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Abstract

Computational prediction of bioactivity has become a critical aspect of modern drug

discovery as it mitigates the cost, time, and resources required to find and screen new

compounds. Deep Neural Networks (DNN) have recently shown excellent performance

in modeling Protein-Ligand Interaction (PLI). However, DNNs are only effective when

physically sound descriptions of ligands and proteins are fed into the network for fur-

ther processing. Furthermore, previous research has not incorporated the secondary

structure of the protein in a meaningful manner. In this work, we utilize secondary

structure information of the protein which is extracted as the curvature and torsion of

the backbone of protein to predict PLI. We demonstrate how our model outperforms
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previous machine and non-machine learning models on three major datasets: humans,

C.elegans, and DUD-E. Visualization of the intermediate layers of our model shows

a potential latent space for proteins which extracts important information about the

activity of the protein. We further investigate the inner workings of our model by vi-

sualizing heatmaps through Grad-CAM. This analysis is adapted to visualize the most

important aspects of the protein that the algorithm has learned. We observed that the

important residues highlighted by Grad-CAM are the ones responsible for non-covalent

interactions with a ligand and is not just confined to the binding site as it also includes

allosteric sites and other locations where a ligand interacts. Our new model opens the

door in exploration of DNN based on the secondary structure which is not just confined

to protein ligand interactions.

Introduction

The interaction of a protein with small molecules is a complex mechanism controlling many

fundamental operations in a biological system.1–12 These interactions are governed by a

multitude of factors10–12 including hydrogen bonding,1–5 π-interactions,6–8 hydrophobicity9

etc. The experimental validation of Protein-Ligand Interaction (PLI) is the state-of-the-

art method, however, it is time-consuming and expensive. Computational methods can

significantly boost time and save resources, however, due to the complex nature of PLI its

prediction is a challenging computational enterprise. Therefore, it is imperative to develop

computational methods to predict PLI. Reliable PLI predictions could significantly reduce

the discovery time for new treatments, eliminate toxic drug candidates and efficiently guide

medicinal chemistry efforts.13

Traditional PLI relies on high-throughput screening which is an experimental technique

with high cost and low efficiency.14 Virtual screening (VS) accelerates the PLI process while

greatly reducing time and resources. Broadly, VS can be divided in two major categories:

Ligand Based Virtual Screening (LBVS) and Structure Based Virtual Screening (SBVS).15
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LBVS applies known sets of ligands to a target of interest and therefore, its capability

to find novel chemotypes is limited. SBVS uses the 3D structure of a given target and

therefore is a better choice for the discovery of novel active compounds.16 However, SBVS

has a somewhat poor performance, sometimes not being able to distinguish active from non-

active compounds.17 Over the last few decades, many classical techniques such as force field,

empirical and knowledge based18 PLI predictions have been applied, however, often showing

low performance and in some cases even discrepancies when compared with experimental

bioactivities.19

Machine learning (ML) and Deep learning (DL) approaches have recently received atten-

tion in this field. Various reviews summarize the application of ML/DL in drug design and

discovery.20–35 Machine learning based PLI prediction has been developed from a chemoge-

nomics perspective36 that considers interactions in a unified framework from chemical space

and genomic space. Jacob et al.37 used tensor-product based features and applied Support

Vector Machines (SVM) to predict PLI. Yamanishi et al.38 minimized Euclidean distances

over common features derived by mapping ligands and proteins. Izhar et al.39 used a 3D

grid for proteins along with 3D convolutional networks. Masashi et al.40 used a combina-

tion of convolutional network for proteins and graph network for ligands. Li et al.41 used

Bayesian additive regression trees to predict PLI. Ingoo et. al42 applied deep learning with

convolution on protein sequences.

