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Abstract 41 

Background: Systematic perturbation screens provide comprehensive resources for the 42 

elucidation of cancer driver genes, including rarely mutated genes that are missed by 43 

approaches focused on frequently mutated genes and driver genes for which the basis for 44 

oncogenicity is non-genetic. The perturbation of many genes in relatively few cell lines in 45 

such functional screens necessitates the development of specialized computational tools 46 

with sufficient statistical power. 47 

Results: Here we developed APSiC (Analysis of Perturbation Screens for identifying novel 48 

Cancer genes) that can identify genetic and non-genetic drivers even with a limited number 49 

of samples. Applying APSiC to the large-scale deep shRNA screen Project DRIVE, APSiC 50 

identified well-known, pan-cancer genetic drivers, novel putative genetic drivers known to be 51 

dysregulated in specific cancer types and the context dependency of mRNA-splicing 52 

between cancer types. Additionally, APSiC discovered a median of 28 and 35 putative non-53 
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genetic oncogenes and tumor suppressor genes, respectively, for individual cancer types, 54 

including genes involved in genome stability maintenance and cell cycle. We functionally 55 

demonstrated that LRRC4B, a putative non-genetic tumor suppressor gene that has not 56 

previously been associated with carcinogenesis, suppresses proliferation by delaying cell 57 

cycle and modulates apoptosis in breast cancer.  58 

Conclusion: We demonstrate APSiC is a robust statistical framework for discovery of novel 59 

cancer genes through analysis of large-scale perturbation screens. The analysis of DRIVE 60 

using APSiC is provided as a web portal and represents a valuable resource for the 61 

discovery of novel cancer genes. 62 

 63 

Keywords: APSiC, perturbation screen, shRNA screen, cancer genes, LRRC4B, oncogene, 64 

tumor suppressor. 65 

 66 

Background 67 

Advances in large-scale functional screening technologies have enabled the discovery of 68 

gene requirements across diverse cancer entities [1,2]. Systematic perturbation screens 69 

using short hairpin RNA (shRNA) or CRISPR are increasingly used to investigate how 70 

genetic alterations or expression modulation of individual genes lead to phenotypic changes, 71 

revealing novel factors in carcinogenesis [3–5]. In parallel, large-scale sequencing efforts of 72 

10,000+ cancers have provided a comprehensive molecular portrait of human cancers and 73 

their molecular pathogenesis [6]. Among the major findings is the unbiased discovery of 74 

genes mutated at rates significantly higher than the expected background level [7], revealing 75 

the global landscape of genetic ‘driver genes’ [8]. The discovery of these ‘driver genes’ forms 76 

the critical foundations of cancer diagnostics, therapeutics, clinical trial design and selection 77 

of rational combination therapies. Despite the large cohort size, the functional consequences 78 

of mutations in rarely mutated genes, such as YAP/TAZ [9], are only revealed by functional 79 
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studies. Moreover, a systematic survey of non-genetic driver genes (i.e. driver genes for 80 

which the basis for oncogenicity is non-genetic) is lacking. 81 

In a recent large-scale perturbation screen, the project DRIVE (deep RNAi interrogation of 82 

viability effects in cancer), 7,837 genes in 398 cancer cell lines were targeted with a median 83 

of 20 shRNAs per gene across a variety of malignancies to generate a comprehensive atlas 84 

of cancer dependencies [4]. The findings described in the study provided an overarching 85 

view of the nature and types of cancer dependencies, but has barely scratched the surface 86 

of the potential of the data generated. This huge resource of deep, robust and well-curated 87 

functional data, in conjunction of molecular profiling from the Cancer Cell Line Encyclopedia 88 

(CCLE) [10], remain largely untapped resources to be thoroughly mined and interrogated. 89 

Analysis of shRNA perturbation screens is challenging due to the off-target effects of 90 

shRNAs as well as low number of cell lines screened [4,11]. Project DRIVE used deep 91 

coverage libraries to alleviate the off-target issues [4]. Additionally, several computational 92 

tools have been developed to elicit the on-target effect from a pool of siRNAs that have both 93 

on- and off-target effects [11–15]. RSA provides an absolute gene score based on the rank 94 

distribution of phenotypes produced by all shRNA reagents of a given gene [14]. ATARiS 95 

estimates a consensus shRNA profile for each gene and provides a relative gene score [13]. 96 

DEMETER is a regularized linear model for computing the effects due to knockdown of a 97 

target gene by taking into account the effects due to the seed sequence [11], while 98 

DEMETER2 is a complex hierarchical model structure that provides absolute gene 99 

dependency score as opposed to ATARiS and DEMETER that provide relative dependency 100 

score [15].   101 

Cancer dependencies can be divided into two main groups of non-self dependencies (or 102 

synthetic lethality) and self-dependencies. Synthetic lethality refers to the cell dependency 103 

on the concomitant loss of two or more genes. In the context of an shRNA or CRISPR 104 

screen, synthetic lethality refers to the loss of cell viability upon knockdown/knockout of a 105 
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gene conditional on the loss-of-function state of another gene. Various computational 106 

approaches have been used to discover synthetic lethal pairs from perturbation studies [16–107 

18]. MiSL is a computational pipeline for the identification of synthetic lethal pairs using 108 

