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Figure S1: Read cloud statistics for each sample. Analogous versions of Fig. 1D for each of
the 19 samples.
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Figure S2: Relative abundance of antibiotic resistance genes as a function of time. Lines
show fraction of reads mapping to different classes of antibiotic resistance genes in the ARGs-OAP
[1] database (Methods). The shaded region indicates the antibiotic treatment period.
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Figure S3: Replication origin peak-to-trough ratio (PTR) and relative abundance for
select species. PTR values were obtained from the software provided by Ref [2]. Data are shown
for all species that had an entries in both the Ref [2] and MIDAS databases, and had relative
abundance ≥ 1% in at least one timepiont. The dashed line denotes the first sample from the
antibiotic treatment period.
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Figure S4: Reference genome coverage as a function of species relative abundance.
Symbols denote the typical number of unique read clouds per site, Dt, for each reference genome in
each sample as a function of the estimated relative abundance of the species in that sample. Blue
points indicate samples that were sequenced to a high target coverage (Supplementary Table 1).
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Figure S5: Analogous versions of Fig. 3 for more example species (Part 1/2).
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Figure S6: Analogous versions of Fig. 3 for more example species (Part 2/2).
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Figure S7: Read clouds link putative within-species sweeps to the correct genomic
backbone. For each of the significant SNV differences in Fig. 2 (grey bars), we calculated levels
of read cloud sharing with core genes from all of the species in our reference panel; for species with
≥ 1000 sweeping SNVs, we chose a random subset of 1000 to analyze. For both the reference and
alternate alleles of these SNVs, we retained the five genes with the largest number of shared read
clouds across all timepoints (and at least 5 shared read clouds in total). Linkage to the correct
species was confirmed if, for both alleles, the majority of the shared read clouds were derived from
core genes in the correct species (blue). Linkage to a different species was inferred if one or both
alleles had only a minority of shared read clouds from the correct species (red). Across species, we
observe an average positive confirmation rate of ≈80% and a negative confirmation rate of <1%,
with most of the negatives clustering in just a few species.
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Figure S8: Read clouds reveal haplotype structure in B. vulgatus. Top panel: Allele
frequency trajectories for ≈15,000 SNVs in the resident Bacteroides vulgatus population. Each
SNV is assigned a random color for visualization purposes, and SNVs are polarized to show the
frequency of the minor allele across a larger cohort of hosts in Ref [3]. Middle panel: Trajectory
based clustering in Section 8 identifies three SNV clusters that contain ≈85% of all the SNVs in
the top panel (colored lines). Remaining SNVs are shown in light grey for comparison. Bottom
panel: Remaining SNV clusters with ≥ 100 SNVs per cluster (colored lines) account for ≈13% of
SNVs. All other SNVs are shown in grey for comparison. (right) Fraction of read clouds supporting
non-perfect linkage for SNVs in different pairs of clusters from the middle and bottom panels. This
suggests that the clusters in the bottom panel are actually in perfect linkage with the major clusters
in the middle panel.
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Figure S10: Linkage disequilibrium between SNVs that fail the 4 haplotype test. Each
panel shows the distribution ofD′ [4] for the subset of SNV pairs in Fig. 4C where all four haplotypes
are observed. This measure is defined so that D′ = 1 in the absence of recombination, and D′ ≈ 0
for unlinked loci. This distribution was calculated for all species in Fig. 4C with at least 100
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Figure S11: Co-inheritance of A. finegoldii SNV differences across a larger cohort. The
SNV differences in the A. finegoldii example in Fig. 3A are tracked across the panel of quasi-
phaseable hosts in Ref [3]. For each host/site combination, red indicates that the allele shown in
Fig. 3A is also the dominant allele in that host, while blue shows the opposite; white tiles denote
missing data. These data show that subsets of the SNV differences in Fig. 3A are often co-inherited
together in larger haplotype blocks.
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Experimental Methods

1 Study design and sample collection

Stool samples were collected every two days from a 62-year-old male over a 5-month period. Samples
were collected in a 50 ml conical tube and stored on dry ice immediately after collection. Of these,
19 timepoints were selected for High Molecular Weight (HMW) DNA extraction, linked-read library
preparation and sequencing (Supplementary Table 1). Approximately 200-250mg of stool samples
were aliquoted and placed on dry ice in a 2ml Eppendorf tube for HMW DNA extraction.