Most of the protein structure based models (ML/DL) for PLI predictions achieve low

accuracy as i) high resolution protein-ligand pair for training is mostly absent, ii) the 3D

grid for the target is a big and sparse matrix, which hinder ML/DL models to learn and

predict PLI. In this work, for the first time we propose a secondary structure based model

for proteins with a 1D vector contrary to 3D39 based representations. The 1D representation

is based on the curvature and torsion of protein backbone. Mathematically, curvature and

torsion are sufficient to reasonably represent the 3D structure of a protein.43

Tremendous work has been carried out to represent the ligands. Rafel at el.44 created a
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model to generate Continuous Latent Space (CLP) from sparse Simplified Molecular-Input

Line-Entry System (SMILES) strings (i.e., a string representation of a molecule) based on a

variational autoencoder similar to word embedding.45–47 Esben et al.48 proposed an improved

version of the latent space autoencoder for de novo molecule generation. Scarselli et al.49

proposed a Graph Neural Network (GNN) to describe molecules. David et al.50 developed

Extended-Connectivity Fingerprints (ECF), which includes the presence of substructures

(and therefore also includes stereochemical information) to represent molecules. Sereina et

al.51 proposed a fingerprint based on substructure and their similarity (Avalon).

End-to-end learning, a powerful ML/DL technique to exploit drug discovery and devel-

opment, has gained interest in recent years.52 The end-to-end learning technique involves i)

embedding inputs to lower dimensions, ii) formulating various neural networks depending on

the data available, and iii) using backpropagation over the whole architecture to minimize

loss and update weights. In this work we utilize such an architecture, where the proteins

and the ligands are transformed into lower dimensions with the help of fully connected dense

networks. We coin this neural network based end-to-end learning model SSnet. A general

overview of the SSnet model is shown as Figure 1 of the supporting information.

We analyzed the SSnet model by utilizing the Grad-CAM method.53 Grad-CAM is a

useful technique to visualize heatmaps of the activation from networks that maximally excite

the input feature. In other words, it shows the important data points in the input feature

that are responsible for the prediction. We show that our model learns the important residues

in the protein which maximally interact with the ligand.

In the following we first demonstrate how the secondary structure of proteins can be used

in ML/DL. Then we discuss the representation of ligands following the introduction of SSnet

model, possible evaluation criteria, its merits and demerits. Then we explain the datasets

used in this work and analyze the performance and outcomes of SSnet in the Results and

Discussion section. We then unbox the SSnet model by visualizing heatmaps of the proteins.

Finally, we summarize and conclude our work and provide a future perspective.
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Representation of Proteins

Protein structures exhibit a large conformational variety which has traditionally been mod-

eled through complex combinations of primary, secondary, tertiary, and quaternary levels.

Many automated and manual sorting databases like SCOP,54 CATH,55 DALI,56 and pro-

grams like DSSP,57 STRIDE,58 DEFINE,59 and KAKSI60 have provided protein classifica-

tions based on the secondary structure. However, these classifications are often conflicting.61

A more promising approach has been introduced by Ranganathan et al.43 based on Frenet-

Serret frame and coordinates to classify secondary structure elements in proteins.

In this approach a protein is represented by the α carbons of the backbone (CA atoms)

because the backbone defines a unique and recognizable structure, especially for protein

categorization.62 Even so, a significant amount of information about the protein is embed-

ded in the secondary structure elements such as helices, β sheets, hairpins, coils, and turns.

Therefore it is imperative to incorporate the secondary structure of the protein when repre-

senting its features for machine learning algorithms. Otherwise, the algorithms will be blind

to interactions dependent on the secondary structure.

The secondary structure information can be retrieved by a smooth curve generated by a

cubic spline fit of the CA atoms. Figure 1 shows the arc length s, scalar curvature κ and

scalar torsion τ which define the 3D curve r(s). The scalar curvature κ is expressed as a

function of arc length s

κ(s) = |r′′(s)| (1)

and the scalar torsion

τ(s) =
〈r′(s), r′′(s), r′′′(s)〉

|r′′(s))|2
(2)

where | · | is the norm and 〈·〉 is the vector triple product.

Figure 2 shows the decomposition of a protein found in Conus villepinii (PDB ID -

6EFE) into scalar curvature κ and torsion τ respectively. The residues 5 through 10 show

a near ideal α helix type secondary structure, which is represented as an oscillation of τ
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Figure 1: The tangent vector t, normal vector n and the binormal vector b of a Frenet frame
at points P1 and P2 respectively for a curve r(s)

with smooth κ. Similarly, the turn (residues 15 to 17) and a non-ideal α helix (residues 20

to 25) are captured in the decomposition plot via unique patterns. Because the curvature

and torsion information of the secondary structure of proteins are encoded as patterns,

machine learning techniques may be powerful tools to predict PLI through efficiently learned

representations of these patterns. More specifically, we hypothesized that, using convolution,

varying sized filters may be excellent pattern matching methods for discerning structure from

these decomposition plots.

