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Abstract

Addressing ecological and evolutionary processes explaining biodiversity patterns is essential  to

identify the mechanisms driving community assembly. In the case of bacteria, the formation of new

ecologically  distinct  populations  or  ecotypes  is  proposed  as  one  of  the  main  drivers  of

diversification. New ecotypes arise when mutation in key functional genes or acquisition of new

metabolic  pathways  by horizontal  gene transfer  allow the population  to  exploit  new resources,

making  possible  their  coexistence  with  parental  population.  Recently,  we  have  reported  the

presence  of  toxic,  microcystin-producing  organisms  from  the  Microcystis  aeruginosa complex

(MAC)  through  a  wide  environmental  gradient  (800  km)  in  South  America,  ranging  from

freshwater  to  estuarine-marine  waters.  In order to  explain this  finding,  we hypothesize  that  the

success  of  toxic  organisms  of  MAC in  such  array  of  environmental  conditions  is  due  to  the

existence  of  ecotypes  having  different  environmental  preferences.  So,  we  analysed  the  genetic

diversity  of  microcystin-producing  populations  of  Microcystis  aeruginosa complex  (MAC)  by

qPCR and  high  resolution  melting  analysis  (HRMA)  of  a  functional  gene  (mcyJ,  involved  in

microcystin synthesis) and explored its relationship with the environmental conditions through the

gradient by functional classification and regression trees (fCART). Six groups of  mcyJ genotypes

were distinguished and selected by different combinations of water temperature, conductivity and

turbidity, determining the environmental preferences of each group. Since these groups were based

on the basis of similar sequence and ecological characteristics they were defined as ecotypes of

toxic MAC. Taking into account that the role of microcystins in MAC biology and ecology has not

yet been elucidated, we propose that the toxin might have a role in MAC fitness that would be

mainly controlled by the physical environment in a way such that the ecotypes that thrive in the

riverine zone of the gradient would be more stable and less influenced by salinity fluctuations than

those  living  at  the  marine  limit  of  the  estuary.  These  would  periodically  disappear  or  being

eliminated by salinity increases,  depending on the estuary dynamics.  Thus,  ecotypes  generation

would be an important mechanism allowing toxic MAC adapting to and succeed in a wide array of

environmental conditions. 
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1. Introduction

Microbial communities are composed by a myriad of genetic variants that interact and respond 

rapidly to changing environments (Koeppel et al., 2008). Deep ecological and physiological 

differences among microorganisms’ populations mirror differences at the genomic level (Welch et 

al., 2002). These differences are usually difficult to detect when using slowly evolving phylogenetic

markers such as ribosomal genes, which circumvents the elucidation of the mechanisms accounting 

for the observed community structure. Therefore, developing a theoretical framework and 

appropriate tools to quantify and understand the environmental forces shaping community structure 

is timely relevant. One of these frameworks is the ecotype theory of bacterial species (Cohan, 2002,

1994; Cohan and Perry, 2007; Ward et al., 1994), which defines the ecotype as a clade of 

phylogenetically-related microorganisms (meaning that they belong to the same bacterial species) 

sharing ecological characteristics. An ecotype generates after a single individual experiences 

mutation or recombination that changes its ecology, allowing the utilization of a new set of 

resources or to thrive under a particular environmental condition (Cohan, 2002). Under this 

framework, it has been defined that two individuals belong to the same ecotype when their 16S 

rRNA genes share a high degree of identity (97 - 99%) (Stackebrandt, 2006) and ecological 

preferences (Kopac and Cohan, 2011). Depending on the mechanism that induces the variation, 

different models of ecotype generation have been proposed (Cohan, 2006; Cohan and Ward, 2005; 

Gevers et al., 2005). 

In particular, ecotypes have been defined for several cyanobacteria species, such as 

Prochlorococcus (Moore, 1998), Synechococcus (Sohm et al., 2016) and Cylindrospermopsis 

(Piccini et al., 2011). Different ecotypes have been described for these organisms  based on  their 

environmental preferences (e.g. temperature, light intensity, nutrients concentrations and iron 

availability)  (e.g. size, shape) and physiology (e.g. nitrogen fixation). As an ecological strategy, the

existence of ecotypes adapted to different temperatures (Chandler et al., 2016) and light intensities 

(Moore et al., 1995) allowed Prochlorococcus to account for the 50%of the total chlorophyll and an

estimated production of 4 gigatons carbon fixed per year in vast areas of the surface ocean (Biller et

al., 2015), allowing this microorganisms to occupy the entire euphotic zone. There are several 

examples in the literature identifying ecotype diversification as one of the most relevant 

mechanisms explaining the colonization of different potential niches in many environments, and is 

proposed as a main driver of bacterial speciation (Cohan, 2007). 