2 High molecular weight DNA extraction

High Molecular Weight (HMW) DNA was extracted from stool samples for all the study timepoints.
In order to optimize the HMW DNA extraction method, seven extraction methods covering a range
of methodological types were evaluated. These methods included the Human Microbiome Project
extraction method [5], MoBio Powersoil DNA isolation kit, QIAamp DNA stool mini kit, Phenol
Chloroform DNA isolation, Qiagen HMW DNA MagAttract, MoBio PowerFecal DNA isolation kit,
and QIAgen DNeasy Blood and Tissue kit 1-3 (Supplementary Table 2). DNA extraction methods
were followed according to the manufacturer’s instructions. Three methods, Phenol Chloroform
DNA isolation, Qiagen HMW DNA MagAttract, and QIAgen DNeasy Blood and Tissue kit, did
not have homogenization steps, so a general homogenization process was adapted from Ref [6] and
performed prior to these kits. In this process, 500uL of sterile PBS, 0.35 g of 0.5 mm diameter
zirconia/silica beads, and 250 mg of frozen feces were added to a sterile 1.5 mL Eppendorf tube
and vortexed at 3200 rpm horizontally for 4 minutes. The samples were centrifuged at 200g for 5
minutes at room temperature. 200 uL of supernatant was removed and placed in a sterile 1.5 mL
Eppendorf tube. Following this step, the samples were processed according to the manufacturer’s
instructions. Samples were stored in 4°C to prevent shearing from freeze-thaw cycles.

HMW DNA quality evaluation. Fragment Analyzer (Advanced Analytical Technologies, Inc.,
Ankeny, IA) was used to evaluate the size and quality of HMW DNA from each of the timepoints
(Supplementary Data 5 and Supplementary Data 6). However, prior to final evaluation using Frag-
ment Analyzer, the following steps were conducted for preliminary evaluation. Primary Extracted
DNA concentrations were determined using a Broad Range assay on the Qubit Fluorometer 1.0 (In-
vitrogen Co., Carlsbad, CA) and purity was found using spectrophotometry at 260/280 and 260/230
absorbance ratios with Nanodrop 1000 Spectrophotometer (Thermo Fischer Scientific, Waltham,
MA). This information was then used to run a pulse field gel electrophoresis with the Pippin Pulse
(Sage Science Inc., Beverly, MA), providing greater separation of HMW DNA fragments. A gel
was made and run with the samples according to the manufacturer’s instructions for the 5-80 kb
range. Each well had 100 ng of sample DNA along with Thermo Scientific 6X DNA loading dye
(Thermo Fischer Scientific, Waltham, MA). One well included the CHEF 5-48kb ladder (Bio-Rad
Laboratories, Pleasanton, CA) and three wells were used for genomic controls from three kits of
known DNA length, 10XG control HMW DNA (10X Genomics Inc., Pleasanton, CA), MagAttract,
and AllPrep. The gels were imaged with ChemiDoc MP Imaging System (Bio-Rad Laboratories,
Pleasanton, CA) and visually evaluated to determine which samples and extraction methods had
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the longest length of DNA. Additionally, the samples were run through a High Sensitivity DNA
assay using an Agilent Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA) to evaluate dis-
tribution of DNA fragments between 35 bp and 10380 bp. Samples that had greater fluorescence
peaks at the 10380 bp end of the range were taken to have larger numbers of long DNA fragments
than samples that had peaks throughout the range below 10380 bp. Since Bioanalyzer is not the
optimal device for evaluation of extremely large fragments of DNA, other methods including Pippin
Pulse Gel (Sage Science Inc.) were used to evaluate the size of microbial DNA extracted from the
stool samples (Fig. S9). QIAamp DNA stool mini Kit method (Skt 12) was used for extraction of
HMW DNA from all the timepoints. An evaluation of HMW DNA size was conducted on samples
from all the timepoints before 10X Genomics linked-read library preparation (Supplementary Data
5 and Supplementary Data 6).