Representation of Ligands

Amolecule can be represented by the Simplified Molecular-Input Line-Entry System (SMILES)

in the form of strings, which represent its various bonds and orientations. However, the

SMILES string is sparse and does not necessarily provide information about the ligand

structure in an efficient way. Therefore, SMILES strings are difficult for machine learning
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Figure 2: Representation of protein backbone in terms of scalar curvature κ and torsion τ
respectively. The ideal helix, turn and non-ideal helix is shown in green, cyan and magenta
respectively. The curvature and torsion pattern captures the secondary structure of the
protein.

algorithms to effectively learn from. A number of alternative representations for ligands

have been proposed that model varying aspects of the ligand in a more machine readable

format. The hope has been that machine learning algorithms can more effectively use these

representations for prediction. Since ligand representation is an ongoing research topic, we

consider four different methods: CLP,44 GNN,49 Avalon,51 and ECF.50 CLP was generated

by the code provided by Rafel at el.;44 Avalon and ECF were generated from RDKit;63 and

GNN was implemented as proposed by Masashi et al.40

SSnet model

Figure 3 shows the end-to-end learning SSnet model developed in this work. First a general

overview of the network is given followed by more details about its specific design operation

in the remainder of this section. As denoted in the left upper branch of Figure 3 after
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Figure 3: SSnet model. The curvature and torsion pattern of a protein backbone is fed
through multiple convolution networks with varying window sizes as branch convolution.
Each branch further goes through more convolution with same window size (red, orange,
green and light blue boxes). A global max pooling layer is implemented to get the protein
vector. The ligand vector is directly fed to the network. Each double array line implies
a fully connected dense layer. The number inside a box represents the dimension of the
corresponding vector. In the case of GNN, the ligand vector is replaced by a graph neural
network as implemented by Masashi et al.40

conversion into the Frenet-Serret frame and the calculation of curvature κ and torsion τ , κ

and τ data (i.e decomposition data) is fed into the neural network. We denote this input as a

2D matrix, X(0), where each column represents a unique residue and the rows corresponding

the curvature and torsion. The first layer is a branch convolution with varying window
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sizes. That is, each branch is a convolution with a filter of differing length. We perform this

operation so that patterns of varying lengths in the decomposition plot can be recognized

by the neural network. Each branch is then fed to more convolutions of same window size.

This allows the network to recognize more intricate patterns in X(0) that might be more

difficult to recognize with a single convolution. The output of these convolutional branches

are concatenated, pooled over the length of the sequence, and fed to a fully connected dense

layer. The rightmost upper branch of Figure 3 shows a ligand vector which is generated

and fed to a fully connected dense layer. The output of this layer is typically referred to as

an embedding. Intuitively, this embedding is a reduced dimensionality representation of the

protein and ligand. The outputs of the protein embedding and the ligand embedding are

then concatenated and fed to further dense layers to predict the PLI.

The convolutional network in this research uses filter functions over the protein vector

X(0). To define the convolution operation more intuitively, we define a reshaping operation

as follows:

c(0)i = flat
(
X(0)

row=i:i+K,∀col

)
where the flattening operation reshapes the row of X(0) from indices i to i+K to be a column

vector c(0)i . This process is also referred to as vectorization. The size of the filter will then

be of length K. We define the convolution operation as:

X(1)
row=i,∀col = f(W(0)

convc
(0)
i + b(0)

conv) (3)

where f is a function known as the rectified linear unit (ReLU), W(0)
conv is the weight matrix

and b(0)
conv is the bias vector. This operation fills in the columns of the output of the convolu-

tion, X(1)
row=i,∀col (also called the activation or feature map). Each row of W(0)

conv is considered

as a different filter and each row of X(1) is the convolutional output of each of these filters.
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These convolutions can be repeated such that the nth activation is computed as:

c(n)i =flat
(
X(n)

row=i:i+K,∀col

)
X(n)

row=i,∀col =f(W
(n−1)
conv c(n−1)i + b(n−1)

conv )

(4)

We in our SSnet model use four different branches with filter sizes of κ = 5, 10, 15 and 30.

