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Supplementary Figure 1

Supplementary Figure 1. MYC expresses in a highly variable but not heritable pattern. We measured expression of MYC in WM989-A6 cells 
grown on culture dishes for 10 days. A. Spatial position of each cell in culture with the top 2% of MYC expressing cells in red  and the rest of cells labeled 
in gray. The degree of spatial clustering was minimal, reflecting the low heritability of the high MYC expression level cellular state. B. Histogram of MYC 
mRNA levels across individual cells, showing the large amount of variability in MYC expression. The rightmost line (light blue) marks the top 1% of cells, 
the left line (dark blue) marks the top 2%.
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Supplementary Figure 2. Validation of mNG2 fluorescence as a marker of NGFR expression. We sorted NGFR-mNG2 tagged WM989-A6-G3 cells 
then performed single-molecule RNA FISH to measure NGFR mRNA levels. A. Representative max merged image of NGFR-mNG2 cell line. Scale bars 
are 20ѥP��B. Immunostaining of endogenous NGFR in untagged WM989-A6-G3 shows a similar fluorescence localization pattern as NGFR-mNG2. 
Scale bars are 10ѥP��C. Scatterplot of data from 188 analyzed cells show that mNG2 fluorescence per cell area correlates with NGFR mRNA per cell 
area in single cells. D. We sorted bulk and mNG2-high (top 0.5-1%) WM989-A6-G3 then treated cells for 3 weeks with 1ѥM vemurafenib. After fixation 
and staining nuclei with DAPI, we imaged plates and quantified drug resistant colonies using publicly available software (see Methods). The indicated 
number of cells correspond to cells within colonies. As with antibody staining for NGFR, sorting NGFR-mNG2 tagged WM989 A6-G3 by mNG2 fluores-
cence enriches for vemurafenib resistant cells
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Supplementary Figure 3
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Supplementary Figure 3. Fluctuations in NGFR levels can persist for at least 5.25 days. We performed time-lapse imaging of WM989-A6-G3 cells 
with NGFR tagged with mNeonGreen2 at the endogenous locus. We tracked cells through these images and quantified the mNeonGreen2 fluorescence 
signal to measure the length of time that cells reside in the NGFR-high cell state. A. Plots of mNeonGreen2 fluorescence intensity over time for three 
example cells that enter the NGFR-high state and remain high for 4.25 to 5.25 days, thereby demonstrating memory. These cells are from a lineage for 
which we manually curated data through 8.75 days. B. Cartoons depicting the two outcomes for NGFR-high cells. In scenario 1, cells pass the threshold 
and remain NGFR-high for a period of time (on time) and then fall below the threshold and are NGFR-low. In scenario 2, the cells become NGFR-high, 
but do not fall below the threshold during the length of this experiment (7 days). Given that these two scenarios are distinct we analyzed them separately. 
C. Histograms of the on time for all cells through 7 days of imaging (shorter data set than A, as we manually reviewed all cells up to this time point). We 
considered a range of thresholds (1500, 2000, 2500) for determining when individual cells are in the NGFR-high cell state. The blue (both dark and light 
blue) show the raw data for the on time, while the gray shows the on times that result from using a moving average of the time trace using a 5 point 
median filter. At a threshold of 1500, the average on time is 40 hours for scenario 1 (light blue) and 52 hours for scenario 2 (dark blue).
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Supplementary Figure 4. Comparison of fluorescence quantification for NGFR-mNG2 using nuclear and whole-cell segmentation. We 
developed a WM989 cell line with mNeonGreen2 at the endogenous NGFR locus. We performed time-lapse imaging of this cell line over 8.75 days. For 
analysis of this data, we wanted to determine if the nucleus area could be used for quantifying the mean fluorescence intensity from the NGFR mNG2 
tagged cell line.  We tracked one cell through 8.75 days and performed manual segmentation of the whole-cell at each time point. We then compared 
the mean fluorescence intensity from our manual segment to the mean fluorescence intensity observed over the nucleus as determined by an automatic 
segmentation algorithm (described in the methods). We found that these two approaches gave similar fluorescence intensity patterns over the 8.75 
days. A. This plot shows the mean fluorescence intensity for mNeonGreen2 over time using the two different approaches. The blue line is the manual 
segmentation of the whole-cell and the yellow line is the automatic nuclear segmentation. B. Example images from each segmentation technique at time 
point 5.75 days. The scale bars are 6 ѥm.
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Supplementary Figure 5
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Supplementary Figure 5. NGFR-high cells survive vemurafenib treatment and continue to proliferate more than NGFR-low cells. We performed 
time-lapse imaging of WM989-A6-G3 cells in which the endogenous NGFR is tagged with mNeonGreen2. We acquired images every 2 hours for 14.8 
days and added 500nM of vemurafenib starting after 6 days and 4 hours. Our analysis consisted of tracking lineages and then quantifying the green 