3 Linked-read library preparation and sequencing

We used 10X Genomics ChromiumTM to barcode HMW fragments from 19 longitudinal samples,
which were then sequenced on an Illumina HiSeq4000 platform, generating 151bp paired end reads.
The target sequencing coverage for each sample is listed in Supplementary Table 1.

4 Postprocessing and read cloud assignment

Following sequencing, 16bp of 10XG barcodes were removed along with sample indices. Using
FastQC, we conducted quality control (QC) analysis of the sequencing reads to empirically de-
termine whether the reads contained artifacts. We found the first 20 bp and 25 bp (R1 and R2
respectively) of each read pair had 5-mer or 7-mer sequence repeats, and these were subsequently
trimmed for all reads. The 10X barcode strings were then added to the sequence identifier field in
the trimmed FASTQ files so that they could be tracked in downstream steps of the pipeline.

Reads were assigned to read clouds using a lightweight error correction algorithm on the ex-
tracted barcode strings. For each sample, we created a list of all observed barcode strings and the
number of reads in which they were observed. These data were then used to seed our initial set of
read clouds. Iterating through barcodes in descending order, we created a new read cloud cluster
if the barcode had an edit distance >1 from all previous read cloud entries. Barcodes with an edit
distance of 1 were error corrected to the corresponding read cloud. After this initial clustering step,
we excluded all read clouds where ≥80% of the bases in the barcode label were identical, or where
≥50% of the bases were ambiguous (N). Finally, we excluded all read clouds that had fewer than
10 reads. Given the observed distribution of barcode abundances, these barcodes typically account
for ≤10% of the reads in a given sample; excluding these read clouds helps to eliminate residual
errors that were not caught by the initial error correction step.
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Computational Methods and Analysis

5 Metagenomic pipeline

Metagenomic sequences were analyzed using a reference-based approach similar to the one we
employed in Ref [3]. This pipeline utilizes the MIDAS software package [7] (software version 1.2.1,
reference database version 1.2) for the initial stages of species abundance quantification, sequence
alignment, and SNV detection, with several additional layers of filtering implemented in custom
postprocessing scripts [3]. We further extended this pipeline to track the read cloud label (barcode)
associated with each mapped short read. These steps are described in more detail below. All
associated code is available on GitHub (https://github.com/bgoodlab/highres_microbiome_
timecourse).

5.1 Quantifying relative abundance at the species level

To estimate the relative abundances of the species in a given sample, MIDAS first maps the short
sequencing reads to a panel of universal single-copy marker genes from each of the species in the MI-
DAS reference genome database [7]. The relative abundance of each species is then estimated from
the coverage of its associated marker genes. These estimates were used for the species abundance
trajectories in Figs. 1-3.

The species abundance estimates were also used to create a personalized panel of reference
genomes for subsequent read mapping. Reference genomes were included for all species that had an
average marker gene coverage≥ 3 in at least 1 timepoint. By using the same set of reference genomes
across all timepoints, we aim to reduce spurious temporal variation caused by different effective
mapping parameters in different samples. In our downstream analyses, we further restricted our
attention to the subset of species in the reference panel with marker gene coverage ≥ 10 in at least
3 timepoints.

5.2 Quantifying gene content for each species

We next quantified the gene content of each species in the personalized panel of reference genomes
defined above. For each timepoint, MIDAS maps the short sequencing reads to a database of gene
families (or pangenome) constructed from genes in sequenced isolates [7], using the same default
parameters as Ref [3]. For each species, the average coverage was reported for each gene family
and each timepoint, as well as for a panel of universal, single-copy marker genes. The copynumber
cgt of gene g at timepoint t defined as the ratio between these two quantities.

