), has been shown to be heritable 16, and 

associated with development 14, aging 13, 17, and schizophrenia 18. Although the underlying 

biology of GWC is complex and debated, the measure has been linked to differential 

intracortical and WM myelination 13.  

The onset of puberty, as well as the pubertal period, differs between adolescent boys 

and girls 19, 20. There have also been reports of sex specific shifts in the onset of 

developmental psychopathology, as well as variations in overall risk for mental disorders 7, 21. 

Results concerning both the extent, and metric specificity of sex related neurodevelopmental 

differences are however, inconclusive 8, 9, 22 and no studies have investigated sex related 

developmental differences in GWC.  

The relationships between distinct brain structural properties captured by different 

MRI measures are poorly understood, but might be informed by methods such as linked 
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independent component analysis (LICA), which can parse the common and unique variance 

across multiple modalities into separate components of shared variance 23. LICA studies have 

reported unique structural patterns sensitive to lifespan development 24, 25, and 

psychopathology 26, 27. Multimodal fusion, also including GWC, thus shows promise for 

capturing both typical brain developmental patterns and patterns associated with susceptibility 

for mental illness. 

High levels of neuroticism is associated with several forms of psychopathology 28, 29, 

including the overarching “p factor” from dimensional psychopathology models 30, 31, and 

internalizing symptoms from core domain models 28, which captures vulnerability toward 

mood and anxiety disorders 31, 32. Twin and family studies have shown that genetic differences 

account for about 40% of the trait variance 33, and genome-wide association studies (GWAS) 

have documented a highly polygenic signal 34, in line with most complex traits 35. Polygenic 

scores (PGS) are defined as the weighted sum of an ensemble of trait-associated alleles 36, and 

reflect the individual level of cumulative genetic signal across the genome. Only one prior 

neuroimaging study has investigated the association between PGS for neuroticism and brain 

structure, reporting negative associations with regional cortical surface area in two adult 

samples 37. Studies in youth are lacking, but may provide insight into the brain structural 

correlates of genetic dispositions for broad psychopathology-associated traits in a period of 

life when many mental disorders typically emerge.  

To this end, we combined cortical thickness, surface area, and GWC using FLICA 

(FMRIB’s LICA) in 2596 youths (3-23 years), and tested for associations between the 

resulting multimodal modes of variation and age, sex and-, in a subsample (n=878), PGS for 

neuroticism and two of its subcomponents (depressed affect and worry). Based on an extant 

literature on child and adolescent brain development 9, 14, 38, 39 we hypothesized that age would 

be particularly associated with components dominated by GWC and thickness. Next, we 
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predicted associations between sex and modes of variation reflecting surface area 40, 41. 

Finally, based on findings from a previous study 37 we hypothesized that the strongest 

associations between PGS for neuroticism, depressed affect and worry, would be with modes 

reflecting surface area. 

 

Materials and Methods 

Participants 

We combined data from two large-scale publicly available US samples; the Pediatric Imaging, 

Neurocognition, and Genetics (PING) study (http://ping.chd.ucsd.edu) and the Philadelphia 

Neurodevelopmental Cohort (PNC) (Permission No. 8642). PING is a multisite initiative, 

consisting of typically developing youths aged 3-21 years with genotyping, standardized 

behavioral measures, and multimodal imaging for a large subgroup (n = 1239) 4, 42, 43. PNC is 

a population-based sample consisting of 8-23 year old youths with genetic, cognitive and 

clinical data, as well as multimodal imaging for a large subgroup (n=1601) 44, 45. The cohorts, 

including recruitment and exclusion criteria, are further described in Supplementary 

Materials.  

We first excluded PNC subjects with severe medical health conditions (n=70), before 

combining all subjects with available imaging data from both samples (n=2727). After 

stringent MRI quality control, 115 participants were excluded due to missing or poor quality 

T1 data (see below), and 16 additional subjects were removed due to missing demographics or 

scan site information. The final imaging sample thus consisted of 2596 subjects (1316 girls) 

aged 3.0-23.2 years (mean=13.8, SD=4.6) (Figure 1). See Supplementary Table 1 for 

demographics. 

