SUPPORTING INFORMATION

Method S1. Membrane yeast two-hybrid assay.

Table S1. DGAT1 proteins used for multiple sequence alignment. The topology organization of DGAT1 was predicted using TMHMM (Krogh *et al.*, 2001). TMD, transmembrane domain.

Table S2. Apparent kinetic parameters of CzDGAT1 variants using a combined model accounting for sigmoidicity and substrate inhibition (Xu *et al.*, 2017). DGAT activity was examined at increasing oleoyl-CoA concentration from 0.1 to 25 μ M. Data were fitted to a nonlinear regression using a combined model accounting for sigmoidicity and substrate inhibition with the GraphPad Prism software. Data shown are means ± S.D. (n=3).

 Table S3. Primers used in the current study. A restriction site or linker is shown in <u>bold and</u>

 underlined and a Kozak translation initiation sequence for yeast expression is shown in *italic*.

Figure S1. **Alignment of DGAT1 from different species.** Alignment was virtualized by Geneious v5.3 (Drummond *et al.*, 2010).

Figure S2. Prediction of intrinsic disorder profile (blue) of the N-terminal region of DGAT1 from representative algae, plant and animals and its likelihood to participate in protein-protein interaction (red). The analyses were performed by DISOPRED (Ward *et al.*, 2004). *At*, *Arabidopsis thaliana*; *Kn*, *Klebsormidium nitens*; *Cz*, *Chromochloris zofingiensis*; *Pt*, *Phaeodactylum tricornutum*; *Tp*, *Thalassiosira pseudonana*.

Figure S3. DGAT activity of CzDGAT1 variant enzymes at high oleoyl-CoA concentrations. A-D, DGAT activities of the full-length CzDGAT1 (DGAT1₁₋₅₅₀), N-terminal truncated CzDGAT1 (DGAT1₈₁₋₅₅₀) and their corresponding acyl-CoA binding protein (ACBP) fused proteins (ACBP-DGAT1₁₋₅₅₀ and ACBP-DGAT1₈₁₋₅₅₀) at oleoyl-CoA concentration from 0.1-25 μ M. Data were fitted to the allosteric sigmoidal equation or a previously proposed kinetic model that accounts for sigmoidicity and substrate inhibition (Xu *et al.*, 2017) using GraphPad Prism. The combined kinetic model is the preferred model for CzDGAT1₁₋₅₅₀, ACBP-fused CzDGAT1₁₋₅₅₀, and ACBP-fused CzDGAT1₈₁₋₅₅₀, but not CzDGAT1₈₁₋₅₅₀. Data represent means \pm S.D. (n = 3).

Figure S4. Probing possible self-interaction of CzDGAT1 variants using membrane yeast two-hybrid assay. DNA sequences encoding CzDGAT1₁₋₅₅₀, CzDGAT1₈₁₋₅₅₀ and CzDGAT1₁₀₇₋₅₅₀ were ligated to the Lex A- C-terminal fragment of ubiquitin (C_{ub}) and the N-terminal fragment of ubiquitin containing an Ile/Gly point mutation (N_{ub}G), yielding C_{ub}-bait and N_{ub}G-prey, respectively. Serial dilutions of yeast cells producing each bait/prey combination were spotted on synthetic drop-out (SD) agar plates lacking Ade, His, Leu and Trp (SD-A-H-L-T).

Figure S5. Enzyme activity of CzDGAT1 variants in the presence of Coenzyme A (CoA).

The DGAT activities of CzDGAT1₁₋₅₅₀, and acyl-CoA binding protein (ACBP) fused enzyme (ACBP-DGAT1₁₋₅₅₀) were assayed at 5 μ M oleoyl-CoA in the absence or presence of 50 μ M CoA. Data represent means \pm S.D. (n = 3).

Figure S6. Illustration of the N-terminal fusion of acyl-CoA binding protein (ACBP) to CzDGAT1. The three-dimensional structure of *Arabidopsis thaliana* ACBP6 was generated with the SWISS-MODEL software. *A. thaliana* ACBP6 consists of four α helixes for acyl-CoA binding and is proposed to facilitate the feeding of acyl-CoA to the catalytic pocket of CzDGAT1 via capturing cytosolic acyl-CoAs or acyl-CoAs partitioned into the membrane lipid bilayer and subsequently channeling them to DGAT by proximity.