Boolean implications applied to the The Cancer Genome Atlas (TCGA) datasets [19,20]. A 109 

recent computational tool, called SLIdR, uses Irwin-Hall tests and causal inference for the 110 

discovery of pan-cancer as well as cancer-specific synthetic lethal pairs using the DRIVE 111 

data [21]. On the other hand, self-dependency refers to cell dependency on a gene with 112 

specific molecular features such as mutation, copy number, expression, and DNA 113 

methylation. Based on the molecular features, various statistical tests such as Fisher’s Exact 114 

and Wilcoxon tests, and differential expression analysis have been used to discover 115 

association between molecular features and gene dependencies. Most existing methods for 116 

finding self-dependencies are limited to the pan-cancer setting where a sufficient number of 117 

cell lines is available [4]. These tests lack statistical power for a limited number of 118 

observations (i.e. 5-10 observations) particularly after multiple testing corrections for a large 119 

number of tests. While the project DRIVE is one of the largest of its kind, the number of cell 120 

lines for some cancer types is quite small. A tool that can identify self-dependencies with 121 

small sample size is needed to make the best use of perturbation screens to reveal the 122 

cancer type-specific vulnerabilities. 123 

Here, we introduce APSiC (Analysis of Perturbation Screens for identifying novel Cancer 124 

genes), a novel tool for the systematic and robust interrogation of large-scale perturbation 125 

screens to discover gene (self-)dependencies for individual cancers even with limited 126 

number of samples. Incorporating mutation and copy number status of the samples, APSiC 127 

identifies potential genetic and non-genetic cancer genes. We consider three classes of 128 

genetic drivers, namely mutation oncogenes, amplification oncogenes, and mutation tumor 129 

suppressor genes as well as two classes of non-genetic drivers namely non-genetic 130 

oncogenes and tumor suppressor genes. Of particular importance, non-genetic drivers 131 

identified by APSiC have been largely less studied in cancer research. We applied APSiC to 132 
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26 cancers and identified both known and novel candidate genetic and non-genetic drivers. 133 

As a proof of concept, we functionally validated LRRC4B as a putative tumor suppressor 134 

gene in breast cancer. We provided the statistical analysis of DRIVE by APSiC as a web 135 

portal (https://apsic.shinyapps.io/APSiC/) for the scientific community to explore and 136 

functionally characterize genes that may be involved in carcinogenic processes and may 137 

pave the way for the discovery of novel cancer-related biomarkers and drug targets.   138 

 139 

Results and Discussion 140 

The APSiC Algorithm 141 

APSiC uses rank-based statistics to discover self-dependencies in perturbation screens (see 142 

Methods for a technical description of the algorithm). Given the raw cell viability readout of a 143 

perturbation screen, APSiC computes a rank profile for each gene by first ranking all genes 144 

by their viabilities upon knockdown in a given sample to the range of [0, 1] then aggregating 145 

the normalized ranks for a given gene across all samples (Fig. 1a). Thus ranks close to zero 146 

represent reduced viability while the ranks close to one indicate cell growth upon 147 

knockdown. Incorporating mutation and copy number status of the samples, APSiC identifies 148 

potential genetic and non-genetic cancer genes by assessing deviation of the distribution of 149 

normalized ranks from what is expected by chance using the Bates and Irwin-Hall tests. The 150 

Irwin-Hall distribution has been successfully used in the identification of synthetic lethal gene 151 

pairs [21] and prioritization of cancer genes based on multi-omics data [22]. The use of the 152 

rank-based statistics with the Bates and Irwin-Hall distributions provides enhanced statistical 153 

power when the number of cell lines is limited.  154 

 155 

We consider three classes of genetic drivers (mutation oncogenes, amplification oncogenes, 156 

and mutation tumor suppressor genes) and two classes of non-genetic drivers (non-genetic 157 

oncogenes and tumor suppressor genes). We define mutation and amplification oncogenes 158 

as genes for which reduced cell viabilities are preferentially observed in samples with 159 
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missense mutations and copy number amplifications, respectively, while mutation tumor 160 

suppressor genes are those for which increased viabilities are preferentially observed in 161 

samples with deleterious mutations. To identify such genetic drivers, we test, for a given 162 

gene, whether ranks of the samples with and without the specific class of genetic alteration 163 

are significantly different using a one-sided Bates test (Fig. 1b, Additional files 1-3). For 164 

mutation and amplification oncogenes, we compute the lower-tailed P values (i.e. the ranks 165 

preferentially suggest reduced viability upon gene knockdown), while for mutation tumor 166 

suppressor genes, we compute the upper-tailed P values (i.e. the ranks preferentially 167 

suggest increased cell viability upon knockdown). For the non-genetic drivers, we test 168 

whether gene knockdown in samples without genetic alteration in the gene has any impact 169 

on cell viability by computing lower and upper-tailed Irwin-Hall test P values for oncogenes 170 

and tumor suppressor genes, respectively (Fig. 1c, Additional files 4-5). Optionally, we 171 

further test whether the expression of candidate non-genetic oncogenes or tumor suppressor 172 

genes is respectively enhanced or repressed in human tumors compared to the 173 

corresponding normal tissue type.  174 

 175 

APSiC identifies well-known and novel genetic cancer drivers 176 

We applied APSiC to the DRIVE perturbation screens and the genetic data from the CCLE 177 

[10] to identify genetic driver genes (Additional files 1-3). The dataset consists of 383 cell 178 

lines across 26 cancer types, with a median of 11 (range 5-40) cell lines per cancer type 179 

(Fig. 2a). In a pan-cancer analysis, APSiC reassuringly identified the well-known mutation 180 

oncogenes BRAF, CTNNB1, KRAS, NRAS, PIK3CA and TP53 (Figs. 2b-c, Additional file 181 

6). Additionally, DDX27, DCAF8L2 and RBM39 were detected as mutation oncogenes 182 

(Additional files 6 and 7). The top amplification oncogene were KRAS, BRAF, CDK4, 183 