 

MRI acquisition and processing 
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The included imaging data was acquired on 11 separate 3T whole-body scanners from Philips 

Medical Systems (Achieva), GE medical systems (Signa HDx and Discovery MR750), and 

Siemens (TrioTim), the latter including a single scanner on which the full PNC sample was 

scanned. T1 voxel sizes ranged from approximately 0.9 to 1.2 mm. See Supplementary 

Materials for detailed descriptions of acquisition parameters, and care and safety procedures 

implemented for scanning children.  

The T1-weighted datasets were processed using FreeSurfer (FS) 5.3 

(http://surfer.nmr.mgh.harvard.edu), which performs volumetric segmentations and cortical 

surface reconstructions, including the “white”- (grey/white matter boundary), and “pial”- 

(grey/ cerebrospinal fluid (CSF) boundary) surface 46, 47. Cortical thickness was computed as 

the shortest vertex-wise distance between the white and pial surface, while cortical surface 

area, based on the white surface, was computed by the amount of vertex-wise expansion and 

contraction needed to fit a common template (fsaverage) 46, 47. As implemented previously 14, 

18, 48 and fully described in Supplementary Materials, we extracted intra-subject signal 

intensities from the non-uniform intensity normalized volume (nu.mgz). GWC was then 

computed as: 100 x (white - gray)/[(white - gray)/2] 18, so that higher GWC reflects greater 

GM/WM signal intensity difference. Thickness, area and GWC surface maps were registered 

to fsaverage and smoothed using a Gaussian kernel of 15-, 10-, and 10-mm full width at half 

maximum (FWHM), respectively, to obtain similar smoothness across modality surfaces 26
. 

See Supplementary Materials and previous descriptions 14, 49 for in detail accounts of 

the stringent quality evaluation performed on the imaging data to confirm consistency across 

sites and as in-scanner head motion is common in children. 

 

FLICA 
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Thickness, area, and GWC surface maps were decomposed into spatially independent modes 

of variation using FLICA 23, 25 (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLICA). As imaging data 

had been obtained from various scanners, and initial investigations showed large scanner 

effects, we residualized all surface maps for effects of scanner before running FLICA. This 

was done by use of generalized additive models, using the “gam” function in R 

(https://www.r-project.org/), with 10 knots and age and sex as additional covariates. Age, sex 

and model residuals were returned to surface maps. See Supplementary Figures 1-3 and 

Supplementary Table 2 for comparisons of surface maps before and after scanner 

residualization. FLICA was thereafter run with 3000 iterations, and a final model order of 60, 

which was pragmatically chosen based on the highest cophenetic coefficient 50, as compared 

with model orders of 40 and 80. See Supplementary Figure 4 for an ordered bar plot of the 

explained variance of each component.  

 

Polygenic scores 

We calculated PGS in a subset of participants with white European ancestry (n= 878), using 

the PRSice v1.25 software, based on an earlier GWAS on neuroticism 51. PGS p-thresholds 

were calculated within the range of 0.001 and 0.5, using default settings, including removal of 

the major histocompatibility complex (MHC; chromosome 6, 26-33Mb) and pruning of SNPs 

based on linkage disequilibrium and p-values. We first chose a significance threshold of 0.05 

based on the convention of several previous GWAS studies 34, and additionally, based on a 

previous implementation 52, performed a principal component analysis (PCA) in R 

(https://www.r-project.org/) on all p-thresholds. The first factor explained 88.1% of variance, 

with the p-threshold 0.329 showing the highest contribution, and was extracted as a 

complementary and considerably more liberal PGS p-threshold.  
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 Based on results from the GWAS 51 reporting that neuroticism’s genetic signal partly 

originated in two distinguishable sub-clusters termed “depressed affect” and “worry”, we 

additionally calculated PGS for these using the same approach as described above. In addition 

to the standard 0.05 threshold, the first PCA factor explained 93.4% of the variance for both, 

with p-thresholds 0.257 and 0.253 showing the highest contribution for depressed affect and 

worry, respectively. 