Method S1. Membrane yeast two-hybrid assay.

Possible self-interaction of CzDGAT1₁₋₅₅₀ and its N-terminal truncated mutants (CzDGAT1₈₁₋₅₅₀ and CzDGAT1₁₀₇₋₅₅₀) were tested using the membrane yeast two-hybrid system (kindly provided by Dr. Igor Stagljar, University of Toronto) with the method described by Snider et al. (Snider *et al.*, 2010). Briefly, cDNAs encoding CzDGAT1₁₋₅₅₀, CzDGAT1₈₁₋₅₅₀ and CzDGAT1₁₀₇₋₅₅₀ were amplified by PCR and cloned into the pBT3N bait vector or pPR3N prey vector, respectively. The pBT3N:bait was then co-transformed with the pPR3N:prey, Ost-N_{ub}I 'positive' control prey or Ost-N_{ub}G 'negative' control prey into the yeast strain NMY51 [*MATa, his3* Δ 200, *trp1-901, leu2-3,112, ade2, LYS2::(lexAop)4-HIS3,ura3::(lexAop)8-lacZ,ade2::(lexAop)8-ADE2, GAL4*]. The possible interaction was then assayed on synthetic drop-out (SD) agar plates lacking Ade, His, Leu and Trp (SD-A-H-L-T) by 1: 10 serial dilution of cell cultures starting from an OD600 value of 0.4.

Table S1. DGAT1 proteins used for multiple sequence alignment. The topology organizationof DGAT1 was predicted using TMHMM (Krogh *et al.*, 2001). TMD, transmembrane domain.

Name	Organism	Phytozome/Genbank accession number/JGI protein ID	Length of N- terminus (amino acid residues)	# of TMD
ApDGAT1	Auxenochlorella protothecoides	XP_011402032	326	7
AtDGAT1	Arabidopsis thaliana	NM_127503	132	9
BnDGAT1	Brassica napus	JN224473	113	8
BtDGAT1	Bos taurus	AAL49962	83	9
CaeDGAT1	Caenorhabditis elegans	NM_001269372	70	9
CheDGAT1	Chlorella ellipsoidea	KT779429	260	9
CreDGAT1	Chlamydomonas reinhardtii	Cre01.g045903	158	7
CsDGAT1	Camelina sativa	XM_010417066	132	9
CsuDGAT1	Coccomyxa subellipsoidea C-169	54084	1	9
CvDGAT1	Chlorella vulgaris	ALP13863.1	20	9
CzDGAT1A	Chromochloris zofingiensis	MH523419	289	9
CzDGAT1B	Chromochloris zofingiensis	Cz09g08290	107	9
DmDGAT1	Drosophila melanogaster	AF468649	132	8
DrDGAT1	Danio rerio	NM_199730	86	9
EaDGAT1	Euonymus alatus	AY751297	111	9
GmDGAT1	Glycine max	AY496439	102	9
HaDGAT1	Helianthus annuus	HM015632	110	9
HsDGAT1	Homo sapiens	NM_012079	86	9
JcDGAT1	Jatropha curcas	DQ278448	123	9
KnDGAT1	Klebsormidium nitens	GAQ91878	260	9
LuDGAT1	Linum usitatissimum	KC485337	111	9
MdDGAT1	Monodelphis domestica	XM_007488766	227	8
MmDGAT1	Mus musculus	AF078752	95	9
MtDGAT1	Medicago truncatula	XM_003595183	142	9
NoDGAT1	Nannochloropsis oceanica	KY073295	29	9
NtDGAT1	Nicotiana tabacum	AF129003	140	9
NvDGAT1	Nematostella vectensis	XM_001639301	54	9
OeDGAT1	Olea europae	AY445635	136	9
OsDGAT1	Oryza sativa	NM_001061404	142	8
PbDGAT1	Paracoccidioides brasiliensis	EEH17170.1	79	10
PfDGAT1	Perilla frutescens	AF298815	138	9
PotDGAT1	Populus trichocarpa	XM_006371934	96	9
PpDGAT1	Physcomitrella patens	XM_001770877	51	9
PtDGAT1	Phaeodactylum tricornutum	HQ589265	149	8