YAP1, IL6 and HAS2 (Figs. 2b, d and Additional file 6), while the only mutation tumor 184 

suppressor was ARID1A (Figs. 2b, e and Additional file 6). However, the identification of 185 

mutation tumor suppressor genes in a knockdown screen is likely to have limited utility given 186 
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that mutation tumor suppressor genes are frequently associated with loss of the wild-type 187 

allele. 188 

 189 

One of the main strengths of APSiC is the identification of dependencies in small sample 190 

sets. We therefore applied APSiC to the DRIVE data to identify genetic driver genes for 191 

individual cancer types. Across the 26 cancer types, we found 20, 18 and 14 mutation 192 

oncogenes, amplification oncogenes and mutation tumor suppressor genes, respectively 193 

(Fig. 2f and Additional files 1-3), in 15, 14 and 11 cancer types. We found no correlation 194 

between the number of cell lines and the number of driver genes identified (p=0.14, 0.21 and 195 

0.97 for mutation oncogenes, amplification oncogenes and mutation tumor suppressor 196 

genes, respectively, Spearman correlation tests). KRAS, BRAF and TP53 were identified as 197 

a mutation oncogene in 4, 2 and 2 cancer types, respectively, while the other 17 genes were 198 

identified as mutation oncogenes in a single cancer type each. Other well described 199 

mutation oncogenes include NFE2L2 in esophagus carcinoma and CTNNB1 in non-small 200 

cell lung cancer. The remaining putative mutation oncogenes have not been reported as 201 

frequently mutated in human cancers. These putative novel mutation oncogenes include 202 

RREB1 (Ras Responsive Element Binding Protein 1) and SBK1 (SH3 Domain Binding 203 

Kinase 1), both of which have previously been found to be dysregulated in cancer [23,24]. 204 

 205 

No amplification oncogene or mutation tumor suppressor was identified in more than one 206 

cancer type. We identified MCL1 and RHOB as the top amplification oncogenes in the 207 

squamous subtype of non-small cell lung cancer and glioma, respectively (Fig. 2f and 208 

Additional files 2-3). HOXA5, a gene frequently overexpressed in hepatocellular carcinoma 209 

[25], was identified as an amplification oncogene. Of the mutation tumor suppressor genes, 210 

BRCA1 and SETD2 were found in breast and kidney cancers, respectively. BAZ2B, a gene 211 

involved in chromatin remodeling, is a putative mutation tumor suppressor in esophageal 212 

cancer. Of note, 15% of BAZ2B somatic mutations in the TCGA pan-cancer cohort are 213 

truncating mutations [8], suggestive of a tumor suppressor role for BAZ2B. Taken together, 214 
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APSiC identified both well known and putative genetic driver genes previously linked to 215 

carcinogenesis. 216 

 217 

Survey of non-genetic driver genes reveals cancer type specificity 218 

By identifying strong irregular viability patterns in the rank profiles of cell lines wild-type for a 219 

given gene using APSiC, we evaluated the non-genetic dependencies across cancer types 220 

in the DRIVE data (Additional files 4-5). Consensus clustering of the most variable genes in 221 

terms of APSiC P values revealed that such non-genetic dependencies segregate by organ 222 

systems or cell-of-origin into four clusters (Fig. 3a). In particular, non-epithelial cancers 223 

including leukemias/lymphomas, sarcomas, gliomas and neuroblastomas form a cluster 224 

distinct from epithelial cancers including those of the lungs, the breasts and gastrointestinal 225 

tract. This is consistent with the observation that multi-omics cancer classification is primarily 226 

driven by cell-of-origin and anatomic regions [26]. Furthermore, the top-level segregation of 227 

the cancer types was largely driven by the context-dependency of mRNA-splicing genes. We 228 

observed that mRNA-splicing genes such as PRPF6 (Pre-MRNA Processing Factor 6) and 229 

SART3 (Spliceosome Associated Factor 3, U4/U6 Recycling Protein) were tumor 230 

suppressive in the cluster enriched for non-epithelial cancers while they were oncogenic in 231 

the epithelial cancer cluster (Fig. 3b). The context-dependency highlights the divergent role 232 

of mRNA-splicing in carcinogenesis between cancer types. Our results also underscore the 233 

necessity for an algorithm powerful enough to analyze perturbation screens for small 234 

numbers of samples in a cancer type-specific manner. 235 

 236 

Based on the DRIVE screen alone, we identified a median of 28 non-genetic oncogenes 237 

(range 6-557) and 35 non-genetic tumor suppressor genes (range 1-471) per cancer type. 238 

However, we reasoned that the many non-genetic onco- and tumor suppressor genes would 239 

also be over- and under-expressed, respectively, in the corresponding cancer types. For the 240 

12 cancer types for which gene expression data for the cancer and corresponding non-241 

cancer counterparts were available from the TCGA (Additional file 8), we further restricted 242 
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the putative non-genetic onco- and tumor suppressor genes to those that were over- and 243 

under-expressed, respectively, relative to their non-cancer counterparts. After this filtering 244 

step, there were a median of 13 non-genetic oncogenes (range 2-117) and 3 non-genetic 245 

tumor suppressor genes (range 0-42, Fig. 4) per cancer type. We identified several well-246 

known oncogenes, including CDK1 (a master regulator of cell cycle) and SMC1A (a 247 

component of the cohesin complex involved in cell cycle checkpoint and genome 248 

stability)[27], and some that have been shown to have oncogenic properties in some cancer 249 

types, such as MKI67IP (or NFIK) [28]. We also identified TEAD3, a lesser described 250 

member of the TEAD family involved in hippo signalling, as oncogenic in liver cancer [29]. 251 

Among the top candidate tumor suppressors were FOXP2 in endometrial cancer and 252 

XRCC5 in kidney carcinoma. FOXP2 knockdown has been shown to promote tumor initiation 253 

and metastasis in breast cancer [30] while XRCC5, encoding the protein Ku80, is a key DNA 254 

damage repair protein. However, we also identified many genes that have not been 255 

associated with carcinogenesis. 256 

 257 

LRRC4B is a putative tumor suppressor gene in breast cancer 258 

As a proof-of-concept to validate APSiC, we selected LRRC4B, the top putative non-genetic 259 

tumor suppressor gene in breast cancer, for functional validation. A literature search of 260 