The final convolutional activations for layer N can be referred to as X(N)
κ where κ denotes

the branch. The activation X(N)
κ is often referred to as the latent space because it denotes

the latent features of the input sequence. The number of columns in X(N)
κ is dependent upon

the size of the input sequence. To collapse this unknown size matrix into a fixed size vector,

we apply a maximum operation along the rows of X(N)
κ . This is typically referred to as a

Global Max Pooling layer in neural networks and is repeated R times for each row in X(N)
κ :

dκ =



max
(
X(N)
κ,row=1,∀col

)
max

(
X(N)
κ,row=2,∀col

)
...

max
(
X(N)
κ,row=R,∀col

)


(5)

where dκ is a length R column vector regardless of the number of columns in the latent

space X(N)
κ . This maximum operation, while important, has the effect of eliminating much

of the information in the latent space. To better understand the latent space, we can further

process X(N)
κ to understand how samples are distributed. For example, a simple operation

would be to define another column vector v that denotes the total variation in each row of

the latent space:

vκ =



max
(
X(N)
κ,row=1,∀col

)
−min

(
X(N)
κ,row=1,∀col

)
max

(
X(N)
κ,row=2,∀col

)
−min

(
X(N)
κ,row=2,∀col

)
...

max
(
X(N)
κ,row=R,∀col

)
−min

(
X(N)
κ,row=R,∀col

)


(6)
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The concatenation of vectors d and v help elucidate how the samples are distributed

in the latent space. As such, we can use these concatenated vectors as inputs to a fully

connected dense layer that can learn to interpret the latent space. This output is referred

to as the embedding of the protein, yprot, and is computed as

yprot = f(Wprot · [dT5 ,vT5 ,dT10,vT10,dT15,vT15,dT20,vT20]T + bprot) (7)

where Wprot is the learned weight matrix and bprot is the bias vector of a fully connected

network.

The method described above is similar to a technique recently used in speech verification

systems where the window sizes need to be dynamic because the length of audio snippet

is unknown.64–66 In speech systems, the latent space is collapsed via mean and standard

deviation operations and the embeddings provided for these operations are typically referred

to as D-Vectors64 or X-Vectors.65,66 In proteins we have a similar problem as the length of

the decomposition sequence to consider the active site(s) of protein is dynamic and are of

unknown sizes. By including the window sizes of 5, 10, 15 and 20 (number of residues to

consider at a time), we ensure that the network is able to extract different sized patterns

from backbones of varying length.

After embedding the protein and the ligand, we concatenate the vectors together and

feed them into the final neural network branch, resulting in a prediction of binding, ŷ, which

is expected to be closer to “0” for ligands and proteins that do not bind and closer to “1” for

proteins and ligands that do bind. This final branch consists of two layers:

ŷ = σ
(
W2 · f

(
W1 · [yTprot,yTligand, ]T + b1

)
+ b2

)
(8)

where σ refers to a sigmoid function that maps the output to [0, 1]. If we denote the ground

truth binding as y, which is either 0 or 1, and denote all the parameters inside the network

as W then the loss function for the SSnet model can be defined as binary cross entropy,
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which is computed as:

l(W) = − 1

M

M∑
i

[yi · log(ŷi) + (1− yi) · log(1− ŷi)] (9)

whereM is the number of samples in the dataset. By optimizing this loss function the neural

network can learn to extract meaningful features from the protein and ligand features that

relate to binding. At first all weights are initialized randomly and we use back propagation

to update the parameters and minimize loss. All operations defined are differentiable, in-

cluding the collapse of the latent space with Global Max Pooling such that errors in the loss

function can back propagate through the network to update all parameters, including the

convolutional operations.