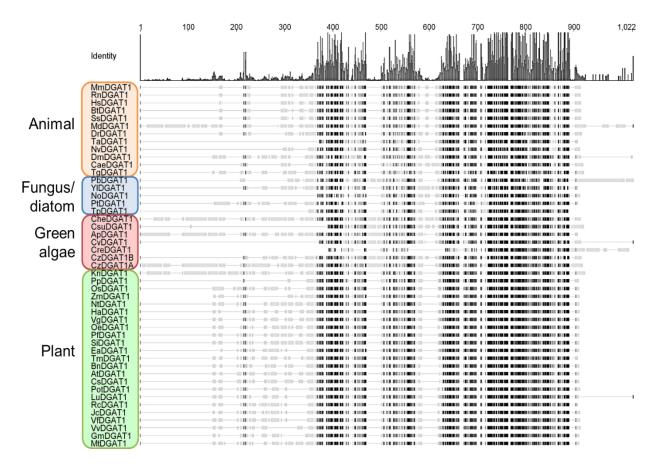

RcDGAT1	Ricinus communis	NM_001323734	128	9
RnDGAT1	Rattus norvegicus	AB062759	97	9
SiDGAT1	Sesamum indicum	JF499689	147	9
SsDGAT1	Sus scrofa	NM_214051	83	9
TaDGAT1	Trichoplax adhaerens	XM_002111989	11	9
TgDGAT1	Toxoplasma gondii	AY327327	117	9
TmDGAT1	Tropaeolum majus	AY084052	124	9
TpDGAT1	Thalassiosira pseudonana	XM_002287179	38	9
VfDGAT1	Vernicia fordii	DQ356680	129	9
VgDGAT1	Vernonia galamensis	EF653276	127	9
VvDGAT1	Vitis vinifera	CAN80418	103	9
YIDGAT1	Yarrowia lipolytica	XM_502557	98	8
ZmDGAT1	Zea mays	EU039830	97	8

Table S2. Apparent kinetic parameters of CzDGAT1 variants using a combined model accounting for sigmoidicity and substrate inhibition (Xu *et al.*, 2017). DGAT activity was examined at increasing oleoyl-CoA concentration from 0.1 to 25 μ M. Data were fitted to a nonlinear regression using a combined model accounting for sigmoidicity and substrate inhibition with the GraphPad Prism software. Data shown are means ± S.D. (n=3).

Enzyme	DGAT1 ₁₋₅₅₀	DGAT1 ₈₁₋₅₅₀	ACBP- DGAT1 ₁₋₅₅₀	ACBP- DGAT1 ₈₁₋₅₅₀
Preferred model	Combined model	Allosteric sigmoidal	Combined model	Combined model
Apparent V _{max} (pmol TAG/min/mg protein)	314.20±16.11	16.82±0.17	502.50±23.75	79.38±27.04
Hill coefficient	1.31±0.08	1.76±0.06	1.72±0.12	1.12±0.14
Apparent $S_{0.5}(\mu M)$	1.76±0.15	1.78±0.04	1.10±0.08	4.76±2.52
Apparent $K_i(\mu M)$	58.74±11.85	-	38.44±7.03	9.03±4.41
Goodness of Fit/R2	0.992	0.995	0.980	0.961

Table S3. Primers used in the current study. A restriction site or linker is shown in **bold andunderlined** and a Kozak translation initiation sequence for yeast expression is shown in *italic*.