LRRC4B in cancer suggests that its role and function in carcinogenesis are unknown. 261 

Meanwhile, one of its paralogs LRRC4 has been shown to have a putative tumor suppressor 262 

role in glioma by modulating the extracellular signal-regulated kinase/protein kinase 263 

B/nuclear factor-κB pathway [31]. In the DRIVE RNAi screen, nearly all breast cancer cell 264 

lines displayed significantly increased cell viability upon LRRC4B knockdown and breast 265 

cancers in TCGA showed lower LRRC4B expression compared to normal breast tissue 266 

(Additional file 9a). We selected the breast cancer cell lines MDA-MB231, BT-549 and 267 

MCF-7 with high, moderate and low endogenous LRRC4B expression to investigate whether 268 

LRRC4B knock-down would result in other classical cancer phenotypes such as increased 269 

migration and colony formation (Additional file 9b). We silenced LRRC4B in MDA-MB231 270 
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and BT-549 using siRNA, reducing LRRC4B protein expression by 40% and 60%, 271 

respectively, 72 hours post-transfection (Figs. 5a, e). In both models, LRRC4B 272 

downregulation significantly increased the proliferation and migration rates (Figs. 5b-c, f-g). 273 

By contrast, LRRC4B overexpression significantly reduced proliferation and migration in 274 

MCF-7 (Figs. 5i-k).  275 

 276 

LRRC4 has been shown to suppress cell proliferation by delaying cell cycle in late G1 phase 277 

[32],[33]. To test whether LRRC4B may play the same role in breast, we analyzed cells with 278 

LRRC4B overexpression or downregulation stained with DAPI by flow cytometry (FACS). 279 

LRRC4B knockdown in MDA-MB231 and BT-549 promoted cell transition into S phase 280 

(Figs. 5d, h), while LRRC4B overexpression in MCF-7 significantly retained cells in G1 281 

phase (Fig. 5l), suggesting a similar mechanism to LRRC4.  282 

 283 

A common mechanism of oncogenicity is resistance to apoptosis [34]. To test whether 284 

modulation of apoptosis is a mechanism of action of LRRC4B as an oncosuppressor, we 285 

induced apoptosis with doxorubicin and measured it using Annexin V and propidium iodide 286 

co-staining followed by FACS analysis (Fig. 6a). Forty eight hours after treatment, LRRC4B-287 

overexpressing MCF-7 cells showed 10% more apoptotic and 10% fewer live cells, 288 

suggesting that LRRC4B overexpression could sensitize cells to doxorubicin-induced 289 

apoptosis (Fig. 6b). By contrast, LRRC4B-downregulating MDA-MB231 and BT-549 cells 290 

showed increased resistance to doxorubicin and had 25% and 10% fewer apoptotic and 291 

25% and 10% more live cells, respectively (Fig. 6b). Our results provide compelling 292 

evidence that APSiC identified LRRC4B as a novel oncosuppressor gene in breast cancer. 293 

 294 

Conclusions 295 

APSiC is a novel tool to enable systematic and robust discovery of gene dependencies from 296 

small number of samples and can conceivably be applied to other types of perturbation 297 
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screens, such as CRISPR screens. Our analysis of the DRIVE perturbation screens using 298 

APSiC is a valuable resource for the discovery of drug targets, cancer-related biomarkers 299 

and novel cancer genes, in particular of non-genetic driver genes for which a systematic 300 

analysis has been lacking. Our results would complement the associated multi-omics 301 

profiling [35,36] and drug screens [37] to understand the vulnerabilities of cancer. 302 

 303 

Methods  304 

The detailed explanation of the APSiC algorithm 305 

In this section, we give a more technical description of APSiC and also introduce a new 306 

waterfall plot, called rank profile, for visualization of gene dependencies. First we briefly 307 

describe some necessary definitions and background material from ordered statistics. We 308 

consider the knockdown experiments of p genes across N cell lines. Let ���be viability of cell 309 

line i∈{1,…,N} upon knocking down gene j∈{1,…, p} and ���  be a binary variable indicating 310 

whether a specific genetic alteration (i.e. mutation or copy number alteration) is present in 311 

gene j of cell line i. In this study, we only consider deleterious (e.g. nonsense, frameshift, 312 

splice site and mutations affecting start or stop codons) and missense mutations. Waterfall 313 

plots are often used to show viabilities of knockdown experiments for a single gene across 314 

different cell lines and are aimed to illustrate different gene dependencies. As an example, 315 

waterfall plot for gene TP53 is shown in Fig. 1a (left). Each vertical bar corresponds to a cell 316 

line and is colored by the pre-existing mutation types present in TP53. Fig. 1a indicates cell 317 

lines with the presence of deleterious or missense mutations in TP53 tend to have lower 318 

viabilities upon knockdown of this gene. While waterfall plot is a useful visualization tool for 319 

demonstrating gene dependencies, it lacks sufficient interpretability in certain cases, 320 

particularly when the number of cell lines is limited. In this paper, we introduce a new 321 

waterfall plot, named rank viability profile or simply rank profile, to address this issue. 322 