 

Statistical analyses 

We used linear models, to test for main effects of age, sex and PGS for neuroticism on all 

FLICA components in R. First, for each of the 60 components we tested for linear effects of 

age, with scanner as an additional co-variate. Then we tested for main effects of sex, co-

varying for scanner and age. Finally, we tested for main effects of the different polygenic 

scores on the FLICA components. Effects were tested on each of the 60 components in 

separate models, with scanner, age, sex, and the first 4 PCA derived genetic principal 

components included in the model to account for population stratification. P-values from all 

models within each test were adjusted for multiple comparisons by false discovery rate using 

Hochberg’s procedure and a significance threshold of 0.05. 

To visualize each model, we residualized covariates from component loadings by 

linear regression, and plotted them using ggplot2 53 . See Supplementary Materials for 

ANOVA analyses, performed to investigate possible effects of scanner. 

 

Results 

Multimodal components 

Among the 60 independent components (ICs), IC1 explained 34.3% of the variance in the 

included modalities across the 2596 subjects, and was dominated by global GWC (97%) 
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(Figure 2). The spatial pattern showed relatively lower weighting in insula, sensorimotor and 

visual cortices and higher weighting within prefrontal cortices. IC2, which explained 14.8% 

of variance, was dominated by global surface area (94%), with higher weighting within 

prefrontal, occipital, and lateral temporal regions (Figure 3). IC3, explained 11.7% of 

variance, and captured global cortical thickness (55%) and global negative GWC (45%). The 

cortical thickness spatial pattern showed higher weighting in frontal regions, pre-and post-

central sulcus, and within certain parietal and occipital folds. The GWC pattern showed 

higher negative weighting in insula, medial visual- and parietal regions (Figure 2).  

IC4 explained 6.0% of the variance, while the remaining 56 components in sum 

explained 33.2%. IC4-IC60 were uni- or multimodal, regionally specific, and often bilateral. 

Multimodal components largely captured corresponding regions across modalities, and in 

these instances (with the exception of IC3), GWC and thickness generally showed directional 

weighting correspondence, which was opposite to surface area (i.e. higher thickness and 

GWC with smaller surface area).  

ANOVA on age residualized component loadings revealed that none of the 

components were highly sensitive to scanner differences (Supplementary Table 3), with IC4 

showing the only significant scanner effect (F= 4.3, adjusted p = <0.001).  

 

Associations between multimodal components and age 

Linear models revealed significant age associations for 17 of the 60 components when 

including scanner in the model (Table 1, Supplementary Figure 5 and 6). The four 

components with the strongest age effects are shown in Figure 2. With higher age, IC1 

revealed globally lower GWC, IC3 globally lower thickness coupled with globally higher 

GWC, and IC4 bilaterally lower GWC across large regions of the brain including cingulate, 

insula, occipital, and pre- and post-central cortices extending into frontal regions, and higher 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 20, 2019. ; https://doi.org/10.1101/2019.12.20.883959doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.20.883959
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 
 

GWC in minor rostral middle frontal and temporal pole regions. IC15 revealed bilaterally 

thicker precentral cortices, as well as thinner medial prefrontal and posterior cingulate cortices 

with higher age. 

 

Associations between multimodal components and sex 

Linear models revealed significant sex associations for 24 components when including age 

and scanner in the models (Table 1, Supplementary Figure 5 and 6). The four components 

with the strongest sex effects are shown in Figure 3. For boys as compared to girls IC2 

revealed globally larger surface area, with strongest effects within prefrontal, occipital and 

lateral temporal cortices, and IC15 bilaterally thinner precentral cortices, as well as thicker 

medial prefrontal and posterior cingulate cortices. Moreover, for boys as compared to girls 

IC21 revealed larger lateral rostral prefrontal surface area, and smaller caudal prefrontal 

surface area, and IC44 larger surface area within a bilateral, mainly medial occipital region. 