Grad-CAM method for heatmap generation

A neural network generally exhibits a large number of weights to be optimized so that com-

plex information can be learned, however, some of this information could be irrelevant to a

prediction task. For example, consider the task of identifying if a certain image contains a

horse or not. If all horse images also contain a date information on the image and images

without horse does not contains date information, the machine will quickly learn to detect

the date rather than the goal object (a horse in this case). Therefore it is imperative to

verify what a neural network considers “influential” for classification after training. Ram-

prasaath et al.53 proposed a Gradient-weighted Class Activation (Grad-CAM) based method

to generate a heatmap which shows important points in the feature data, based on a par-

ticular class of prediction. That is, this method uses activations inside the neural network

to understand what portions of an image are most influential for a given classification. In

the context of protein structures, this methods can help to elucidate which portions of the

decomposition plot are most important for a given classification. These influential patterns

in the decomposition plot can then be mapped to specific sub-structures in the protein.
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Grad-CAM is computed by taking the gradient weight αk for all channels in a convolu-

tional layer as

αk =
1

Z

∑
i

− δŷ

δX(N)
row=k,col=i

(10)

where k is the row in the final convolutional layer , Z is a normalization term, X(N) is the

activation of the final convolutional layer, and ŷ is the final layer output. The heatmap S is

then computed by the weighted sum of final layer activations:

Si =
1

Smax

∑
k

αkX
(N)
row=k,col=i (11)

This heatmap S specifies the important portions in the input sequence that are most re-

sponsible for a particular class activation. For each convolutional branch, we can apply this

procedure to understand which portions of the input decomposition sequence are contribut-

ing the most, according to each filter size K = 5, 10, 15, 20. In this way, we can then map the

most influential portions onto locations on the backbone of the protein. To the best of our

knowledge, this procedure has never been applied to protein (or ligand) structures because

Grad-CAM has been rarely applied outside of image processing.

Evaluation criteria

The evaluation criteria for PLI in general is presented by the area under the receiver oper-

ating characteristics (AUC).67 The receiver operating characteristic curve is the plot of true

positive rate vs false positive rate and the area under this curve is AUC. Thus AUC greater

than 0.5 suggests that the model performs better than chance. However, AUC faces the early

recognition problem (high positive rate for highest ranked ligands which are assayed first)

and therefore, may incorrectly judge a model. Enrichment Factor68,69 (EF) and Boltzman-

Enhanced Discrimination of Receiver Operating Characteristic (BEDROC) considers early
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recognition problem. EF is defined as

EFX% =
Compoundsselected/NX%

Compoundstotal/Ntotal

(12)

where NX% is the number of ligands in the top X% of the ranked ligands. EF thus considers

an estimate on a random distribution for how many more actives can be found withing the

early recognition threshold. BEDROC is interpreted as the probability that active is ranked

before a ligand taken from random probability distribution in an ordered list. An exponent

factor α determines the shape of the distribution. In this work, we chose α = 20 following

the bench-marking of fingerprints for ligand-based virtual screening.70

Datasets

The dataset used for the evaluation of PLI prediction models is of critical importance. The

dataset should have credible positive and negative samples (i.e., protein-ligand pairs that

interact and protein-ligand pairs that do not interact, respectively). However, most of the

datasets applied currently for PLI prediction use randomly generated negative sample71,72

which creates noise in the data as there might be false negatives (i.e. a sample that is

categorized as negative by the model but is positive).

The highly credible negative samples datasets human and C.elegans were created by Liu

et al.73 by using the concept that proteins dissimilar to known target are much likely to be

targeted by a compound and vice-versa. The positive samples were created by DrugBank

4.174 and Matador.75 The human dataset contains 1052 and 852 unique compounds and

proteins respectively for 3369 positive interactions and the C.elegans dataset contains 1434

and 2504 unique compounds and proteins respectively for 4000 positive interactions. For

comparison with other state-of-the-art models for PLI predictions, we considered the experi-

mental setting suggested by Tabei et al.,76 where the number of positive to negative samples

were 1:1, 1:3 and 1:5 respectively. The negative samples were extracted from human and
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C.elegans as the top candidates based on their scores obtained by Liu et al.73 A five fold

cross validation was done for evaluation.

For comparison with ML/DL and non-machine learning models we considered the Database

of Useful Decoys : Enhanced (DUD-E) dataset.77 The dataset contains 102 unique proteins

and 22,886 positive interactions with an average of 224 compounds per target. For each

active compounds, 50 decoys with similar 1D physico-chemical properties were considered to

remove bias which have dissimilar 2D topology and therefore are likely non-binders. How-

ever, the decoys can have false negatives and therefore we performed Autodock Vina78 on

all the decoys and considered 80 % (11,28,971) of the top scoring decoys. We randomly di-

vided 102 targets to 72 targets for training and 30 targets for testing. The dataset was then

balanced by considering equal number of negative samples (selected randomly) to positive

samples for each target, which led to the final evaluation dataset with 22,886 positive and

22,886 negative interactions.