 323 

To make viability scores comparable across cell lines, we compute normalized rank values 324 
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per cell lines denoted as , representing the rank of viability for gene j among all 325 

knockdown experiments in cell line i. For mathematical convenience and without loss of 326 

generality, we normalized ranks to the range of [0, 1]. When the number of knockdown 327 

genes is high, normalized ranks have many distinct levels in the interval [0, 1] and we 328 

assume normalized ranks are continuous. Let denote random variables 329 

associated to ranks of a gene A in N cell lines. We drop subscript A and denote ranks as 330 

 for the simplicity of notation. By placing ranks, , in ascending orders and 331 

renaming them, we obtain   where  is called ith ordered statistic. It is easy 332 

to see that  and . The probability density function of 333 

ordered statistic  in general is given as 334 

 335 

where f(r) and F(r) denote probability density and cumulative distribution functions, 336 

respectively. If there is no dependency between knocking down of a gene and the viability of 337 

the cell, we can assume  for , hence we have . 338 

Using this result, we can construct a no-change viability band at statistical significance α 339 

using the quantiles of  at the  and  for . Now we define a new 340 

waterfall plot, called rank viability profile or simply rank profile, as a waterfall plot using 341 

normalized ranks, realizations of  for a gene, overlaid with no-change viability band (Fig. 342 

1a).  343 

 344 

The APSiC algorithm identifies potential cancer genes by assessing deviation of respective 345 

rank profiles from what is expected by chance. The algorithm can identify both genetic and 346 

non-genetic drivers (Fig. 1b-c). We consider three categories for genetic drivers. 347 

● Mutation oncogene: defined as genes for which reduced viabilities are observed 348 

preferentially in samples with missense mutation. 349 
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● Amplification oncogene: defined as genes for which reduced viabilities are observed 350 

preferentially in samples with copy number amplification. 351 

● Mutation tumor suppressor: defined as genes for which increased viabilities are 352 

observed preferentially in samples with deleterious mutation.  353 

 354 

We consider two categories for non-genetic drivers, namely 355 

● Non-genetic oncogene: defined as genes for which reduced viabilities are observed 356 

in samples without a genetic alteration in the respective gene. 357 

● Non-genetic tumor suppressor: defined as genes for which increased viabilities are 358 

observed preferentially in samples without a genetic alteration in the respective gene. 359 

 360 

For genetic drivers, the APSiC algorithm considers rank profiles of mutated and wild-type 361 

samples with respect to an input gene � (Fig. 1b). Then, it performs a one-sided statistical 362 

test to determine whether rank scores of the two groups of samples are significantly different 363 

in the direction of interest, according to the genetic feature of interest. Suppose 364 

��
�� , ��

�� , . . . , ��
��  and ��

�� , ��
�� , . . . , �	

�� are random variables denoting rank scores upon 365 

knockdown of gene � for � wild-type and � mutated samples, respectively. Let ���  and ��� 366 

denote the average of ranks for the wild-type and mutated samples, respectively. We define 367 

� 	 ��� 
���  as the test statistic and �
�� as the observed test statistic. We assume the 368 

null hypothesis is that the knockdown of gene � does not have any impact on the viability of 369 

samples and therefore there is no difference in average of ranks for two groups, i.e. � 	0. 370 

The general formula for the distribution of any weighted sum of uniform random variables is 371 

given in Kamgar-Parsi, 1994[38]. We simplify the general formula thereby and obtain the null 372 

distribution of the test statistic �as 373 

��� �  �� � �	1��
������ 
 ��! �

�

���

�
�

���

�	1���� �
�

�
� �� 
 �

�  	 �
�������� 
 �

�  	 �
�� 

where  374 
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 375 

For mutation and amplification oncogenes, we compute lower-tailed P values,  376 

while for mutation tumor suppressors, we compute upper-tailed P values, . Due 377 

to numerical issues, it is impractical to use the exact null distribution formula for large values 378 

of m and n (m+n >20). In this case, we compute an approximation for the null distribution of 379 

S as follows. Under the null hypothesis,   and  follow Bates distributions Bates(m) 380 

and Bates(n), respectively. The Bates distribution is a distribution that represents the mean 381 

of a number of independent uniform random variables on the unit interval.  For large values 382 

of m and n,  and  are approximately distributed by  and . Hence, 383 

under the null hypothesis the test statistic S is approximately distributed as .  384 

 385 

To identify non-genetic drivers, we only consider the wild-type (i.e. without non-synonymous 386 

mutations and without copy number amplification (GISTIC copy number state 2) or deep 387 

deletions (GISTIC copy number state -2)) samples with respect to an input gene (Fig. 1c). 388 

The null hypothesis is that the knockdown of a gene g does not have any impact on the 389 

viability of the samples. We define the test statistic as  and  as the 390 

observed test statistic. Under the null hypothesis, T follows an Irwin-Hall distribution 391 

, which represents the summation of  independent uniform random variables on 392 

the unit interval. For large values of m, S is approximately distributed as  To 393 

identify non-genetic oncogenes, we require significant lower-tailed P values,  for 394 

wild-type cell lines with respect to the input gene. Additionally, for the respective tissue type, 395 

the overall expression at the RNA level of a putative oncogene in tumor samples is required 396 

to be significantly higher than the one in normal tissue samples using the t test. On the 397 

contrary, for identifying non-genetic tumor suppressors, we require significant upper-tailed P 398 
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values, �
� � �
���, for wild-type cell lines with respect to the input gene as well as lower 399 

RNA expression of tumor samples in comparison to normal tissue samples using the t test. 400 

 401 

Downloading and preprocessing of DRIVE and TCGA data 402 

We considered the viability profiles of 383 cell lines in the project DRIVE [4] for which their 403 

genetic profiles were available at the Cancer Cell Line Encyclopedia (Fig. 2a) [10]. We 404 

computed aggregated gene-level viability scores for each experiment by the RSA and 405 

ATARiS algorithms [13,14]. The RSA and ATARiS scores are available for 7726 and 6557 406 

genes, respectively. We used the same method as defined in the project DRIVE to remove 407 

essential genes, defined as genes with an RSA value of � 3 in more than half of cell lines 408 