 

Associations between multimodal components and PGS for neuroticism 

In the white European ancestry sub-group (see Supplementary Table 1), linear models 

including scanner, age, sex, and 4 genetic principal components representing population 

stratification revealed no significant associations with any of the PCA-based PGS. The p<0.05 

SNP selection threshold revealed a significant association between PGS for neuroticism with 

IC23 (t= -4.2, adjusted p= 0.004), which seemed to be driven by the PGS for depressed affect 

(t= -3.7, adjusted p= 0.016) (Figure 4). IC23 reflects a pattern with larger surface area within 

a right hemisphere ventrolateral prefrontal region and smaller surface area within an adjacent 

superior prefrontal region. There was no associations between the PGS worry scores 

thresholded at 0.05 and any of the multimodal components.  
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Discussion 

This multimodal structural brain imaging study of 2596 participants aged 3-23 years yielded 

three main results. First, higher age was most strongly associated with lower global GWC, 

with some regional variation. Higher age was also associated with globally thinner cortex, in 

particular encompassing prefrontal regions. Second, several components showed sex 

differences; boys had larger global and regional surface area compared to girls, and some 

regional cortical thickness differences. Third, there was a significant association between 

polygenic scores for neuroticism and a component encompassing surface area in prefrontal 

regions in the right hemisphere.  

 The imaging component explaining the largest amount of variance was global and 

dominated by GWC, indicating a prominent role of GWC in childhood and adolescent 

neurodevelopment. Accordingly, several of the early components had substantial contribution 

from GWC. Moreover, regions overlapping across modalities showed directional weighting 

correspondence between GWC and thickness, which was the opposing direction to area. As 

intracortical myelin is predominantly found in deeper cortical layers54, and our GM sampling 

strategy was a percentage, sampling of thicker cortex may to a larger degree include voxels in 

more superficial cortical layers. This could also result in a larger contrast between GM and 

WM. Our results are also in accordance with prior reports of negative associations between 

cortical thickness and surface area change9, 55.  

Several imaging components were sensitive to age and, as hypothesized, the strongest 

age associations were seen for components dominated by GWC and thickness. Converging 

with prior studies13, 14, we found a negative association between age and a global GWC 

component. This indicates that GM and WM intensities appear more similar with higher age. 

Although a decidedly indirect measure, there is evidence supporting that the lowering of 

GWC is partly due to brightening of cortex, which concurs with other cortical intensity 
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studies15, 49, possibly through the developmental process of intracortical myelination, which 

continues across and beyond adolescence56. Moreover, a component capturing global cortical 

thickness was also negatively associated with age, in line with previous studies8, 9, 40, 43, 57. 

Intriguingly, the negative association between cortical thickness and age was co-modeled with 

globally relatively higher GWC. This could be an addition to previous findings showing that 

the apparent cortical thinning in development is due to an underestimation of the true cortical 

thickness. The rationale is that axonal myelination mostly occur within deep cortical layers 

where encroaching white matter penetrates the cortical neuropil57, 58. As myelin brightens the 

appearance of the cortex, deep myelinated cortical layers could be misclassified as WM, 

thereby shifting the grey/white boundary outward57, 59, 60. Indeed, a cross-sectional study 

investigating magnetization transfer and cortical thickness in youths aged 14-24 reported that 

association regions were thicker and less myelinated compared to primary sensory regions in 

early adolescence, but that during development these regions had faster rates of thinning and 

myelination61. Moreover, a recent study investigating GM and WM changes within visual 

cortex using quantitative MRI and mean diffusivity, reported that tissue growth, and 

specifically increased levels of myelin as verified by postmortem cortical data, underlay the 

apparent cortical thinning in development58.  

As hypothesized, sex differences were most pronounced for components 

encompassing cortical surface area, and as previously reported, boys showed overall larger 

surface area as compared to girls8. Beyond this scaling effect, boys had increases in regional 

occipital and prefrontal surface area, as well as bilaterally thinner precentral cortices and 

thicker medial prefrontal and posterior cingulate cortices, as compared to girls. Prior studies 

on cortical sex differences have been divergent62, but stable differences in surface area across 

age is a consistent finding. The present study indicates that there are few sex differences in 

GWC in youth.  
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Exploratory analyses on the associations between PGS for neuroticism and multimodal 

modes of brain structural variation yielded limited findings. The results showed a 

bidirectional association between PGS for neuroticism, as well as PGS for depressed affect, 

and an imaging component capturing prefrontal surface area within the right hemisphere. One 

prior study has investigated the association between PGS for neuroticism and brain structure 

in adults, using a discovery (n ≈ 1000) and replication sample (n≈ 600). In the discovery 

sample, PGS for neuroticism was associated with decreased regional surface area, including 

within inferior frontal gyrus, which overlaps with the region reported in the current paper, but 

this result was not replicated in the discovery sample37. Other studies have found associations 

between phenotypic neuroticism and smaller frontal surface area63, 64, and in youth a positive 

association between emotional stability and surface area, albeit in temporal lobe regions65. 