Several methods and algorithms have been applied to identify bacterial ecotypes and to address 

their presence and abundance, which are usually related to PCR amplification of phylogenetic 
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marker genes and posterior analysis of the amplicons, either by fingerprinting methods (e.g. DGGE,

TGGE) (Ferris et al., 2003) or by sequencing (Chandler et al., 2016; Martiny et al., 2009). 

Fingerprinting-based methods are described to discern between sequences differing in a single 

nucleotide, while in the case of sequencing (usually 16S genes or the internal transcribed spacer of 

the bacterial ribosomal operon) a similarity cut-off is needed. This cut-off can produce different 

results, depending on how broadly the taxa are defined. Thus, identifying ecotypes by this approach 

would depend on the stringency of taxa assignment (Martiny et al., 2009). In the case of High 

Resolution Melting Analysis (HRMA), which is a fingerprinting-based method, it has been used to 

study diversity at the genotype level (Hjelmsø et al., 2014; Kim and Lee, 2014). The HRMA 

denaturation curves give information about the whole amplicon sequence, detecting single 

nucleotide polymorphisms (SNPs) with great precision at high throughput and relatively low cost. 

Therefore, it provides melting profiles which curves are used to discriminate among different 

genetic populations. HRMA has been applied to genotyping, mutation scanning and SNPs detection

in bacterial populations (Hofinger et al., 2009; Thomsen et al., 2012; Tong and Giffard, 2012; 

Wittwer et al., 2003) and human disease (Li et al., 2011) as well as to address diversity of microbial

communities (Hjelmsø et al., 2014; Kim and Lee, 2014; Zeyoudi et al., 2015). The output of 

HRMA denaturation curves present high dimensionality and correlation that can be managed by 

machine learning techniques, providing an efficient way to interpret the information (Libbrecht and 

Noble, 2015). In particular, functional analysis allows an objective analysis of correlated results, 

thus, the combination of molecular methods with machine learning techniques appears as a 

promising way to explore microbial community assembly patterns under the ecotype theoretical 

framework. 

In the case or Microcystis genus of cyanobacteria, several morpho-species sharing nearly identical 

16S rDNA gene sequence (more than 97% identity) but exhibiting ecological distinctness have been

described (Otsuka et al., 1998). Microcystis is one of the most common bloom-forming 

cyanobacterial genus worldwide, capable of successful growth in a variety of freshwater and 

brackish ecosystems (De Leon and Yunes, 2001; González-Piana et al., 2017, 2011; O’Neil et al., 

2012; Srivastava et al., 2013). It harbours a number of species defined according to their 

morphology and ecology that are aggregated in the Microcystis aeruginosa Complex (MAC), 

whose diversity and bloom formation capacity varied along environmental gradients from 

headwaters to marine waters (Kruk et al., 2017; Martínez de la Escalera et al., 2017; Sabart et al., 

2009; Segura et al., 2017; Tanabe et al., 2018). Most of MAC organisms are able to produce 

microcystin, a toxin known to cause of serious liver diseases in humans (Azevedo et al., 2002; 

Dittmann and Wiegand, 2006; Milutinović et al., 2003; Vidal et al., 2017) with more than 250 
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variants (Meriluoto et al., 2017; Puddick et al., 2014), which are produced via non-ribosomal 

peptide synthesis (NRPS) and polyketide synthase (PKS) (Dittmann et al., 1997; Tillett et al., 

2000). 

MAC blooms can consist of mixtures of microcystin-producing (toxic genotypes) and non-

producing (non-toxic genotypes) populations (Kaebernick and Neilan, 2001; Kurmayer and 

Kutzenberger, 2003; Vezie et al., 1998). There is no consensus about the role of microcystins in the 

biology and ecology of MAC organisms. Environmental factors, such as nutrients, salinity, light 

intensity and temperature have been described as influencing the toxin concentration (Dittmann et 

al., 1997; Kameyama et al., 2004; Lee et al., 2000). Recently, Qu et al. (2018) reported for M. 

aeruginosa isolates that metabolic functions essential for cell growth (photosynthesis efficiency, 

carbohydrate metabolism and redox homeostasis) are important in microcystin production. 