Results and discussion

Our model takes the curvature κ and torsion τ for proteins and SMILES strings for ligands

as input. The SMILES string is further converted into molecular descriptors utilizing the

methods ECF,50 Avalon,51 GNN49 and CLP44 respectively. DNNs with convolutional neural

networks (CNN) have a large number of weights to optimize and therefore requires a large

number of data instances to learn. However, in the human and C.elegans datset the number

of instances are very few and therefore the proposed model (SSnet) overfits (shown as Figure

2 in the supporting information). To overcome this problem we ignored the convolution layer

and directly fed the curvature and torsion of proteins to fully connected dense layer (similar

to ligands) for human and C.elegans dataset.

Table 1 shows the performance of the SSnet model in the human dataset (balanced

dataset with 1:1 ratio of positive to negative samples) when different ligand descriptors were
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Table 1: Model comparison on the human dataset for various molecular descriptors

Ligand descriptors AUC

GNN 0.974
ECF 0.982
CLP 0.966
Avalon 0.984

employed. GNN is built up based on convolution neural networks which requires ample

amount of data to make sense of the spatial information provided to the model. This might

be one of the reasons for a lower performance of GNN in terms of AUC when compared

to ECF and Avalon. CLP gives a descent AUC score of 0.966, however, it is the lowest

performing model. CLP is based on autoencoder which is trained to take an input SMILES

string, convert it to lower dimensions, and reproduce the SMILES string back. In this way

CLP is able to generate a lower dimensional vector for a given SMILES string. However,

relevant information required for the prediction of PLI might have lost from the ligands

which explains its lower performance. ECF and Avalon have almost similar AUC score as

they both directly provide the information of the atoms and functional groups a ligand

contains. For further comparison on human and C.elegans datasets we considered Avalon as

ligand descriptor.

Table 2 shows the comparison of various traditional machine learning models on the

human and C.elegans datasets. We adapted the same experimental setting as Liu et al.73 (all

models were performed on the same experimental setting) for comparison which was obtained

from Masashi et al.40 The SSnet model outperforms all other models in both balanced (1:1)

and unbalanced (1:3 and 1:5) datasets. This suggests that the SSnet model is robust and is

able to learn useful information about the protein and ligand pairs. If the model failed to

learn robust features, it is likely that the classifier would simply predict the majority class,

having a correspondingly low AUC score. We do not observe this.
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We further compared our model with PLI specific methods : BLM,79 RLS-avg and RLS-

Kron,80 KBMF2K-classifier, KBMF2K-regression81 and GNN-CNN40 as shown in Figure 4a

(performed on the same experimental setting as Liu et al.73). It is important to note that

BLM, RLS-avg, RLS-Kron, KBMF2K-classifier, and KBMF2K-regression are modeled on

properties such as chemical structure similarity matrix, protein sequence similarity matrix

and PLI matrix. Despite such preorganized inputs, SSnet was able to outperform them

in terms of AUC. The superior description of proteins in SSnet model was also able to

outperform the state-of-the-art model GNN-CNN.

Table 2: Data comparison (AUC) on balanced and unbalnced datasets

Dataset k-NN RF L2 SVM GNN-CNN SSnet

humans (1:1) 0.860 0.940 0.911 0.910 0.970 0.984
humans (1:3) 0.904 0.954 0.920 0.942 0.950 0.978
humans (1:5) 0.913 0.967 0.920 0.951 0.970 0.976
C.elegans (1:1) 0.858 0.902 0.892 0.894 0.978 0.984
C.elegans (1:3) 0.892 0.926 0.896 0.901 0.971 0.983
C.elegans (1:5) 0.897 0.928 0.906 0.907 0.971 0.983

Note: k-nearest neighbour (k-NN), random forest (RF), L2-logistic
(L2) and SVM results were obtained by Liu et al.73