Primer name	Oligonucleotide sequence
Primers used for cloning of cDNAs for yeast	expression
CzDGAT1 ₁₋₅₅₀ -F (to pYES2.1)	gcaga <u>GCGGCCGC</u> GAAATGGAGGGTGCACGAATC
CzDGAT1-R (to pYES2.1)	tatGTCGACGTGTGACATAAGAGCAGCATTCC
CzDGAT1 ₈₁₋₅₅₀ -F (to pYES2.1)	gcaga <u>GCGGCCGC</u> GAAATGATTGGCAGCAGTCCTCT
CzDGAT1 ₁₀₇₋₅₅₀ -F (to pYES2.1)	gcaga <u>GCGGCCGC</u> GAAATGGATGGACTGGTCAACTTGGC
AtACBP6-F (to pYES2.1)	gcaga <u>GCGGCCGC</u> GAAATGGGTTTGAAGGAGGAATTTG
AtACBP6-R (to pYES2.1)	tatGTCGACGGTTGAAGCCTTGGAAGCA
AtACBP6-Linker-R (to pYES2.1)	GAATTCCGT GGTTGAAGCCTTGGAAGCA
Linker-CzDGAT1 ₁₋₅₅₀ -F (to pYES2.1)	ACGGAATTCATGGAGGGTGCACGAATC
Linker-CzDGAT1 ₈₁₋₅₅₀ -F (to pYES2.1)	ACGGAATTCATGATTGGCAGCAGTCCTCT
Linker-CzDGAT1107-550-F (to pYES2.1)	ACGGAATTCATGGATGGACTGGTCAACTTGGC
AtACBP6-F (to pESC-leu2d empty)	tataGGATCCGAAATGGGTTTGAAGGAGGAATTTG
AtACBP6-R (to pESC-leu2d empty)	tataCTCGAGTCAGGTTGAAGCCTTGGAAGCA
Primers used for cloning of cDNAs for memb	rane yeast two-hybrid assay (MYTH)
CzDGAT1 ₁₋₅₅₀ -F (to MYTH vector)	ac <u>GGCCATTACGGCC</u> ATGGAGGGTGCACGAATC
CzDGAT1 ₈₁₋₅₅₀ -F (to MYTH vector)	ac <u>GGCCATTACGGCC</u> ATGATTGGCAGCAGTCCTCT
CzDGAT1 ₁₀₇₋₅₅₀ -F (to MYTH vector)	ac <u>GGCCATTACGGCC</u> ATGGATGGACTGGTCAACTTGGC
CzDGAT1-R (to MYTH vector)	tatGGCCGAGGCGGCCTCAGTGTGACATAAGAGCAGCATTCC
Primers used for cloning of cDNAs for plant e	expression
AtWRI-F (to pGreen)	CTAGACTAGTATGAAGAAGCGCTTAACCAC
AtWRI-R (to pGreen)	CGC <u>TCTAGA</u> TCAGACCAAATAGTTACAAGAAAC
AtACBP-F (to pGreen)	TATAACCGGTATGGGTTTGAAGGAGGAATTTG
AtACBP-R (to pGreen)	CGC <u>TCTAGA</u> TCAGGTTGAAGCCTTGGAAGCA
CzDGAT1 1-550-F (to pGreen)	TATAAACCGGTACTAGTATGGAGGGTGCACGAATC
CzDGAT1 81-550-F (to pGreen)	TATAACCGGTATGATTGGCAGCAGTCCTCT
CzDGAT1 107-550-F (to pGreen)	TATAACCGGTATGGATGGACTGGTCAACTTGGC
CzDGAT1-R (to pGreen)	CGC TCTAGA TCAGTGTGACATAAGAGCAGCATTCC
Venus-F (to pGPTVII)	cgc <u>TCTAGA</u> ATGGTGAGCAAGGGCGA
Venus-R (to pGPTVII)	TATAACTAGTACCGGTCTTGTACAGCTCGTCCAT
AtACBP-R (to pGPTVII)	tataCTCGAGTCAGGTTGAAGCCTTGGAAGCA
CzDGAT1-R (to pGPTVII)	tataCTCGAGTCAGTGTGACATAAGAGCAGCATTCC
Linker-SCFP3A-F (to pGPTVII)	ACGGAATTCATGGTGAGCAAGGGCGAGG
SCFP3A-R (to pGPTVII)	TATACTCGAGTTACTTGTACAGCTCGTCCATGCC
AtGPAT9-F (to pGPTVII)	CGC TCTAGAGTCGAC ATGAGCAGTACGGCAGGGAG
AtGPAT9-linker-R (to pGPTVII)	GAATTCCGTCTTCTCTCCAATCTAGCCAGGA

Figure S1. Alignment of DGAT1 from different species. Alignment was virtualized by Geneious v5.3 (Drummond *et al.*, 2010).