Furthermore, it has been proposed that, under oxidative stress conditions, microcystin increases the 

fitness of Microcystis by modulating a number of proteins (Zilliges et al., 2011). Owing to their 

lifestyle, cyanobacteria of MAC are exposed to very high irradiances and oxygen over-saturation, 

especially during blooms (Zilliges et al., 2011). So, the presence of microcystin would help 

organisms survival. If microcystin presence is important for the fitness of the organisms and its 

production is regulated by specific environmental conditions, we hypothesized that the acquisition 

and posterior modification of the mcy genetic cluster could drive the ecological diversification of 

MAC.

The morphological and ecological differences used to define Microcystis species are not reflected in

the 16S rDNA-based phylogeny, so different theoretical and practical approaches are needed to 

define ecologically relevant species. For example, application of multilocus sequence typing using 

seven housekeeping loci has shown that M. aeruginosa is divided into at least seven distinct 

phylogenetic clusters matching partially the colony morphology and microcystin production 

(Tanabe et al., 2009). Nonetheless, Pérez-Carrascal et al. (2019) have recently reported a study on 

Microcystis diversity based on the genomic sequencing of several isolates belonging to different 

species and found that the morpho-species M. aeruginosa was in fact distributed across 12 genomic 

cluster, which indicate that is not a coherent species and that most of the ecological information 

gathered for this organism should be considered as belonging to Microcystis genus. Thus, MAC 

offers an excellent model group to explore microbial community assembly based on genetic 

variability using the ecotype framework. 

Here, we used MAC communities from a large environmental gradient (ca. 800 km) as a model to 
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evaluate if the ability of these organisms to thrive in a wide range of environments is based on the 

existence of multiple genotypes adapted to different sets of environmental conditions (ecotypes). To

identify ecotypes, MAC genotyping was based on mcyJ melting curves obtained from HRMA, 

which were later classified based on environmental variables by a functional classification and 

regression trees approach (fCART). 

2. Materials and methods

2.1. Strategy

High Resolution Melting is post real time-PCR method used to perform genotyping based on the 

detection of single nucleotide polymorphisms (SNP). After PCR, a melting analysis is performed by

gradually heating the amplicons at 0.1 °C steps. During this process, as the temperature increases 

the melting point of the amplicon is reached and amplicon DNA denatures, melting apart the double

strand and making the fluorescence of the dye to fade away. This melting behaviour and 

concomitant fluorescence decay is represented as melting curves (fluorescence decay during 

melting temperature increase) and is characteristics for each amplicon sequence. Thus, it can 

discriminate samples according to their sequence length, GC content and strand complementarity. 

This is the case when analysing sequences from single isolates, however, our goal was to detect 

variations between melting curves of mcyJ gene from different communities, as a single 

environmental sample included the DNA of a whole MAC community. Therefore, the resulting 

melting curve correspond to the abundance-weighted average melting profile of all the mcyJ gene 

sequences (see section 2.7 below for further information). The relationships between the structure 

of the toxic MAC communities and the environmental variables were evaluated with a functional 

classification and regression trees (fCART) (Breiman et al., 1984; Nerini and Ghattas, 2007). 

fCART is an extension of classical Classification and Regression Tress used in ecology (Breiman et

al., 1984; De’ath, 2002; Nerini and Ghattas, 2007) in which the response variable is no longer a 

given value, but a function (Nerini and Ghattas, 2007). This methodology was used to evaluate the 

relation of environmental variables and toxic genotypes and identify group of closely-related toxic 

genotypes of MAC (ecotypes) exhibiting the same environmental preferences.

2.2. Study site

The study area is located in the subtropical region of South America and covered an extension of ca.

800 km, from Salto Grande reservoir in the Uruguay river (31° 11´ latitude, 57° 52´ longitude) to 

Punta del Este (34° 57´latitude, 55° 02´ longitude), at the marine end of Río de la Plata estuary. Six 

sites were sampled every two months during one-year (from January 2013 to March 2014) and 
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subsurface (~ 0.5 m) samples were taken in coastal stations (0.01-0.5 km) (for more details see 

(Martínez de la Escalera et al., 2017). In total, 36 water samples were analysed. The system presents

strong temporal and spatial gradients in terms of temperature, conductivity (which was used as a 

proxy of salinity) and turbidity (Acha et al., 2008; Ferrari et al., 2011; García-Rodríguez et al., 

2013; Kruk et al., 2015; Martínez de la Escalera et al., 2017). The highest surface water 

temperatures in Salto Grande reservoir are usually recorded during summer (January to March, 19-

33 °C) while the lowest temperatures belong to the outer marine zone of the Río de la Plata during 

winter-early spring (June to October, 11-18 °C) (Kruk et al., 2017; Martínez de la Escalera et al., 

2017). Conductivity was minimum in freshwater systems (0.023 mS cm-1, Salto, Fray Bentos, 