fluorescence signal from the NGFR-mNeonGreen2. This plot shows the fluorescence signal over time for four lineages in this data set. The y-axis is the 
median fluorescence over each cell segment minus the median fluorescence of the background for the image. The black dots are cell division, the red 
dots are cell death, and the green dots are when a cell disappears from the culture dish. The red line marks the time point at which we added 500nM 
vemurafenib to the sample. 
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Supplementary Figure 6. Immunofluorescence after tracking of cells based on transmitted light imaging reveals emergent heterogeneity. A. 
Fields of view taken after 8.67 days of imaging in both transmitted light and immunofluorescence targeting either AXL or EGFR. All tracked cells are 
labeled with red points. B. Histograms of number of average immunofluorescence signal intensity of all cells after the imaging period. Red arrows mark  
the intensity values for the cells labeled by dots in the images which were tracked through the 8.67 days. All scale bars are 10 µm long.
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Supplementary Figure 7. FACS analysis shows memory over 5-9 days: A. To estimate the transcriptional memory of EGFR and AXL in WM989 
A6-G3, we sorted out high (top ~ 0.3% for EGFR and top ~ 0.5% for AXL) and low expressing cells then cultured these cells for up to 9 days before fixing 
and performing RNA FISH. B-C. We found persistence of elevated EGFR and AXL expression for up to 9 days in EGFR-high and AXL-high sorted cells, 
respectively. For AXL, we saw an initial increase in AXL expression after sorting followed by a decrease towards baseline at Day 9, consistent with a 
long-lived but ultimately transient gene-expression state. The initial increase in AXL expression may be due to paracrine signaling or stress from sorting. 
D-E. Representative images showing clusters of EGFR-high and AXL-high expressing cells. Arrowhead point towards examples of transcription sites 
marked by colocalization of exon-targeting and intron-targeting RNA FISH probes. The presence of multiple transcription sites in these cells suggested 
that the observed gene-expression memory is due to persistence of active transcription rather than slower division or RNA degradation rates.    
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Supplementary Figure 8. Isolated NGFR-high WM989 A6-G3 cells revert towards baseline NGFR levels over the course of 7 days in culture. 
A-B. We labeled W989 A6-G3 cells with a Phycoerythrin-Cyanine7(PE-Cy7) conjugated antibody targeting NGFR, then sorted equal numbers of cells 
from the indicated gates. After 7 days in culture, we re-stained the cells and measured fluorescence intensity by flow cytometry. At day 7, the distribution 
of NGFR-PE-Cy7 intensities is shifted higher for the NGFR-high samples relative to the NGFR-low samples, although the distributions are closer than 
at day 0.
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Supplementary Figure 9.  MemorySeq data for WM989-A6 melanoma cells with labels showing the genes selected for RNA FISH in Fig. 3. A. 
Plot of coefficient of variation versus the log2 mean expression for all genes. These plots are similar to the plots in Fig. 1D, expect the genes labeled in 
pink are the genes selected for RNA FISH in Fig. 3. The points labeled with the green dots are genes that passed the threshold for selection as a 
heritable gene. B. Histogram showing the overall distribution for the residuals for all genes fitted by the model on the MemorySeq clones. To select 
heritable genes, we used a cutoff at the top 2% of the residuals. This cutoff is highlighted in green on the tick marks below the histogram.
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Supplementary Figure 10
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Supplementary Figure 10. Histograms showing the distribution of expression levels in single cells as measured by RNA FISH. We plated 
WM989 cells sparsely on a dish and then allowed them to grow into clusters over 10 number of days. We performed RNA FISH for a panel of 19 genes 
and then quantified expression for each gene in single cells. The histograms show these expression levels for 12,192 cells total. One of two replicates 
is shown. Equivalent plots for replicates and other cell lines are available on the paper dropbox.
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Supplementary Figure 11. Spatial maps for the data shown in Fig. 3A-D with each cell color coded by the percentile of number of RNAs. A. 
Same plot as shown in Fig. 3C with genes underlined that are displayed in B. B. Spatial maps of the x and y position of cells with color coding to label 
different percentile cutoffs for determining if a cell has “high” expression. For these experiments, we plated cells sparsely on the dish and then allowed 
them to grow into clusters for 10 days. Here, we expect sister cells and other related cells to be near each other on the dish. We then fixed these samples 
and performed RNA FISH for a panel of 19 genes. We used spatial position as a proxy for cell relatedness and looked for clustering of the cells express-
ing these genes to indicate memory of the transcriptional “high” state. These plots show 12,192 cells total. The color indicates the percentile cut-off for 
determining which cells have “high” expression. 
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Supplementary Figure 12