[4]. After the removal of 184 essential genes by this method, for pan-cancer analysis, the 409 

ATARiS scores are available for 6373 genes in 383 cell lines in 39 cancer types over 17 410 

primary tissues. For the genetic drivers, we considered only genes for which there are at 411 

least 2 samples harbored a genetic alteration of the corresponding class in individual cancer 412 

types. For the non-genetic drivers, we only considered genes for which there are at least 2 413 

samples wild-type for the gene in individual cancer types. For pan-cancer analysis, the 414 

above threshold was at least 4 samples for both genetic and non-genetic drivers. For the 415 

identification of mutation tumor suppressor genes, mutations annotated as In_Frame_Ins, 416 

In_Frame_Del, Frame_Shift_Ins, Frame_Shift_Del, Nonsense_Mutation, Splice_Site, 417 

Start_Codon_Del, Stop_Codon_Del,  Stop_Codon_Ins,  Start_Codon_Ins were considered 418 

deleterious. For the analysis of individual cancer types, we considered the 26 cancer types 419 

for which more than four cell lines are available in the DRIVE data.  420 

 421 

TCGA gene expression data was obtained for 12 cancers for which data are available for 422 

tumor and normal tissues (Additional file 8). The data were downloaded using the 423 

TCGAbiolinks package in R [39]. The normalized expression level of genes in CPM (counts 424 

per million) were used for the identification of non-genetic drivers.  425 

 426 
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Multiple testing 427 

To address the multiple comparisons problem, we chose a significance level such that the 428 

expected number of false positives due to multiple testing for each cancer and feature is 429 

equal to one. To this end, we chose a significance level of 1/�, or 0.05 if 1/�>0.05,  where � 430 

is the number of genes tested for identification of drivers. Using this approach, we were able 431 

to keep many interesting hits while keeping the number of false positive cases low. 432 

 433 

Clustering and pathway analysis  434 

Clustering was performed using ConsensusClusterPlus Bioconductor package in R [40] 435 

using 1-Spearman correlation as the distance metric and the Ward hierarchical clustering 436 

algorithm. The number of clusters was determined based on the relative change in area 437 

under the consensus cumulative distribution function over the number of evaluated clusters. 438 

Pathway analysis was performed using g:Profiler [41]. 439 

 440 

Cell lines  441 

Breast cancer derived cell lines (MCF-7, BT-549 and MDA-MB231) were maintained in a 5% 442 

CO2-humidified atmosphere at 37°C and cultured in DMEM supplemented with 10% FBS, 443 

1% Pen/Strep (Bio-Concept) and 1% MEM-NEAA (MEM non-essential amino acids, 444 

ThermoFisher Scientific). All cell lines were confirmed negative for mycoplasma infection 445 

using the PCR-based Universal Mycoplasma Detection kit (American Type Culture 446 

Collection, Manassas, VA) as previously described [42]. 447 

 448 

Transient gene knockdown by siRNAs 449 

Transient gene knockdown was conducted using ON-TARGET plus siRNA transfection. ON-450 

TARGET plus SMARTpool siRNAs against human LRRC4B (Dharmacon, CO; #L-023786-451 

01-0005), ON-TARGET plus SMARTpool non-targeting control and DharmaFECT 452 

transfection reagent  (Dharmacon, CO; #T-2001-03) were all purchased from GE 453 
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Dharmacon. Transfection was performed according to the manufacturer’s protocol. Briefly, 454 

log-phase breast cancer cells were seeded at approximately 60% confluence. Because 455 

antibiotics affects the knockdown efficiency of ON-TARGET plus siRNAs, growth medium 456 

was removed as much as possible and replaced by antibiotic-free complete medium. siRNAs 457 

were added to a final concentration of 25 nM. Cells were incubated at 37°C in 5% CO2 for 458 

24-48-72 hours for 48-72 hours for protein analysis. To avoid cytotoxicity, transfection 459 

medium was replaced with complete medium after 8 hours. 460 

 461 

Protein extraction and western blot 462 

Proteins were extracted using Co-IP buffer (100 mmol/L NaCl, 50 mmol/L Tris pH 7.5, 1 463 

mmol/L EDTA, 0.1% Triton X-100)  supplemented with 1x protease inhibitors (cOmplete 464 

Mini, EDTA-free Protease Inhibitor Cocktail, Roche, CO, #4693159001) and 1x phosphatase 465 

inhibitors (PhosSTOP #4906837001, Merck). Cell lysates were then treated with 10x 466 

reducing agent (NuPAGE Sample Reducing Agent, Invitrogen, #NP0009), 4x loading buffer 467 

(NuPAGE LDS Sample Buffer, Invitrogen, #NP0007), boiled and loaded into neutral pH, pre-468 

cast, discontinuous SDS-PAGE mini-gel system (NuPAGE 10% Bis-Tris Protein Gels, 469 

ThermoFisher). The proteins were then transferred to nitrocellulose membranes using 470 

Trans-Blot Turbo Transfer System (Bio-Rad). The membranes were blocked for 1 hr with 471 

Sure Block (Lubio Science) and then probed with primary antibodies overnight at 4°C. Next 472 

day, the membranes were incubated for 1 hr at RT with fluorescent secondary goat anti-473 

mouse (IRDye 680) or anti-rabbit (IRDye 800) antibodies (both from LI-COR Biosciences). 474 

Blots were scanned using the Odyssey Infrared Imaging System (LI-COR Biosciences) and 475 

band intensity was quantified using ImageJ software. The ratio of proteins of interest/loading 476 

control in treated samples were normalized to their counterparts in control cells. Antibodies 477 

against LRRC4B (PA5-23529, Thermofisher) and B-actin (A5441, Sigma) were used at 478 

dilution 1:1000 and 1:5000, respectively. 479 

 480 

Proliferation assay 481 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 20, 2019. ; https://doi.org/10.1101/807248doi: bioRxiv preprint 

https://doi.org/10.1101/807248
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