In addition we evaluated our model with the DUD-E dataset as shown in Figure 4b. The

best performing molecular descriptor GNN was employed for ligands and branch convolution

neural network was employed for proteins. The performance of other molecular descriptors

are shown as Table 1 in the supporting information. The power of convolution neural net-

works are now visible as the dataset contains enough instances of PLI. We compared our

model with Autodock Vina78 and Smina83 as non-machine learning methods and Atomnet,39

3D-CNN82 and GNN-CNN40 as machine learning models. Autodock Vina is an open-source

program which is based on the classical force fields to predict docking in PLI. Smina is an

advanced version of Autodock Vina that adds more control of scoring function and mini-
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BLM RLS-ave RLS-kron KBMF2K GNN-CNN SSnet

(a) human and C.elegans datasets
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Vina Smina AtomNet 3D-CNN GNN-CNN SSnet

(b) DUD-E dataset

Figure 4: Model comparison on various methods to predict PLI in terms of AUC for a)
human and C.elegans and b) DUD-E datasets. The AUC score for the methods mentioned
are derived from the literature.39,40,82
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mization. Atomnet and 3D-CNN are DNN based models which considers 3D information of

proteins and ligands. Our model outperforms all these models including the state-of-the-art

model GNN-CNN in terms of AUC.

As described in the evaluation criteria section, accuracy and AUC are not the best metric

for PLI prediction evaluation. The Receiver operating characteristics (ROC) curve on the

DUD-E dataset for each single protein in the test set (30 proteins) is shown as Figure 3 in the

supporting information. Figure 5 shows various metrics applied to evaluate the performance

of the SSnet model. The mean AUC, BEDROC20, EF0.5, EF1.0, and EF5.0 were 0.986,

0.995, 0.986, and 0.986 respectively. We obtained similar conclusions as with AUC using

EF0.5, EF1.0, and EF5.0 respectively. Similarly, BEDROC20 is better with a higher mean,

confirming that the SSnet model performs superior regardless of evaluation criteria.

AUC BEDROC20 EF05% EF1% EF5%

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Figure 5: Box plot for the evaluation of predictions for each protein (30) in the test set of
DUD-E dataset.

Latent space for proteins

In order to further test the intrinsic mechanism of our model we analysed the outputs from

the final layers in the global max pooling layer (GMP) (Protein concatenate layer in Figure
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3). The t-distributed Stochastic Neighbor Embedding (t-SNE) of GMP is shown as Figure 4

in the supporting information. t-SNE is a method to embed high-dimensional points in low

dimensions by retaining similarities between points. In this way similar data points forms a

cluster and is distinguishable with other data points. We tested the proteins in the test set

of DUD-E dataset (# of unique proteins = 30) and consider all their interaction with the

ligands. The results of t-SNE clearly distinguishes all the proteins (# of clusters = 30). It is

important to note that our model had no prior information about the proteins as they were

not in the training set. The fact that t-SNE clearly distinguishes all the protein suggests

that information gathered by the convolution layers are not general (such as α helix or β

sheet type patterns). More specifically, our model gathers necessary information required

for PLI prediction. Based on these results we conclude that our model is able to create a

latent space which encodes important information about the activity of the protein. Since

the model was trained to predict activity of the protein based on several ligands, such latent

space will encode important information about the binding site (including allosteric site) of

the protein and therefore can be a potential scoring function to compare proteins based on

its activity. With the development of latent space we opened a door for future exploration

in this direction.
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Visualization of heatmap using Grad-CAM

(a) PDB ID - 2FSZ (b) PDB ID - 3NFZ

(c) PDB ID - 2VT4 (d) PDB ID - 5IFU

Figure 6: Grad-CAM visualization of the heatmap for four different proteins. The heatmap
is rainbow mapping with violet as the lowest and red as the highest value. The ligand and
other small molecules are shown in white. a) and b) shows that the heatmap generates high
value for residues near the binding site. c) shows a protein with four active sites and the
model detects them all. The model also detects places where small molecules interact apart
from the active site. d) shows a protein’s allosteric site which inhibits toxicity from drugs
binding at the active site. The model is able to capture all possible places where a ligand
could bind including allosteric sites. Note : The model has no prior information of any ligand
or small molecules location.