We used these copynumber values to define a “core” genome for each species. We found it useful
to distinguish between two different notions of a core genome. The first, which we call the resident
genome , contains the genes that (i) are present in the reference genome and (ii) have near single
copynumber in a majority of the timepoints from the sampled host. Specifically, we required these
genes to have 0.5 ≤ cgt ≤ 2 in more than 70% of the timepoints where the species itself had sufficient
coverage (i.e., when marker gene coverage was ≥ 10). To reduce cases of mismapping from other
species in the sample, we excluded all genes whose copynumber exceeded 3 in any timepoint, and
we further excluded the blacklist of putatively shared genes identified in Ref [3].
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We then defined the core genome of a given species to be the subset of genes in the resident
genome that are shared across most strains in other hosts. Specifically, we used the intersection
between the resident genome and the set of core genes identified in our previous study [3], which
were present at near single copy in ≥ 90% of eligible metagenomes across a large human cohort.

5.3 Identifying SNVs within species

We next identified single nucleotide variants (SNVs) within each species. We first used MIDAS to
map the short sequencing reads to the personalized reference panel in Section 5.1, using the default
parameters described in Ref [3]. MIDAS then reports the total sequencing coverage Dit at each
site i in each timepoint t [7]. Following our approach in Ref [3], we then used the distribution of
coverage across the genome to obtain a measure of the typical overage at a given timepoint, Dt,
defined as the median of all protein coding sites with nonzero coverage. Timepoints with Dt < 5
were excluded from further analysis, as were species with fewer than 4 passing timepoints. We then
used the timepoint-specific estimates of Dt to refine the alignment step above, masking all sites
in a given timepoint with Dit < Dt/3 or Dit > 3Dt. Sites that were masked in more than 30%
of timepoints were excluded from further analysis. We further restricted our attention to protein
coding sites in the resident genome, as defined above.

For each of the retained sites, MIDAS reports reference and alternate allele counts, Rit and Ait,
at each timepoint. In the minority of cases where multiple alternative alleles were present, these
were merged into a single alternate class. To reduce bias induced by the choice of the reference
genome, we re-polarized the alleles based on our previous measurements across a large human
cohort [3], swapping the reference and alternate alleles so that the reference coincides with the
cohort-wide consensus. Following repolarization, SNVs were retained for downstream analysis if
Ait ≥ 0.1Dit in at least one timepoint. (Note that this includes sites that are locally fixed in the
focal host, but where the host-wide consensus is the minority allele in our larger cohort. These
sites are critical for the private marker SNV tracking in Fig. 5.)

5.3.1 Quantifying genetic diversity over time

To quantify the levels of genetic diversity within each species in Fig. 2, we used a metric of
intermediate-frequency polymorphism similar to the one we employed in Ref [3]. For each time-
point with Dt ≥ 20, we calculated the fraction of unmasked sites in the core genome with allele
frequencies in the range 0.2Dit ≤ Ait ≤ 0.8Dit. Timepoints with Dt < 20 were excluded. By
restricting our attention to intermediate frequency polymorphisms, we aim reduce the contribution
of sequencing and mapping errors that would ordinarily limit resolution to &10−3 SNVs/bp.

5.3.2 Synonymous and nonsynonymous variants

To infer the protein coding effect of each SNV, we used MIDAS’s annotation of 1-fold, 2-fold, 3-
fold, and 4-fold degenerate sites, which are inferred from the codon reading frame of the annotated
genes in each reference genome [7]. These annotations are shown for the temporally variable SNVs
in Fig. 5. Our definition of nonsynonymous SNVs includes all SNVs that change the amino acid
sequence of the protein, while synonymous SNVs leave the amino acid sequence unchanged. Under
this definition, 1-fold degenerate sites are always nonsynonymous, while 4-fold degenerate sites
are always synonymous. The protein coding effect of 2- and 3-fold degenerate sites can be either
synonymous or nonsynonymous depending on the specific alleles involved. To avoid ambiguity, we
primarily focused on comparisons of 1-fold and 4-fold degenerate sites.
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We used these annotations to calculate an effective dN/dS value for the temporally varying
SNVs identified in Fig. 3. To do so, we divided the observed ratio of 1D and 4D SNVs for a given
species by the median ratio of unmasked 1D and 4D sites in the resident genome of that species
across each timepoint. The dN/dS estimates for the six example species are listed in Supplementary
Data 1.