However, a recent large-scale study (n ≈ 1000) attempting to detangle the inconsistent 

findings within neuroimaging personality research, reported no significant associations 

between any of the Big Five personality traits and any of the structural measures, including 

cortical surface area or thickness 66.  

The present study attempted to investigate the genetic disposition of- and not 

phenotypic neuroticism, and it should be stated that PGS have been reported to explain little 

of the known heritability in complex traits. PGS based on the GWAS used in the current paper 

have been reported to explain a maximum of 4.2% of the variance in neuroticism34. Similarly, 

a combined meta-analysis GWAS of neuroticism using almost 10,000 participants from the 

UK Biobank cohort, as well as 2 separate replication cohorts, reported that PGS derived from 

the UK Biobank sample only captured about 1% of the variance in neuroticism in the 

replication cohorts. In addition, most of the genome-wide significant alleles were not 

independently replicated 67. Furthermore, an attempt to apply PGS to split-half samples failed 
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to significantly predict any of the tested personality traits of the study, including neuroticism 

68. 

There are several limitations to the current study. First, reported GWC associations 

cannot be directly credited to myelination in general or intracortical myelination specifically. 

Although cholesterol in myelin is a major determinant of T1-weighted signal intensity69, 70, so 

in part is iron, water content and dendrite density71-73. While cortical GM intensity 

corresponds closely with histologically based myelin profiles74, GWC is microstructurally 

complex and a product of GM and WM. Intricate combinations of both matter types can 

therefore produce changes in GWC. Second, the cross-sectional design is suboptimal for the 

study of development75. 

To conclude, our results indicated that in childhood and adolescence, GWC explains 

more variance in brain structure across subjects than cortical thickness or surface area. 

Further, negative age-related associations were found for global GWC and cortical thickness, 

the latter in combination with regionally relatively higher GWC. These results are in 

accordance with biological interpretations of intracortical myelination and an outward shifting 

of the grey/white border with increasing age. Boys had larger global and regional cortical 

surface area than girls, and there were also regional sex differences in cortical thickness. 

Finally, we found weak bidirectional associations between PGS for neuroticism and regional 

prefrontal surface area in the right hemisphere. Future developmental longitudinal studies are 

needed to validate the consistency of the reported effects. 
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Institute on Drug Abuse and the Eunice Kennedy Shriver National Institute of Child Health & 

Human Development funded collection and sharing. PING data are disseminated by the PING 

Coordinating Center at the Center for Human Development, University of California, San 

Diego. Data was also in part from the Philadelphia Neurodevelopment Cohort (PNC), and 

support for this collection was provided by grant RC2MH089983 to Raquel Gur, and 

RC2MH089924 to Hakon Hakonarson. The participants were recruited through the Center for 

Applied Genomics at The Children’s Hospital in Philadelphia.  
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Tables 

 

IC Age 

effect 

(t) 

 

P-value Sex 

effect 

(t) 

 