Carmelo and Colonia) and maximum at the estuary (55 mS cm-1, Montevideo and Punta del Este) 

(Kruk et al., 2017; Martínez de la Escalera et al., 2017). Turbidity ranged from 0 to 187 NTU, with 

higher values at the middle of the gradient (Stns. Carmelo and Colonia) (Kruk et al., 2017; Martínez

de la Escalera et al., 2017). MAC biovolume was dominant in Salto Grande reservoir during 

summer and decreased toward the marine end (Punta del Este) (Kruk et al., 2017; Martínez de la 

Escalera et al., 2017). The presence of mcy genes (mcyB, mcyD, mcyE and mcyJ) was detected by 

qPCR in the whole ecosystem while maximum abundances were detected in summer and spatially 

decreasing from the reservoir to the marine sites  (Martínez de la Escalera et al., 2017).

2.3. DNA extraction

For the DNA extraction, 250-300 ml of the subsurface water samples collected with clean plastic 20

L carboys were filtered through 0.22 μm sterile polycarbonate membrane (Millipore, Darmstadt, 

Germany), which were immediately frozen at -20 ºC until processing. Procedures for nucleic acid 

extraction were performed as described in (Martínez de la Escalera et al., 2014).

2.4. Quantification of mcyJ gene in the environmental samples

Two microliters of DNA extracts from each sample (ca. 50 ng DNA) were applied to the Power 

SYBR Green PCR (Invitrogen) with a final reaction volume of 20 ml. Primers for mcyJ gene were 

those from Kim et al. (2010). Cycling conditions were 2 min at 50 °C, 15 min at 95 °C and 40 

cycles of 15s at 94 °C, 30s at 60 °C and 30s at 72 °C, including a last melting step from 65 to 95 °C 

at increases of 1 °C each 4 s. A 96 FLX Touch TM thermal cycler (Bio-Rad) was used. To quantify 

the abundance of mcyJ gene, cloned amplicons (Martínez de la Escalera et al., 2017) were used to 

perform the calibration curves. Curves were achieved using five serial dilutions from 1/10 to 

1/100,000 of the cloned genes (in quintuplicates) and applied to qPCR in the same PCR plate where

the samples were assayed. Samples were run in triplicate. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 23, 2019. ; https://doi.org/10.1101/2019.12.20.885111doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.20.885111
http://creativecommons.org/licenses/by-nc-nd/4.0/


2.5. High Resolution Melting Analysis (HRMA) of mcyJ amplicons

Amplification of the mcyJ gene was performed using the HRM primers described in the literature 

(Kim et al., 2010). PCR amplification was conducted using a 96 FLX Touch TM thermal cycler 

(Bio-Rad, California, USA). Two microliters of DNA extracts from each sample (ca. 50 ng DNA) 

were applied to the MeltDoctor HRM Master Mix (Applied Biosystems, California, USA) with a 

final reaction volume of 20 μL. Cycling conditions were 2 min at 50 °C, 15 min at 95 °C and 40 

cycles of 15 s at 94 °C, 30 s at 60 °C and 30 s at 72 °C. To obtain the HRM melting profiles, RFU 

(relative fluorescence units) obtained from each sample within a melting region from 65 °C to 95 

°C at 0.02 °C/s increases, were recorded. HRM data were acquired using Bio-Rad Precision Melt 

Analysis (Bio-Rad, California, USA) and each sample was run in duplicate. All the samples were 

run in the same PCR plate. Melting curves were normalized to the same fluoresces level (RFU) 

using the pre- and post-melt regions (before and after the melting region, respectively). Pre- and 

post-melt region were selected based on the specific melt region of the mcyJ amplicon (from 75 ºC 

to 82 ºC, Tm=79.5 ºC). These relative values of RFU were used for the statistical analysis.

2.6. Functional CART

The melting curves (RFU) were first represented in a functional basis using a non-periodic β-splin 

basis of order 4 (this was the optimal choice after several experiments). The multivariate output 

CART (De’ath, 2002; Nerini and Ghattas, 2007) was used to model these coefficients (output 

variables) using the following explanatory variables as input: total nutrients (Total Nitrogen; TN 

and Total Phosphorus; TP), wind intensity (WI), water temperature (T), turbidity (Turb) and 

conductivity. Cross-validation was used to optimize the size (number or leaves) of the final tree. To 

assess the performance (prediction error) and the reliability of such an optimal tree, we repeated the 

following steps 100 times: i) random split of the data in two parts, learning and test sample (in 

proportion 2/3, 1/3 respectively); ii) building of an optimal tree over the learning sample; iii) 

random permutation of the observed input variable and building of another optimal tree over the 