19 

Cell proliferation was assayed using the xCELLigence system (RTCA, ACEA Biosciences, 482 

San Diego, CA, USA) as previously described.[43] Cells were first seeded and transfected in 483 

6 well plates and 24 h after transfection 5x103 cells were resuspended in 100 μl of medium 484 

and plated in each well of an E-plate 16. Background impedance of the xCELLigence system 485 

was measured for 12 s using 50 μl of room temperature cell culture media in each well of E-486 

plate 16. The final volume in each well was then 150 μl. The impedance signals were 487 

recorded every 15 minutes until 96/120 h and expressed as cell index values, calculated 488 

automatically and normalized by the RTCA Software Package v1.2. The values were defined 489 

as mean ± standard deviation. Mann-Whitney test was used for statistical analysis with 490 

GraphPad software. 491 

 492 

Migration assay 493 

Migration assays were performed using the CIM-plate of the xCELLigence Real-Time Cell 494 

Analysis (RTCA, ACEA Biosciences, San Diego, CA, USA) system. Cells were first 495 

transfected in 6-well plates and 24 h after transfection, they were harvested and seeded in 496 

the CIM-plate. Every well of the bottom chamber was filled with 160 μl of the corresponding 497 

medium at 10% FBS concentration. After placing the upper chamber on top of the lower 498 

chamber, 50 μl of serum free medium was added on each CIM well for the background 499 

measurement. After 3x PBS washing, 3x104 cells re-suspended in 100 μl of the 500 

corresponding medium at 1% FBS concentration were seeded in each well of the upper 501 

chamber. The measurements were taken every 15 minutes until 24 h after seeding and 502 

expressed as cell index values. Mann-Whitney U test was used for statistical analysis with 503 

GraphPad software. 504 

 505 

Cell cycle analysis 506 

Seventy-two hour after transfection, cells were collected, stained with DAPI and analyzed by 507 

flow cytometry using the BD FACS Canto II cytometer (BD Biosciences, USA). Briefly cells 508 

were harvested and washed 2X in PBS to get rid of serum proteins at 1200 rpm for 5 509 
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minutes. Pellets (up to 3x106 cells) were resuspended in 1.2 ml PBS (Ca and Mg free). For 510 

crosslinking proteins 3.0 ml of 95% ice cold EtOH was added dropwise while vortexing. Cells 511 

were fixed in this final 70% Et-OH solution for at least 30 minutes or over night. The Et-512 

OH/cell suspension was then diluted with 12 ml of PBS (for a total volume of 15 ml) and 513 

centrifuge at 2000-2200 rpm for 10 min. Cells were then washed once more with 15 ml PBS 514 

and then resuspended in 0.5-2.0 ml of DAPI stain solution (0.1% TritonX 100 and 10 ug/ml). 515 

After 30 min of incubation on ice cells were analyzed by flow cytometry, measuring the 516 

fluorescence emission at 461 nm. Data were analysed using the FlowJo software version 517 

10.5.3 (https://www.flowjo.com).  518 

 519 

Apoptosis analysis by flow cytometry 520 

BT-549 and MDA-MB231 cells were transfected with siRNA (control or against LRRC4B) 521 

and MCF-7 cells were transfected with LRRC4B overexpressing plasmid or control plasmid. 522 

Eight hours after transfection medium was changed and doxorubicin added according to the 523 

respective IC50 for each cell line[44],[45]. Cells were collected 60 hours post siRNA 524 

transfection or LRRC4B overexpression and 48 hours post treatment with doxorubicin 525 

respectively, stained with annexin V (Annexin V-FITC conjugate; Invitrogen, CO; #V13242) 526 

and propidium iodide (PI; Invitrogen, CO; #V13242), and analyzed by flow cytometry using 527 

the BD FACS Canto II cytometer (BD Biosciences, USA). Briefly, cells were harvested after 528 

incubation period and washed twice by centrifugation (1,200 g, 5 min) in cold phosphate-529 

buffered saline (DPBS; Gibco, CO; #14040133). After washing, cells were resuspended in 530 

0.15 ml AnnV binding buffer 1X (ABB 5X, Invitrogen, CO; #V13242; 50 mM HEPES, 700 mM 531 

NaCl, and 12.5 mM CaCl2 at pH 7.4) containing fluorochrome-conjugated AnnV and PI (PI 532 

to a final concentration of 1 ug/ml) and incubated in darkness at room temperature for 15 533 

min. As soon as possible cells were analyzed by flow cytometry, measuring the fluorescence 534 

emission at 530 nm and >575 nm. Data were analysed using the FlowJo software version 535 

10.5.3 (https://www.flowjo.com).  536 

 537 
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 707 

Figure legends 708 

Fig. 1. Overview of the APSiC algorithm. a, Illustration of the transformation from the raw cell 709 

viability scores for a given gene (left, using TP53 as an example) to the rank profile (right). Each bar 710 

of the waterfall plots represents one sample and is colored by the mutational status of the given gene 711 

in the sample. The red ellipse in the rank profile (right) represents a no-change (random) viability 712 

band. b-c, Schematic representation of the APSiC algorithm for identifying (b) genetic and (c) non-713 

genetic drivers (See Materials and Methods for details).  714 
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Fig. 2. Analysis of the genetic drivers in the DRIVE perturbation screen. a, The number of cell 716 

lines available for 26 cancer subtypes in the DRIVE perturbation screen. b, Kernel density estimation 717 

of the P values (on a -log10 scale) for genetic drivers using the APSiC algorithm in a pan-cancer 718 