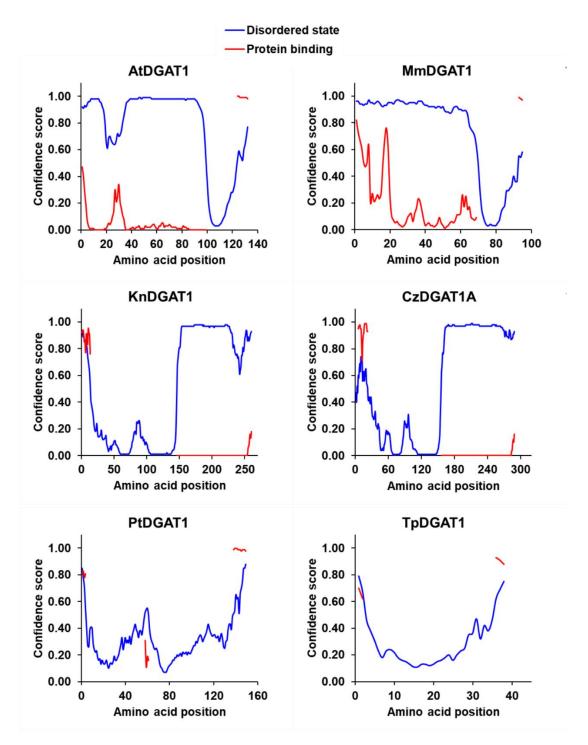


Figure S2. Prediction of intrinsic disorder profile (blue) of the N-terminal region of DGAT1 from representative algae, plant and animals and its likelihood to participate in proteinprotein interaction (red). The analyses were performed by DISOPRED (Ward *et al.*, 2004). *At*, *Arabidopsis thaliana*; *Kn*, *Klebsormidium nitens*; *Cz*, *Chromochloris zofingiensis*; *Pt*, *Phaeodactylum tricornutum*; *Tp*, *Thalassiosira pseudonana*.

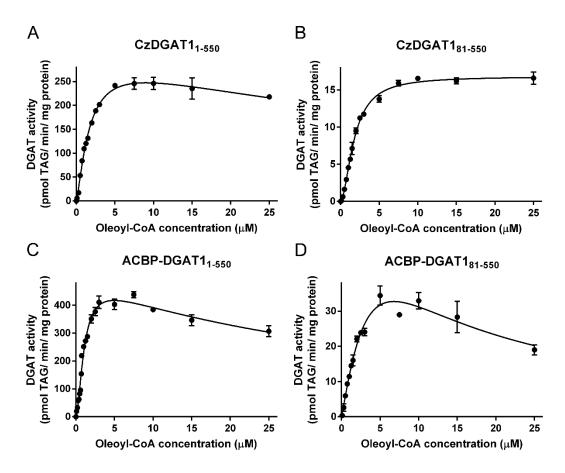
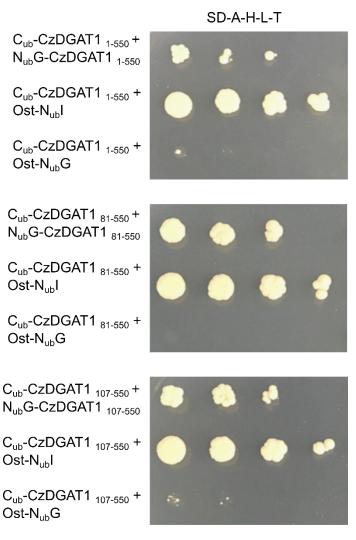



Figure S3. DGAT activity of CzDGAT1 variant enzymes at high oleoyl-CoA

concentrations. A-D, DGAT activities of the full-length CzDGAT1 (DGAT1₁₋₅₅₀), N-terminal truncated CzDGAT1 (DGAT1₈₁₋₅₅₀) and their corresponding acyl-CoA binding protein (ACBP) fused proteins (ACBP-DGAT1₁₋₅₅₀ and ACBP-DGAT1₈₁₋₅₅₀) at oleoyl-CoA concentration from 0.1-25 μ M. Data were fitted to the allosteric sigmoidal equation or a previously proposed kinetic model that accounts for sigmoidicity and substrate inhibition (Xu *et al.*, 2017) using GraphPad Prism. The combined kinetic model is the preferred model for CzDGAT1₁₋₅₅₀, ACBP-fused CzDGAT1₁₋₅₅₀, and ACBP-fused CzDGAT1₈₁₋₅₅₀, but not CzDGAT1₈₁₋₅₅₀. Data represent means \pm S.D. (n = 3).