"permuted" data set; iv) computing prediction error of optimal and permuted trees separately. The 

error distribution between both trees (in the 100 replicates) was compared using a log-likelihood 

ratio test (LRT). Finally, we evaluated the structure of the tree with respect to MAC community 

structure by evaluating the distribution of relevant ecological traits for toxic cyanobacteria (volume,

surface/volume ratio, MAC biovolume and richness, and mcyJ gene abundance). This was done 

using LRT and Tukey’s pairwise post-hoc comparisons. All statistical analyses were performed 

with the free software R, version 3.6.1 using {fda}, {rpart}, {nlme} and {PMCMR} packages 

(Pinheiro et al., 2014; Pohlert, 2014; R Core Team, 2013; Ramsay et al., 2014; Therneau et al., 

2015).
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2.7. Identification of toxic ecotypes

To explain the basic ideas on how the ecotypes of toxic MAC were identified, we give a synthetic 

example with the rationale and operative steps of the method. In first place, we assumed that mcyJ 

melting profile obtained from a given MAC community (a sample) represents the abundance-

weighted average profile of all the genotypes present in that sample. After running simulations and 

in agreement with our assumption, the combination of the hypothetical environmental drivers A and

B (e.g. temperature and salinity) deterministically defined the abundance of 3 particular mcyJ 

genotypes (J1, J2 and J3; Fig 1a), which are expressed by their individual melting profile (Fig 1b). 

So, under a particular environmental arrangement of A and B, we expect to find a given 

combination of genotype abundances in the community (Fig 1c). The relative abundance of each 

genotype under each environmental array of conditions determine a distinctive community melting 

profile, i.e. an ecotype (Fig 1c; grey dashed line).  For our simulated community, the relationship 

between abundance and environmental conditions were constructed from a bivariate normal 

distributions with average µi ={µA,µB} and covariance matrix σi specified for each genotype, where i

= 1:3. The three mcyJ genotypes used here (J1, J2 and J3) belonged to previously obtained mcyJ 

clones showing different melting curves (Martínez de la Escalera et al., 2017). After obtaining the 

melting curves from each genotype, we randomly sampled environmental conditions 50 times and, 

for each condition (defined by the pair {A,B}), the relative abundance of each genotype was 

estimated and a community melting profile was constructed. Under our hypothesis, each region in 

the environmental space should be characterized by a similar community melting profile 

corresponding to a given toxic ecotype (Fig 1d). It is important to recall that environmental drivers 

can be continuous or categoric and explicitly include biotic interactions among the defining 

variables. In the extreme case where the abundance of the three mcyJ amplicons is not determined 

by the environmental variables selected (µi = µj and σi = σj  for all i, j), a single ecotype is expected. 

Under this situation, the functional CART would not partition the data into separated ecotypes, and 

the tree will remain as a “root tree”.
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Fig 1. Synthetic example with the rationale and operative steps followed for the HRMA-
fCART method. A) Abundance and distribution of three mcyJ genotypes (J1, J2 and J3) according 
to environmental characteristics (e.g. temperature and salinity). B) Normalised melting curves from 
the three HRMA curves obtained from three cloned mcyJ individually analysed: J1 (solid line), J2 
(dashed line) and J3 (dotted line). C) Normalised HRMA curves obtained from a single genotype. 
Upper left, curve obtained from a genotype thriving in freshwater at 33 °C and its derivative below; 
upper right, curve obtained from a genotype thriving in marine water (salinity 33) and 13 °C with 
its derivative below. D) Optimal functional regression tree obtained with randomly sampled 
environmental conditions. In each node, the environmental variable and its threshold value are 
shown. Water temperature (WT), and salinity. At the end of each branch the average melting peak 
(solid line) and its standard deviation (dashed line) representing toxic genotype community are 
shown.
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3. Results

The fCART analysis of HRMA profiles allowed to summarize MAC community composition and 

responses along an 800 km environmental gradient into six groups of mcyJ genotypes having 

distinct environmental preferences and that were defined as ecotypes. The ecotypes (named from A 

to F) were detected using 72 normalized RFU melting profiles and three environmental variables 

selected as relevant: temperature, salinity and turbidity (Fig 2; Table 1). The optimal tree had an 

average prediction error significantly lower than the average error obtained from permuted trees 

(LRT, p<0.05; Fig 3). 