5.3.3 Allele prevalence across hosts

To estimate the prevalence of alleles within the broader human population, we used the allele
prevalence values obtained from our previous study of a large human cohort [3]. In that work,
prevalence was defined as the fraction of metagenomic samples in which the allele attained majority
frequency. The prevalence values in Fig. 5 were polarized to be consistent with the allele frequency
trajectories in Fig. 3 (i.e., prevalence refers to the allele displayed in the frequency trajectory).

5.4 Tracking read clouds associated with SNVs and genes

To leverage the additional linkage information encoded in the read cloud labels, we developed a
new MIDAS module to track read cloud labels stored in the read name field in the underlying
FASTQ and BAM files. Read cloud labels were recorded at both the individual gene and SNV
levels. For each timepoint, we recorded the read cloud labels for each read that mapped to one
of the gene families in Section 5.2 with MAPQ≥ 20. (The additional MAPQ filter is necessary
to prevent ambiguously mapping reads from being mapped to a different location than the other
reads in the same read cloud.)

To efficiently track read cloud labels at the SNV level, we focused on a subset of target SNVs
from Section 5.3 above that (i) had Ait ≥ 0.1Dit in at least 3 timepoints, and (ii) were unmasked
in at least 10 timepoints. For each of these SNVs, we separately recorded the read cloud labels for
the reads that mapped to the reference and alternate allele in each timepoint, as well as the total
number of matching reads for each read cloud.

In a small fraction of cases, both alleles could be observed in different reads from the same read
cloud. Although this could in principle arise from read cloud impurities (see Section 7 below), a
more likely explanation is that the library preparation step generated multiple short reads from
the same input molecule (e.g. during the PCR step), and then sequencing or PCR errors generated
reads supporting the opposite allele. We used this intuition to implement a simple form of error
correction: for read clouds that contained a mixture of both alleles at a given site, we only assigned
the read cloud to the allele with the largest number of supporting reads. The corrected read clouds
were also recorded so that they could later be used to estimate the rates of sequencing or PCR
errors in a site-specific manner. In particular, for each SNV i, we estimated an error rate

perr,i =
nerr
nD≥2

, (1)

where nerr is the total number of error corrected read clouds at site i across all timepoints, and
nD≥2 is the total number of read clouds at site i that have at least two reads covering that site.
Average values of perr,i are on the order of 10−3, but a small fraction of sites can reach much higher
values.

5.5 Quantifying frequency trajectories of SNVs

We estimated the allele frequencies of SNVs using the read cloud labels recorded in Section 5.4.
For a given site i and timepoint t, let Ait and Rit denote the total number of unique read cloud
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labels that map to the alternate and reference alleles, respectively. (Note the cursive font, which
distinguishes these quantities from the read-based counts Ait and Rit defined in Section 5.3.) An
analogous version of the total coverage can then be defined as Dit ≡ Ait + Rit. While the allele
counts derived from reads and read clouds are expected to be correlated with each other, the read-
based version will also contain an additional source of noise arising from the PCR amplification
step in the library creation protocol. We therefore sought to use the read cloud versions of the
allele counts as much as possible, since these are expected to more closely approximate the idealized
sampling of individual molecules in our original pool of DNA.

We therefore repeated several of the filtering steps defined for the read-based counts in Sec-
tion 5.3 above. We formed a read-cloud-based estimate of the typical coverage at a given timepoint,
Dt, defined as the median value of Dit across all target SNVs. Timepoints with Dit < 5 were ex-
cluded from further analysis. As above, we then masked individual sites in a timepoint if Dit < Dt/3
or Dit > 3Dt, and SNVs that were masked in more than 30% of timepoints were excluded from
further analysis. Based on these data, we estimated the allele frequency trajectory for each SNV
using the simple plug-in estimator,

f̂it = Ait/Dit . (2)

These frequency trajectories are shown in Fig. 3, and are used in various additional analyses de-
scribed below.