Supplementary Figure 12. Spatial single cell RNA FISH analysis validation of MemorySeq. We performed analysis of single molecule RNA FISH 
for the indicated genes as per Fig. 3. Shown are two biological replicates (left and right). Within each replicate, we analyzed different cutoffs for cells to 
be considered to be in the high expression level state (either the top 1 percent of cells or the top 2 percent of cells). We also increased the bin size for 
each neighborhood for analysis, which is quantified as the number of neighboring cells included in each bin. We quantified the skewness across Memo-
rySeq clones vs. the Spatial clustering metric, which is the Fano factor (variance/mean) in the number of positive cells per bin across all bins of indicated 
size. We found the correspondence decreased once the bin size reached 100, and that using the top 1 percent of cells also led to a tighter correlation. 
The decreased correlation at higher bin size likely reflects the fact that at larger bin sizes, more clusters would merge together, thus decreasing apparent 
Fano factor across bins. (To see this, take the limiting case of just two bins, in which the variance between the two would be relatively minimal.)
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Supplementary Figure 13

Supplementary Figure 13. Genes identified by MemorySeq and their expression levels in stably resistant melanoma cells. We wondered how 
WKH�H[SUHVVLRQ�OHYHOV�RI�JHQHV�LGHQWLILHG�E\�0HPRU\6HT�FKDQJHG�GXULQJ�WKH�SURFHVV�RI�DFTXLULQJ�UHVLVWDQFH��:0����$��FHOOV��XVLQJ�GDWD�IURP�6KDIIHU�
et al. 2017. A.�(DFK�FROXPQ�LV�D�JHQH�LGHQWLILHG�E\�0HPRU\6HT�DV�EHLQJ�KHULWDEOH��(DFK�URZ�LV�D�ELRORJLFDO�UHSOLFDWH��IURP�EXON�XQWUHDWHG�FHOOV��FHOOV�
WUHDWHG�ZLWK�YHPXUDIHQLE�IRU����KRXUV��WR�DFFRXQW�IRU�GUXJ�UHVSRQVH�HIIHFWV��DQG�WKH�VWDEO\�UHVLVWDQW�FHOO�OLQHV��B, C. Venn diagram showing which genes 
ZHUH�DVVRFLDWHG�ZLWK� UHVLVWDQFH� WRJHWKHU�ZLWK�EHLQJ� LGHQWLILHG�DV�KHULWDEOH�E\�0HPRU\6HT��:H�UDQ� WKH�DQDO\VLV�DW� WZR�GLIIHUHQW� WKUHVKROGV� IRU� IROG�
FKDQJH��(LWKHU�ZD\��ZH�IRXQG�WKDW�ZKLOH�D�ODUJH�IUDFWLRQ�RI�KHULWDEOH�JHQHV�ZHUH�DOVR�UHVLVWDQFH�DVVRFLDWHG�JHQHV��RYHU�����IRU�D�WZR�IROG�FKDQJH�
FXWRII���RQO\�D�YHU\�VPDOO�SURSRUWLRQ�RI�WRWDO�UHVLVWDQFH�JHQHV�ZHUH�LGHQWLILHG�E\�0HPRU\6HT�DV�EHLQJ�KHULWDEOH��LQ�DJUHHPHQW�ZLWK�WKH�FRQFOXVLRQV�RI�
6KDIIHU�et al. 2017.
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Supplementary Figure 14. Replicate of NGFR sorted cells grown in trametinib. Biological replicate of the data shown in Fig. 3. We used fluores-
cence activated cell sorting to isolate the NGFR-high and EGFR-high subpopulation of WM989-A6 cells, cultured for 8-16 hours and then subjected to 
trametinib treatment at 10nM (MEK inhibitor) for 3 weeks. Image shows number of resistant colonies (circled) along with number of cells within the 
resistant colony as indicated.