Fig 2. Optimal functional regression tree. Functional regression tree showing the main 
environmental variables explaining the profile diversity of toxic genotypes.  In each node, the 
environmental variable and its threshold value are shown. Water temperature (WT), turbidity 
(Tur) and conductivity (K). At the end of each branch the average melting peak (solid line) and
its standard deviation (dashed line) representing toxic genotype community are shown.
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Fig 3. Errors obtained for functional regression trees. Density of the 
tree-error performed by randomly switching the values of environmental 
variables and mean value of the error obtained using the original data.
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Table 1. Environmental variables associated to each Ecotype of toxic MAC. Mean values and 

ranges of environmental variables associated to each ecotype: temperature (Temp, ºC), conductivity

(Cond, mScm-1), turbidity (Tur, NTU), mcyJ gene abundance (copies ml-1), and the relative 

frequency of occurrence of each ecotype. BDL = below detection limit.

Ecotype Niche
Temp
(ºC)

Zone
Cond

(mScm-

1)

Tur
(NTU)

mcyJ gene
(copies

ml-1)

Ecotype
relative

frequency of
occurrence

A
Warm

brackish
water

19.1
(14.8-
22.9)

Middle and
outer

estuary

36.4
(18.2-
52.0)

40.9
(15.4-
89.6)

34.9
(BDL-
96.0)

0.14

B
Hot

freshwater

27.2
(24.3-
33.6)

Reservoir
and riverine
freshwater

0.041
(0.023-
0.054)

28.5
(14.3-
47.9)

2.30E4
(BDL-

1.14E5)
0.14

C
Warm

freshwater

20.5
(15.6-
23.4)

Reservoir
and riverine
freshwater

0.074
(0.033-
0.113)

56.0
(19.9-
127.0)

1.21E4
(BDL-

4.54E4)
0.31

D

Warm
water and

low
turbidity

20.9
(16.1-
25.9)

Inner and
middle
estuary

14.02
(0.048-
52.7)

7.6
(BDL-
14.2)

46.2
(BDL-
148.7)

0.20

E
Cold

brackish
water

11.9
(11.2-
12.3)

Middle and
outer

estuary

29.13
(0.113-
55.8)

20.8
(BDL-
49.0)

11.7
(BDL-
44.7)

0.11

F
Cold

freshwater

12.7
(11.0-
14.2)

Reservoir
and riverine
freshwater

0.061
(0.036-
0.095)

17.5
(0.9-
42.2)

192.7
(0.3-

437.2)
0.09

Water temperature was the first selected variable splitting groups of toxic MAC (14.5 °C, Fig 2). 

The next two selected variables were water turbidity and conductivity, with threshold values of 14.2

NTU and 0.104 mS cm-1, respectively. Then, intermediate conductivity values (9.16 mS cm-1) and 

high-water temperature (23.8 °C) were selected as splitting variables. Total nutrients (nitrogen and 

phosphorus) and wind intensity were not selected by the analysis and therefore were not relevant 

determining toxic ecotypes. Three ecotypes were identified in water with temperature between 14.0 

°C and 22.4 °C. 

As shown in Table 1, the identified ecotypes differed in their environmental preferences. Ecotype A

was present in brackish waters at temperatures higher than 14.5 °C and more than 14.2 turbidity 

units, while ecotype B was found under the same turbidity conditions than A but in freshwater and 

at high water temperature (> 23.8 °C, Table 1). Ecotype C was the most frequently found, it 

preferred warm freshwaters and had a high amount of toxic potential (number of mcyJ copies per 

mL). On the other hand, Ecotype D inhabits at water temperature >14.5 °C but has a wide range of 

conductivity preference. Finally, ecotypes E and F dwells in cold water (water temperature < 14.5 
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ºC) but slightly differ in their conductivity preferences (0.104 mScm-1 conductivity threshold) (Fig 

2).

4. Discussion

Here, we tried to shed light to the mechanisms shaping cyanobacterial diversity by analysing 

communities of toxic cyanobacteria inhabiting a wide array of environmental conditions that can 

impose hard conditions for their survival (e.g. salinity). The study deals with complex communities 

of organisms genetically difficult to distinguish using common molecular marker genes (Kato, 

1991; Otsuka et al., 2001). Thus, we investigated if the worldwide success of toxic MAC organisms

is due to the existence of ecotypes having different environmental preferences. Our approach was a 

combination of a molecular methods for genotyping (HRMA of mcyJ gene amplicons) with 

machine learning techniques ( fCART) that allowed us to detect groups of MAC toxic genotypes 

with distinctive ecological niches, delimiting MAC ecotypes. This study complement and expand 

the scope of previous works using HRMA to analyse the diversity of natural microbial communities

(based on the 16S rDNA gene; (Hjelmsø et al., 2014; Kim and Lee, 2014; Zeyoudi et al., 2015) by 

incorporating new genetic regions as diversity markers and using machine learning tools. The 

fCART proved to be a useful technique to classify toxic MAC genotypes based on their HRMA 

melting profiles by selecting the environmental variables with a high discriminatory power. An 

advantage of using an HRMA-based method instead of amplicon sequencing and further analysis of

the reads to explore sequence diversity relies in the fact that, although both are based on PCR of a 

target gene, the former is faster (real-time data acquisition), economic and does not involve 

bioinformatic analysis (Vossen et al., 2009).