Figure S4. Probing possible self-interaction of CzDGAT1 variants using membrane yeast two-hybrid assay. DNA sequences encoding CzDGAT1₁₋₅₅₀, CzDGAT1₈₁₋₅₅₀ and CzDGAT1₁₀₇₋₅₅₀ were ligated to the Lex A- C-terminal fragment of ubiquitin (C_{ub}) and the N-terminal fragment of ubiquitin containing an Ile/Gly point mutation (N_{ub}G), yielding C_{ub}-bait and N_{ub}G-prey, respectively. Serial dilutions of yeast cells producing each bait/prey combination were spotted on synthetic drop-out (SD) agar plates lacking Ade, His, Leu and Trp (SD-A-H-L-T).

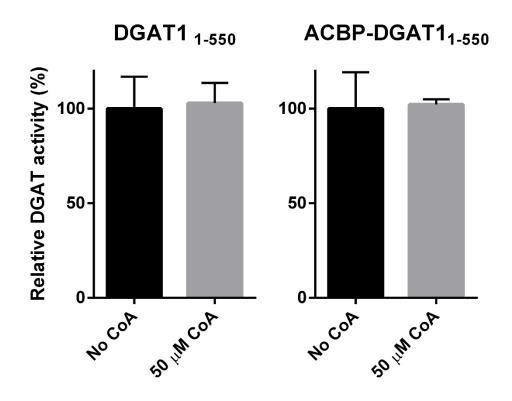
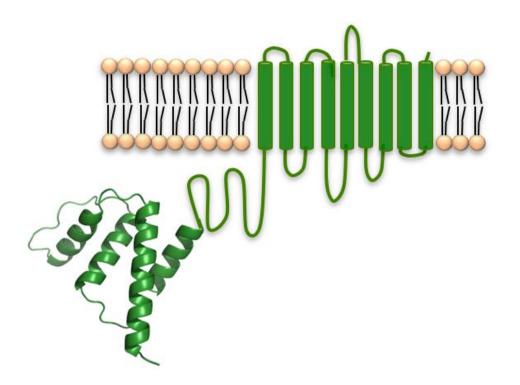



Figure S5. Enzyme activity of CzDGAT1 variants in the presence of Coenzyme A (CoA). The DGAT activities of CzDGAT1₁₋₅₅₀, and acyl-CoA binding protein (ACBP) fused enzyme (ACBP-DGAT1₁₋₅₅₀) were assayed at 5 μ M oleoyl-CoA in the absence or presence of 50 μ M CoA. Data represent means \pm S.D. (n = 3).

Figure S6. Illustration of the N-terminal fusion of acyl-CoA binding protein (ACBP) to CzDGAT1. The three-dimensional structure of *Arabidopsis thaliana* ACBP6 was generated with the SWISS-MODEL software. *A. thaliana* ACBP6 consists of four α helixes for acyl-CoA binding and is proposed to facilitate the feeding of acyl-CoA to the catalytic pocket of CzDGAT1 via capturing cytosolic acyl-CoAs or acyl-CoAs partitioned into the membrane lipid bilayer and subsequently channeling them to DGAT by proximity.

References:

- Drummond, A., Ashton, B., Buxton, S., et al. (2010) Geneious v5.3. Available from http://www.geneious.com (accessed May 18 2019).
- Krogh, A., Larsson, B., Heijne, G. von and Sonnhammer, E. (2001) Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J. Mol. Biol., 305, 567–580.
- Snider, J., Kittanakom, S., Damjanovic, D., Curak, J., Wong, V. and Stagljar, I. (2010) Detecting interactions with membrane proteins using a membrane two-hybrid assay in yeast. *Nat. Protoc.*, 5, 1281–1293.
- Ward, J.J., McGuffin, L.J., Bryson, K., Buxton, B.F. and Jones, D.T. (2004) The DISOPRED server for the prediction of protein disorder. *Bioinformatics*, **20**, 2138–2139.
- Xu, Y., Chen, G., Greer, M.S., et al. (2017) Multiple mechanisms contribute to increased neutral lipid accumulation in yeast producing recombinant variants of plant diacylglycerol acyltransferase 1. J. Biol. Chem., 292, 17819–17831.