Supplementary Figure 14



Overlapping heritable gene sets across WM989-A6, MDA-MB-231-D4, and WM983B-E9:

Heritable genes in all three cell lines:
TNC
TFPI2
FN1
ID3
CTGF
PMEPA1
MT2A
ID1
STC1
CST1
NUPR1
ISG15
SERPINB2
S100A6

WM989-A6

WM983B-E9

MDA-MB-231-D4

Supplementary Figure 15

Supplementary Figure 15. Overlap of MemorySeq hits across cell lines. We wondered if genes identified by MemorySeq as heritable were the 
same across multiple cell lines. We found that most heritable genes were distinct between cell lines, perhaps reflecting the potential for cell-type specific 
heritable rare cell expression programs. There was a set of 14 genes (listed in figure) that were identified as heritable in all 3 cell lines.
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Supplementary Figure 16

Supplementary Figure 16. Comparison of heritability by MemorySeq to Gini coefficient for MDA-MB-231-D4 cells. A. We plotted heritability index 
from MemorySeq (skewness across individual MemorySeq clones) vs. Gini coefficient as computed from single molecule RNA FISH across two biologi-
cal replicates. Overall, we found a general correspondence between the two variables, as was seen for WM989-A6 cells, suggesting that MemorySeq 
also identifies genes that express in rare cells. B. Correlation heatmap for all pairs of heritable genes in MDA-MB-231-D4 MemorySeq. C. Replicate data 
for Fig. 4D. We stained cells with antibody targeting the CA9 surface marker and then sorted out the top 2-4% of cells, the lowest 2-4% of cells, and the 
total “mix” population into chamber wells, after which we applied paclitaxel 1 day after sorting for 5 days. Plots show the number of cells in each 
condition. 
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Supplementary Figure 17

Supplementary Figure 17. Single cell RNA FISH confirms the accuracy of sorting MDA-MB-231-D4 cells by CA9. We sorted CA9-stained cells 
into high and low expressing subpopulations (as determined by antibody staining) as well as the unsorted mixed population. We then performed single 
cell RNA FISH for SMAD6, CA9, CCNA2, and GAPDH on these subpopulations. We found that the levels of CA9 mRNA were higher in the high subpop-
ulation as expected, as was SMAD6, which was also expected based on their correlation as revealed by MemorySeq. Both housekeeping genes CCNA2 
and GAPDH showed minimal differences between subpopulations.
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Supplementary Figure 18. Isolated CA9-high MDA-MB-231 cells revert towards baseline CA9 levels over the course of 5 days in culture. A-B. 
Biological replicates of the data presented in Figure 4C in the main text. We labeled MDA-MB-231 cells with a phycoerythrin (PE) conjugated CA9 
antibody, then sorted equal numbers of cells from the top 1-2% and bottom 6-12% gates. After 5 days in culture, we re-stained the cells and measured 
fluorescence intensity by flow cytometry. For technical reasons, the day 5 measurement for replicate 2 was obtained on a separate flow cytometer from 
the day 0 sort. At day 5, the distribution of CA9-PE intensities in the CA9-high samples were shifted towards higher overall expression than the CA9-low 
samples, albeit with much more overlap than in the initial sort at day 0. Specifically, the top 1-1.5% gate for the CA9-low sample at day 5 contains 2-6% 
of the CA9-high sample. It was possible that CA9-high cells grew significantly slower than CA9-low cells, causing a decrease in frequency of the 
CA9-high cells over time in an inevitably impurely sorted population without those cells actually turning off. To exclude this possibility, in C. we monitored 
cell division in the CA9 sorted MDA-MB-231 by staining cells with CellTrace Violet immediately after sorting then measuring fluorescence intensity by 
flow after 5 days in culture. As CellTrace Violet stably labels amines in living cells, it is expected to dilute over time due to cell division. For reference, 
we freshly stained equal numbers of cells on day 5 to flow in parallel. As shown, both CA9-high and CA9-low sorted samples showed lower CellTrace 
Violet intensity than freshly stained cells consistent with multiple cell divisions (also noted by looking at clusters of cells in culture). This was true even 
for the cells that retained the highest levels of CA9 as measured by CA9-PE staining. While we note that the CA9-high sample retained more of the 
CellTrace Violet dye than the CA9-low sample, which may be due to slightly slower division or other differences in cell size or protein turnover, this 
difference cannot explain the change in CA9-high percentage from 100% to 2-6% over the course of 5 days.