Microbial species can be seen as genetic, phenotypic and ecologically similar units and the task of 

microbial ecologists is to understand how these units are originated and selectively optimized to 

coexist occupying different niches or, conversely, how much these units overlap not only 

genetically but also ecologically (Shapiro and Polz, 2014). In the case of MAC organisms, 

Komárek, (2016) proposed that the diversity of this genus has not yet been solved owing to 

difficulties to morphological differentiation and lack of resolution in phylogenetic markers, such as 

16S rRNA gene. This prompted to explore for phylogenetically informative genes that should be 

conducted in order to detect ecologically coherent genotypes. In this sense, Rinta-Kanto and 

Wilhelm (2006) studied the genetic diversity of potentially toxic Microcystis based on the McyA 

amino acid sequence and reported new sequences of the mcyA gene (Rinta-Kanto and Wilhelm, 

2006). Using mcyA amplification and denaturing gradient gel electrophoresis (DGGE), Hu et al. 

(2016) found that the microcystin variants were related to the band pattern obtained, implying that 
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the composition of Microcystis community determined the kind of microcystin produced (Hu et al., 

2016). 

It has been shown that mcyA has several recombination regions (Tanabe et al., 2004) and multiple 

recombination events were detected within the N-methyltransferase -domain of mcyA and the 

adenylation-domain of mcyB and mcyC sequences, suggesting that recombination within and 

between mcy genes contributes to their genetic diversity. However, no recombination was detected 

in mcyJ sequences, with a single copy in toxic strains (Tanabe et al., 2009), and conserved enough 

to address the variability of toxic populations. Taking this into account, the approach applied in the 

present work is a novel way to gain insight into the MAC diversity and to elucidate the mechanisms

underlying the worldwide success of this bloom-forming cyanobacterium. 

Variability in physical and hydrological variables (temperature, salinity and turbidity) were relevant

defining MAC community structure while nutrients concentration were not, suggesting a prominent 

role of local conditions in spite of trophic state, due to the high availability of nutrients at all sites 

and sampling times (TP ~60 μg L-1, TN~0.9 mg L-1) (Figure 2, Table 1). These variables are directly

related to the physical aspects that characterize ecosystem dynamics in space and time. For 

example, turbidity and conductivity defines the estuarine portion of the system while temperature 

defines seasonal changes. The finding of ecotypes representative of reservoir, riverine or estuarine 

ecosystems is in agreement with the ability of MAC to proliferate in a wide range of environmental 

scenarios, including brackish waters, when nutrients concentration is elevated by anthropogenic 

eutrophication. This is consistent with the worldwide distribution of MAC and its current 

proliferation and has been found for other cyanobacteria, such as Prochlorococcus and 

Cylindrospermopsis (Moore, 1998; Piccini et al., 2011). In the case of Prochlorococcus, at least six

phylogenetic clades differing in physiology and occupying distinct niches in the ocean have been 

found, which differentiation is proposed to be based on light intensity, temperature and nutrients 

(Malmstrom et al., 2013; Martiny et al., 2009; Moore, 1998). Different ecotypes of C. raciborskii 

have been described based also on phylogenetic markers, morphology, tolerance to different light 

intensities, affinities to low or high phosphate concentrations and toxicity (Dokulil, 2000; Piccini et 

al., 2011). Altogether, the findings suggest that the generation of ecotypes might be a common 

cyanobacterial strategy to proliferate and succeed.