P-value 

1 -24.86 <.001 0.08 0.939 

2 -3.68 0.011 29.25 <.001 

3 -16.88 <.001 -3.39 0.026 

4 -69.34 <.001 -2.34 0.612 

5 -8.09 <.001 1.44 0.939 

6 -5.32 <.001 0.53 0.939 

7 -6.22 <.001 7.33 <.001 

8 -2.06 0.924 -5.25 <.001 

9 1.29 0.924 4.15 0.002 

10 3.74 0.009 1.76 0.939 

11 5.44 <.001 -0.29 0.939 

12 4.86 <.001 3.62 0.012 

13 -8.08 <.001 -2.38 0.574 

14 -3.79 0.007 -3.12 0.066 

15 -10.18 <.001 8.47 <.001 

16 2.04 0.924 -4.25 0.001 

17 0.23 0.924 0.98 0.939 

18 -0.54 0.924 -4.94 <.001 

19 -0.92 0.924 -0.19 0.939 

20 0.77 0.924 -3.54 0.016 

21 -1.63 0.924 7.36 <.001 

22 -3.15 0.068 1.95 0.939 

23 -0.62 0.924 -0.8 0.939 

24 -0.87 0.924 -0.39 0.939 

25 -1.42 0.924 -0.34 0.939 

26 1.06 0.924 -4.27 0.001 

27 1.76 0.924 2.26 0.732 

28 -0.3 0.924 -1.57 0.939 

29 3.15 0.068 3.95 0.004 

30 0.68 0.924 -0.92 0.939 

31 -3.59 0.015 0.39 0.939 

32 -0.09 0.924 0.87 0.939 

33 -0.33 0.924 -1.08 0.939 

34 2.52 0.453 4.21 0.001 

35 0.3 0.924 3.78 0.007 

36 2.67 0.295 -1.16 0.939 

37 -0.11 0.924 3.03 0.086 

38 -0.4 0.924 2.08 0.939 

39 -0.33 0.924 5.34 <.001 

40 -0.72 0.924 -1.61 0.939 

41 5.18 <.001 -0.74 0.939 

42 1.73 0.924 -0.56 0.939 

43 3.04 0.096 5.97 <.001 

44 3.27 0.047 7.63 <.001 

45 0.86 0.924 2.65 0.279 

46 -1.95 0.924 3.83 0.006 

47 -3.21 0.057 -3.9 0.004 

48 -3.91 0.005 0.59 0.939 
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49 -1.9 0.924 -0.72 0.939 

50 -1.74 0.924 3.53 0.016 

51 1.88 0.924 -3.7 0.009 

52 1.31 0.924 -0.51 0.939 

53 -0.48 0.924 -0.92 0.939 

54 -1.43 0.924 2.2 0.826 

55 0.44 0.924 1.45 0.939 

56 -0.22 0.924 -1.86 0.939 

57 2.02 0.924 -1.6 0.939 

58 -0.73 0.924 1.9 0.939 

59 2.13 0.924 3.49 0.019 

60 -0.37 0.924 -6.34 <.001 

Table 1. Overview of age and sex effects on multimodal imaging components. The table 

shows the T statistics for age (controlling for scanner) and sex (controlling for scanner and 

age) effects on each independent component, as well as P-values adjusted for multiple 

comparisons by false discovery rate correction. P-values at or below 0.05 are marked in bold.  
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Figures 

 

Figure 1. Age and sex distribution for the full MRI sample (n=2596). (A) Depicts the age and 

sex distribution for the full MRI sample, while (B) depicts the age distribution within each 

scanner.  Scanner 1-10 are scanners employed by the PING study, while scanner 11 was used 

in the PNC.   

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 20, 2019. ; https://doi.org/10.1101/2019.12.20.883959doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.20.883959
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 
 

 
Figure 2. Associations between age and multimodal imaging independent components (ICs). 

The figure depicts FMRIB’s linked independent component analysis (FLICA) weighted 

spatial maps for the four ICs with the strongest age associations. The accompanying plots 

show linear models of age plotted against scanner residualized IC loading. In general, all 

components were thresholded within a minimum and maximum of 8 and 17 standard 

deviations (SD) respectively, except for the global maps within IC1, IC3 and IC4, which were 

thresholded with a higher maximum SD value in order to reveal nuances in the global pattern.  
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Figure 3. Associations between sex and multimodal imaging independent components (ICs). 

The figure depicts FMRIB’s linked independent component analysis (FLICA) weighted 

spatial maps for the four ICs with the strongest effect of sex. The accompanying violin 

boxplots shows sex plotted against scanner and age residualized IC loading. All components 

were thresholded within a minimum and maximum of 8 and 17 standard deviations (SD) 

respectively, except for the global map within IC2, which was thresholded with a higher 

maximum SD value in order to reveal nuances in the global pattern. 
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Figure 4. Association between polygenic scores (PGS) for neuroticism and a single 

multimodal imaging independent component (IC). The figure depicts FMRIB’s linked 

independent component analysis (FLICA) weighted spatial maps for the IC with an effect of 

PGS. The accompanying plots show linear models of PGS score plotted against scanner, age-, 

sex, and population stratification- residualized IC loading. The IC was thresholded within a 

minimum and maximum of 8 and 17 standard deviations (SD) respectively. 
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