Supplementary Figure 18
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Supplementary Figure 19

Supplementary Figure 19. Pairwise scatterplots from the RNA FISH data shown in Fig. 5C. Each scatterplot shows the number of mRNA per cell 
for each gene pair. The heatmap shows the correlation coefficient for each gene pair and is the same as the heatmap in Fig. 5C.
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Supplementary Figure 20

Supplementary Figure 20. Pairwise scatterplots from the RNA-seq data shown in Fig. 5C. Each scatterplot shows the transcripts per million of 
each MemorySeq clone for the gene pair. The heatmap shows the correlation coefficient for each gene pair and is the same as the heatmap in Fig. 5C
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Supplementary Figure 21. Analysis of MemorySeq data for WM983B-E9 melanoma cells. A. We performed MemorySeq on the melanoma line 
:0���%�(���6FDWWHUV�RI�DYHUDJH�WUDQVFULSW�DEXQGDQFH�IURP�0HPRU\6HT�YV��WKH�FRHIILFLHQW�RI�YDULDWLRQ�DFURVV�LQGLYLGXDO�0HPRU\6HT�FORQHV��OHIW���ZLWK�
D�WHFKQLFDO�QRLVH�FRQWURO�DV�GHVFULEHG�IRU�:0����$���ULJKW���B. Clusters of co-fluctuating genes in WM983B-E9 in genes identified by Memory- Seq as 
VKRZLQJ� D� KLJK� GHJUHH� RI� KHULWDELOLW\��C.�:H� SORWWHG� KHULWDELOLW\� LQGH[� IURP�0HPRU\6HT� �VNHZQHVV� DFURVV� LQGLYLGXDO�0HPRU\6HT� FORQHV�� YV��*LQL�
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Supplementary Figure 22
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Supplementary Figure 23

Supplementary Figure 23. Community identification in MemorySeq hits for MDA-MB-231-D4 and WM983B. We performed community identifica-
tion on hits detected by MemorySeq (top 2% of genes, TPM of 1.5 or greater) for MDA-MB-231-D4 and WM983B-E9 cells. Cutoffs were chosen to arrive 
at biologically reasonable gene sets. We performed KEGG and GO biological process analysis on genes identified as belonging to particularly communi-
ties (limited to communities that had enough genes for such an analysis to be meaningful).



࢒࢒࢒࢒࢒

࢒

࢒

࢒࢒
࢒࢒࢒
࢒࢒࢒࢒

࢒

࢒

࢒ ࢒࢒࢒࢒࢒

࢒
࢒࢒࢒
࢒

࢒

࢒

࢒

࢒࢒࢒࢒࢒࢒࢒
࢒࢒࢒

࢒

࢒

࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒
࢒࢒࢒࢒

࢒

࢒

࢒

࢒࢒
࢒࢒
࢒࢒
࢒

࢒࢒ ࢒

࢒

࢒࢒࢒࢒

࢒

࢒
࢒࢒
࢒
࢒

࢒

࢒࢒ ࢒࢒࢒

࢒

࢒

࢒

࢒
࢒
࢒
࢒࢒

࢒

࢒࢒࢒࢒
࢒ ࢒

࢒

࢒ ࢒

࢒

࢒

࢒

࢒

࢒

࢒

࢒

࢒

࢒

࢒

࢒

࢒
࢒

࢒࢒ ࢒࢒
࢒

࢒࢒

࢒

࢒

࢒

࢒࢒

࢒

࢒

࢒࢒࢒

࢒
࢒

࢒

࢒
࢒
࢒

࢒

࢒

࢒

࢒
࢒࢒࢒࢒࢒࢒࢒ ࢒

࢒

࢒࢒࢒࢒࢒
࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒ ࢒
࢒࢒ ࢒࢒࢒࢒࢒࢒
࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒
࢒

࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒

࢒

࢒
࢒࢒ ࢒࢒࢒࢒

࢒

࢒࢒࢒ ࢒࢒
࢒

࢒

࢒ ࢒࢒࢒

࢒

࢒࢒
࢒࢒ ࢒

࢒

࢒࢒࢒ ࢒
࢒ ࢒
࢒

࢒

࢒࢒࢒࢒ ࢒ ࢒

࢒

࢒࢒࢒
࢒

࢒

࢒࢒
࢒

࢒

࢒࢒ ࢒࢒࢒ ࢒࢒

࢒ ࢒

࢒࢒࢒࢒

࢒
࢒

࢒

࢒

࢒࢒ ࢒࢒࢒࢒ ࢒࢒࢒࢒࢒࢒࢒
࢒

࢒࢒

࢒

࢒

࢒

࢒

࢒

࢒

࢒

࢒

࢒࢒

࢒

࢒

࢒

࢒࢒࢒࢒࢒࢒࢒

࢒

࢒

࢒

࢒
࢒࢒

࢒

࢒
࢒
࢒

࢒

࢒

࢒

࢒

࢒࢒

࢒

࢒

࢒
࢒࢒࢒

࢒

࢒࢒࢒
࢒

࢒

࢒࢒

࢒

࢒

࢒

࢒
࢒

࢒ ࢒
࢒
࢒

࢒࢒࢒࢒

࢒

࢒

࢒

࢒

࢒
࢒

R = 0.811

0

500

1000

0 100 200 300

�

AXL

EGFR

WNT5A

DDX58

PMAIP1

��

20 50 100 200 20020 50 100

0

1

2

3

4

5

Number of nearest neighbors

Fa
no

 fa
ct

or
 (h

er
ita

bi
lity

 in
de

x)

Threshold (percentile)

DDX58PMAIP1

Below 95th
95th
98th
99th

95th
98th
99th

0 5000 10000 15000 20000
Xpos

Pearson correlation 
coefficient

0

5000

10000

15000

20000

0 5000 10000 15000 20000
Xpos

Yp
os

DDX58

DDX58 RNAAXL RNA 

PMAIP1

PM
AI

P1
 R

N
A

PM
AI

P1
 R

N
A

ï�

ï���

ï���

ï���

ï���

0

���

���

���

���

1AX
L

EG
FR

W
N

T5
A

D
D

X5
8

PM
AI

P1

࢒࢒ ࢒࢒ ࢒

࢒

࢒

࢒࢒
࢒ ࢒ ࢒
࢒࢒ ࢒ ࢒
࢒

࢒

࢒࢒࢒࢒࢒ ࢒

࢒
࢒࢒࢒
࢒

࢒

࢒

࢒

࢒࢒࢒࢒࢒ ࢒ ࢒࢒࢒࢒

࢒

࢒

࢒ ࢒

࢒

࢒࢒ ࢒࢒࢒ ࢒࢒࢒࢒ ࢒࢒࢒
࢒࢒ ࢒࢒

࢒

࢒

࢒

࢒࢒
࢒࢒

࢒࢒
࢒

࢒࢒࢒

࢒

࢒ ࢒࢒࢒

࢒

࢒
࢒࢒

࢒
࢒

࢒

࢒࢒࢒ ࢒࢒

࢒

࢒

࢒

࢒
࢒

࢒
࢒࢒

࢒

࢒࢒࢒࢒
࢒࢒

࢒

࢒ ࢒

࢒

࢒

࢒

࢒

࢒

࢒

࢒

࢒

࢒

࢒

࢒

࢒
࢒
࢒࢒࢒࢒

࢒
࢒࢒

࢒

࢒

࢒

࢒࢒

࢒

࢒

࢒࢒࢒

࢒
࢒

࢒

࢒
࢒
࢒

࢒

࢒

࢒

࢒
࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒
࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒
࢒࢒࢒࢒ ࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒
࢒
࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒

࢒

࢒
࢒࢒࢒࢒ ࢒ ࢒

࢒

࢒ ࢒࢒ ࢒࢒
࢒

࢒

࢒ ࢒࢒࢒

࢒

࢒࢒
࢒࢒࢒

࢒

࢒࢒࢒ ࢒
࢒ ࢒

࢒

࢒

࢒࢒࢒ ࢒ ࢒ ࢒

࢒

࢒࢒࢒ ࢒

࢒

࢒ ࢒
࢒

࢒

࢒࢒ ࢒࢒࢒࢒࢒

࢒࢒

࢒ ࢒ ࢒࢒

࢒
࢒

࢒

࢒

࢒࢒ ࢒࢒࢒࢒ ࢒࢒࢒ ࢒࢒ ࢒࢒
࢒
࢒࢒

࢒

࢒

࢒

࢒

࢒

࢒

࢒

࢒

࢒࢒

࢒

࢒

࢒

࢒࢒࢒࢒࢒࢒࢒

࢒

࢒

࢒

࢒
࢒࢒

࢒

࢒
࢒
࢒
࢒

࢒

࢒

࢒

࢒࢒

࢒

࢒

࢒
࢒࢒࢒

࢒

࢒࢒࢒
࢒

࢒

࢒࢒

࢒

࢒

࢒

࢒
࢒
࢒࢒
࢒
࢒

࢒࢒࢒࢒

࢒

࢒

࢒

࢒

࢒
࢒

R = 0.051

0

500

1000

0 50 100 150 200
�

DDX58

20ѥm

PMAIP1

Supplementary Figure 24. Validation of single-cell gene expression coordination and spatial clustering of DDX58 and PMAIP1 in WM989. 
MemorySeq identified DDX58 and PMAIP1 as members of a correlated network of genes distinct from the network containing AXL, EGFR, WNT5A and 
RWKHU�UHVLVWDQFH�PDUNHUV��A-D��8VLQJ�51$�),6+��ZH�ILQG�WKDW�DDX58 and PMAIP1 expression is correlated in single-cells but both genes are far less 
correlated with the expression of AXL, EGFR or WNT5A��6KRZQ�DUH�UHSUHVHQWDWLYH�LPDJHV��PD[LPXP�=�SURMHFWLRQ��RI�D�JURXS�RI�FHOOV�FR�H[SUHVVLQJ�
KLJK�OHYHOV�RI�DDX58 and PMAIP1 DQG�WKH�PHDVXUHG�3HDUVRQ�FRUUHODWLRQ�YDOXHV�DFURVV�����FHOOV��E-G��$V�GHVFULEHG�LQ�WKH�PDLQ�WH[W��ZH�XVH�VSDWLDO�
FOXVWHULQJ�RI�JHQH�H[SUHVVLRQ�LQ�VLQJOH�FHOOV�DV�D�PHWULF�IRU�WUDQVFULSWLRQDO�PHPRU\��7R�DVVD\�VSDWLDO�FOXVWHULQJ�IRU�DDX58 and PMAIP1, we sparsely 
SODWHG�:0����$��*��PHODQRPD�WKHQ�FXOWXUHG�WKH�FHOOV�IRU����GD\V�EHIRUH�IL[LQJ�DQG�SHUIRUPLQJ�51$�),6+��6KRZQ�DUH�SRVLWLRQV�RI�DSSUR[LPDWHO\�
�������FHOOV�FRORU�FRGHG�EDVHG�RQ�WKHLU�SHUFHQWLOH�RI�H[SUHVVLRQ��)RU�DDX58 and PMAIP1, the 95th percentile corresponds to 5 and 30 RNA molecules, 
UHVSHFWLYHO\��:H�TXDQWLILHG�WKH�VLJQLILFDQFH�RI�VSDWLDO�FOXVWHULQJ�E\�FDOFXODWLQJ�WKH�)DQR�IDFWRU�RI�WKH�QXPEHU�RI�KLJK�H[SUHVVLQJ�FHOOV�DFURVV�ZLQGRZV�RI�
������������DQG�����QHDUHVW�FHOOV��VHH�PHWKRGV�IRU�IXUWKHU�GHWDLOV���(UURU�EDUV�FRUUHVSRQG�WR�WKH�����FRQILGHQFH�LQWHUYDO�RI�WKH�UDQGRPO\�SHUPXWHG�
GDWDVHW���
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Supplementary Figure 24
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Supplementary Figure 25

Supplementary Figure 25. Detection of nascent transcripts show ongoing transcription in EGFR-high expressing cells. We wondered whether 
EGFR-high cells (WM989-A6) stemmed from a short burst of transcription followed by dilution amongst progeny cells or from sustained transcription in 
this subpopulation of cells. We distinguished these possibilities by measuring nascent active transcription in single cells by targeting the intronic region 
of EGFR with single molecule RNA FISH probes in a separate color from the EGFR exons. We saw that in patches of EGFR-high cells, the individual 
cells typically also showed EGFR introns, showing that EGFR exhibited sustained transcription over multiple divisions. Scale bar is 5ѥm.
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Supplementary Figure 26
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