ML/DL are black box models and therefore it is imperative to investigate what features

the model learned. In most of the previous studies40 , a neural attention layer is added to

the network to understand the important points in the feature which gets higher attention
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relative to others. However, neural attention is a complex network and therefore can result

in information that can be misinterpreted (explained in the method section). To tackle this

problem we approached towards Grad-CAM which provides a better insight for which points

are important in the feature to predict a particular class based on convolution outputs. A

convolution layer is used as it contains most of the spatial information which is lost in a fully

connected dense layer. Figure 6a and 6b shows the heatmap generated by Grad-CAM on a

homo sapiens protein classified as hormone/growth factor84 (PDB ID - 2FSZ) with the ligand

4-hydroxytamoxifen (HT) and on a mus musculus organism classified as hydrolase85 (PDB

ID - 3NFZ) with the ligand as an acetylated substrates. Grad-CAM clearly highlights the

important residues for ligand recognition. In both cases the ligand forms several non-covalent

interactions such as hydrogen bonding, van der Walls interaction etc. with the highlighted

part of the protein. On a closer look we observed that the SSnet model in general highlights a

weighted probability density of the binding sites present in a protein (heatmaps generated via

Grad-CAM for 10 different proteins is shown as Figure 5-15 in the supporting information).

We further evaluated the protein found in meleagris gallopavo classified as receptor86 (PDB

ID - 2VT4) as shown in Figure 6c. The protein contains four active sites which is comprised

of 15 side chains from amino acid residues. The loops define the entrance channel for PLI

and is stabilized by a sodium ion. SSnet model is able to capture all the 4 sites shown as high

values in the heatmap and encircled in blue color. Apart from the active sites, the SSnet

model also captures sites not necessarily in the active site and is encircled in red color. The

identification of all possible sites is a useful information for drug discovery as it regulates

various properties of the enzyme. Another such example is of a protein found in Plasmodium

falciparum shown in Figure 6d (PDB ID - 5IFU) in complex with glyburide. It is important

to note that glyburide is not in the known binding site of the protein and is slightly away

from it which acts as an allosteric inhibitor. It has been shown that the presence of glyburide

overcomes the toxicity related to drugs binding at the active site of this protein.87 The fact

that SSnet model highlights the portion of the protein where glyburide could have bound
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(not in the active site) represents one of the various applications that can be carried out

with our model. These results also suggest that the SSnet model is learning the relevant

information from the features for PLI prediction.

Conclusion

In this work we have approached the prediction of protein ligand interaction via end-to-

end learning based on the secondary structure of proteins and the molecular description of

ligands. The protein’s secondary structure is acknowledged as the curvature and torsion of

the backbone of protein. The curvature and torsion are comprised of 1D data and therefore

has compact information that the machine finds easier to learn. In comparison of 3D or

2D feature representation for proteins, the information provided to the machine is sparse

and therefore these models have poor performance. The curvature and torsion have unique

patterns which are detected by convolution network added in the model. We showed that the

machine learns important points in proteins with the help of convolution network for where it

should look for when predicting a protein ligand interaction. The molecular descriptors were

accessed based on several previous studies (graph neural network, variational auto encoder,

morgan/circular fingerprints and Avalon fingerprints). Inspired by the t-SNE results for the

last layer in protein embedding we propose a possible latent space for proteins that encodes

important information about the protein activity and further exploration would result in a

metric to compare proteins based on their activity. Our SSnet model outperforms previous

models which predicts protein ligand interaction in the human, C.elegans and the DUD-E

dataset. Our model also shows a strong potential in detecting active sites of proteins even

for proteins with multiple binding sites. It also finds all possible locations including allosteric

sites where a ligand might interact which is an important information for chemists to regulate

various properties of the enzyme such as mitigating toxicity.

It is important to note that SSnet is an ML/DL based method and therefore, is much
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faster than traditional methods such as Vina78 or Smina.83 The SSnet model utilizes sec-

ondary structure information of the protein and therefore, does not necessarily require high

resolution structural information. For validation and reproducibility all codes developed in

this work are publicly accessible at CATCO-Github.

Our study suggest that end-to-end learning models based on the secondary structure of

proteins has great potential in bioinformatics which is not just confined to protein ligand

prediction and can be extended to various biological studies such as protein-protein inter-

action, protein-DNA interaction, protein-RNA interactions etc. We leave these explorations

of the SSnet model for future work.
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