A study in Lake Erie (USA) found that relative abundances of some genotypes changed temporally, 

indicating the existence of different genotypes adapted to particular environmental characteristics 

(Hu et al., 2016). In the same ecosystem, Berry et al. (2017) analysed Microcystis oligotypes using 
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a computational method (oligotyping) based on the V4 region of the 16S rRNA gene and found 

changes in Microcystis oligotypes composition related to spatial nutrient gradients. A similar 

research in Lake Taihu (China) found a clear temporal but not spatial distribution of toxic 

genotypes composition using DGGE of the mcyJ gene (Wang et al., 2012), being nitrate the variable

explaining the variation in toxic genotype composition. Moreover, Tromas et al. (2018) reported 

that niche separation within Microcystis genus occurred mainly related to total dissolved nitrogen 

preferences and temperature. These results suggest that the presence of toxic ecotypes of MAC in 

those ecosystems would be associated to nutrients regime. However, in eutrophic or hypertrophic 

ecosystems, as observed here, nutrients are no longer shaping genotype richness. In this sense, Kim 

et al. (2010) found that mcyJ gene diversity assessed by DGGE was reduced during summer 

compared with spring and autumn, pointing to an effect of water temperature in the selection of 

different toxic populations (Kim et al., 2010).

The ecotypes of toxic MAC that were associated with brackish water (A and E) showed low 

concentration of mcyJ, meaning that in the estuary toxic MAC are rare. These results support our 

working hypothesis and strengthen previous information obtained from the same ecosystem, which 

showed a general decrease of MAC biomass and abundance of mcy-harbouring cells from fresh- to 

marine water (Kruk et al., 2017; Martínez de la Escalera et al., 2017). It has been reported that 

salinity concentration above the organisms’ optimum conditions causes osmotic stress, decreases 

photosynthesis rates and might induce cell lysis  (Chen et al., 2015; Orr et al., 2004; Sabart et al., 

2009; Zhang et al., 2010), leading to a decrease in abundance and biomass and precluding their 

detection by classical microscopy counts (Segura et al., 2017). In addition, recent studies 

demonstrated that some M. aeruginosa strains acquired the ability to produce an osmoprotectant 

(such as sucrose) by horizontal gene transfer, generating salt-tolerant genotypes (Tanabe et al., 

2018). Thus, toxic MAC ecotypes from the estuary would be composed by slow growing, salt-

tolerant organisms. 

Several models have been proposed to explain the origin of bacterial ecotypes  (Cohan, 2011). 

Among them, the Stable Ecotype model define stable and long-standing ecotypes where periodic 

selection limits the diversity, while the Species-Less model assumes rapid invention and extinction 

of ecotypes and little periodic selection, especially under environmental conditions that are rapidly 

changing. In Species-Less model, ecotypes evolve to invade a new ecological niche or where an 

environment undergoes a succession process and organisms at a site must adapt to rapidly changing 

conditions (Kopac and Cohan, 2011), such as those found at the assessed environmental gradient. 

Nonetheless, further studies should be performed in order to determine the actual speciation model 
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taking place for MAC toxic ecotypes. Based on the  high variability environmental dynamics of the 

addressed gradient system (Uruguay river - Río de la Plata estuary), the more suitable model to 

explain the origin of MAC ecotypes adapted to estuarine conditions would be Species-Less, 

although further work explicitly addressing this hypothesis must be carried out. 

Sabart et al. (2009) studied spatial-temporal changes of Microcystis diversity in inter-connected 

freshwater ecosystems (reservoirs, ponds and river) based on the internal transcribed spacer 

(ribosomal ITS). They found that Microcystis populations were genetically different over short 

distances (~ 20 km) and that populations observed in the main reservoir were different from those 

found downstream, suggesting that they had different niches. However, at larger, global 

geographical scale the connections between phylogenetic relationships and genetic structure of 

Microcystis communities and environmental conditions was not detected (van Gremberghe et al., 

2011). A possible explanation is that fast-evolving molecules, such as ribosomal ITS, can exhibit 

high levels of homoplasy, which increases the noise in the phylogenetic signal. Here, some ecotypes

were detected in sites as far as ~500 km away, revealing that local environmental conditions are 

more relevant than distance.  

In sum, we found ecotypes that are composed by a group of closely-related Microcystis organisms 

(perhaps related morpho-species), sharing ecological and toxicity characteristics. The existence of 

six ecotypes of toxic MAC associated to different environmental settings through the wide 

environmental gradient assessed lead us to hypothesize that the reservoir, which displays high MAC

biomasses and diversity through the whole year, might act as a source or seed bank of toxic 

ecotypes. As MAC toxic organisms are transported downstream through the river and into Río de la

Plata estuary, populations are selected according to their fitness in the encountered conditions, 

giving birth to different ecotypes. As far as we know, this is the first study combining a highly 

sensitive molecular technique (HRMA) with functional data analysis (fCART) to detect ecotypes 

and hypothesize the main mechanisms driving their selection. Temperature, conductivity and 

turbidity were the main environmental variables driving toxic genotype diversity and modulating 

ecotypes occurrence and distribution in Uruguay river and Río de la Plata. 
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