analysis. Candidate mutation oncogenes, amplification oncogenes, and mutation tumor suppressors 719 

identified by the APSiC are shown, with genes reaching significance level after multiple testing 720 

corrections highlighted in red. c, Rank profile for a mutation oncogene (BRAF) colored by mutation 721 

status. d, Rank profile of an amplification oncogene (KRAS) colored by copy number status. e, Rank 722 

profile of a mutation tumor suppressor (ARID1A) colored by mutation status. f, Dot plots of the P 723 

values (on a -log10 scale) for genetic drivers using the APSiC algorithm in a cancer type-specific 724 

analysis, for (top) mutation oncogenes, (middle) amplification oncogenes and (bottom) mutation tumor 725 

suppressors. Genes reaching significance level after multiple testing corrections are highlighted in 726 

red. Cancer types are sorted by the number of cell lines. 727 

 728 

Fig. 3: Pan-cancer analysis of the non-genetic drivers in the DRIVE perturbation screen. a, 729 

Heatmap illustrates consensus clustering of the 500 most variable P values for non-genetic drivers 730 

using the APSiC algorithm for the 26 cancer types in the DRIVE perturbation screen. Consensus 731 

clustering identified 4 clusters across cancer types and 5 clusters across the 500 genes. One of the 732 

clusters was enriched for genes involved in mRNA splicing and processing. b, Rank profiles for 733 

PRPF6 in (top) non-Hodgkin B-cell lymphoma and (bottom) upper aerodigestive tract carcinoma and 734 

for SART3 in (top) PNET neuroblastoma and (bottom) breast carcinoma.  735 

 736 

Fig. 4: Cancer type-specific analysis of the non-genetic drivers in the DRIVE perturbation 737 

screen. Non-genetic driver genes identified in the 12 cancer types with corresponding gene 738 

expression data from the TCGA. APSiC P values are shown (on a -log10 scale) for driver genes 739 

significant after multiple testing corrections and over- or underexpressed in human cancers for 740 

oncogenes (in red) and tumor suppressor genes (in blue), respectively. The top 20 genes for each 741 

cancer type are labelled. 742 

 743 

Fig. 5: LRRC4B has tumor suppressor-like properties in in-vitro models of breast cancer. a, e, 744 

i, Western blotting showing LRRC4B protein level in (a) MDA-MB231, (e) BT-549 and (i) MCF-7 cell 745 
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lines 48 and 72 hours post transfection. Actin was used as a loading control and for normalization. b, 746 

f, j, Proliferation kinetics of (b) MDA-MB231, (f) BT-549 and (j) MCF-7 cells upon (b, f) 747 

downregulation or (j) upregulation of LRRC4B compared with the control. c, g, k, Migration potential 748 

of (c) MDA-MB231, (g) BT-549 and (k) MCF-7 cells upon (c, g) downregulation or (k) upregulation of 749 

LRRC4B compared with the control. d, h, i, Cell cycle analysis of (d) MDA-MB231, (h) BT-549 and (i) 750 

MCF-7 cells upon (d, h) downregulation or (i) upregulation of LRRC4B compared with the control. 751 

Error bars represent standard deviation obtained from three independent experiments. For all 752 

experiments, statistical significance was assessed by multiple t-tests (* P < 0.05, ** P < 0.01, *** P < 753 

0.001). 754 

 755 

Fig. 6: LRRC4B expression modulates induction of apoptosis by Doxorubicin. a, Dot plot 756 

illustrating the flow cytometry gating strategy used to assess cell viability and apoptosis using Annexin 757 

V and propidium iodide staining of MDA-MB231, BT-549 and MCF-7 cells upon downregulation/ 758 

upregulation of LRRC4B compared with the control cells, with and without Doxorubicin. b, 759 

Quantification of the mean (+/- SD) percentage of apoptotic cells (AnnV+) and live cells (AnnV-/PI-) 760 

across the different groups. Error bars represent standard deviation obtained from three independent 761 

experiments. For all experiments, statistical significance was assessed by multiple t-tests (* P < 0.05, 762 

** P < 0.01, *** P < 0.001). 763 

 764 

Additional files 765 

Additional file 1: APSiC analysis of mutation oncogenes in DRIVE 766 

  767 

Additional file 2: APSiC analysis of amplification oncogenes in DRIVE 768 

  769 

Additional file 3: APSiC analysis of mutation tumor suppressors in DRIVE 770 

  771 

Additional file 4: APSiC analysis of non-genetic oncogenes in DRIVE 772 

  773 

Additional file 5: APSiC analysis of non-genetic tumor suppressors in DRIVE 774 
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  775 

Additional file 6: Significant genetic drivers identified by APSiC in the pan-cancer analysis 776 

of DRIVE 777 

 778 

Additional file 7: Rank profiles of DDX27, DCAF8L2 and RBM39 in DRIVE  779 

 780 

Additional file 8: Pathological annotation in the DRIVE project and the corresponding TCGA 781 

projects used for gene expression analysis. 782 

 783 

Additional file 8: a, (left) Rank profile of the LRRC4B gene in breast cancer cell lines. Each 784 

bar in the waterfall plots represents one cell line and is colored by the mutation status. (right) 785 

LRRC4B transcript expression in breast cancers and normal tissues. The plot was generated 786 

using gene expression data obtained from the TCGA dataset. b, Screening of LRRC4B 787 

protein expression in a panel of breast cancer cell lines by western blot. Ratio of LRRC4B 788 

expression relative to actin were calculated for each cell line. Ratio are shown above the 789 

western blot plot. c, Dot plot showing the flow cytometry gating strategy used to assess cell 790 

cycle status on breast cancer cell lines in both overexpressing and downregulating LRRC4B 791 

cells. (*** P < 0.001). 792 
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