5.5.1 Detecting SNV differences over time

To quantify shifts in the genetic composition of individual species, we searched for SNVs that
underwent large changes in allele frequency between different timepoints; this indicates a full or
partial “sweep” of the allele through the resident population of interest. Given our study design,
we were particularly interested in cases where this “sweep” occurred between one of the baseline
timepoints and a later stage of the study (e.g. antibiotic treatment). The primary difficulty lies
in disentangling these true allele frequency changes from spurious signals produced by the finite
sampling of sequencing reads in each timepoint. The uncertainty in the sample frequency scales
as σf ∼ D−1/2, which grows increasingly small at higher coverages. However, the effective error
rate can be amplified by the large number of sites and temporal comparisons that we must search
through. To overcome this issue, we used an extension of the approach we developed in Ref [3] for
detecting genetic differences between pairs of timepoints.

For each pair of timepoints t1 < t2, we searched for SNVs where the minor allele transitioned
from less than 20% frequency in the first timepoint to more than 70% in the second timepoint.
In terms of the allele counts, this requires either (i) Ait1 ≤ 0.2Dit1 and Ait2 ≥ 0.7Dit2 , or (ii)
Ait1 ≥ 0.8Dit1 and Ait2 ≤ 0.3Dit2 . Under the null hypothesis of no allele frequency change (i.e.,
the true frequency is the same at both timepoints), the probability of observing such an event by
chance through sampling noise is given by

Pi(t1, t2) = F (0.2Dit1 |Dit1 , f)F (0.3Dit2 |Dit2 , 1− f)︸ ︷︷ ︸
from ≤0.2 to ≥0.7

+ F (0.2Dit1 |Dit1 , 1− f)F (0.3Dit2 |Dit2 , f)︸ ︷︷ ︸
from ≥0.8 to ≤0.3

,
(3)

where f = (Ait1 +Ait2)/(Dit1 +Dit2) is the average allele frequency between the two timepoints and
F (k|n, p) is the cumulative distribution function for a binomial distribution with sample size n and
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success probability p. The expected number of differences under the null hypothesis is therefore
given by

nerr(t1, t2) =
∑
i

Pi(t1, t2) , (4)

which can be compared to the corresponding observed value, nobs(t1, t2).
To maximize statistical power, we excluded sites from the sum in both the observed and expected

counts if they met any of the following criteria

1. High false positive rate: Pi(t1, t2) > 10−3.

2. Insufficiently polymorphic: the minor allele frequency is ≤0.2 in all timepoints.

3. Variable copynumber: the ratio between Dit and the typical genome-wide coverage Dt
differed by more than a factor of 2 between t1 and t2.

The last condition is useful for reducing false positives caused by mis-mapped reads from other
species (see Ref [3] and Section 7.5 below). Technically speaking, the polymorphism condition has
the potential to shift the null distribution away from the simple binomial form in Eq. (3), since it
depends on the properties of the allele counts beyond the mean f . We neglect this influence here,
since the polymorphism condition can often be satisfied at sites other than t1 and t2.

Based on these definitions, we calculated the observed and expected SNV differences for all pairs
of timepoints where t1 is one of the 4 baseline samples and t2 is one of the 15 remaining samples. We
considered there to be sufficient evidence for SNV differences between a pair of timepoints if (i) the
estimated false discovery rate, nerr(t1, t2)/nobs(t1, t2), is less 0.1 and (ii) the Bonferonni-corrected
P -value for the total number of changes,

P ≈ (4 · 15)
∞∑

k=nobs

(nerr)
k

k!
e−nerr , (5)

is less than 0.05. If these conditions were met, we recorded a significant SNV difference for all the
SNVs that were observed to change between these two timepoints. In this way, we are effectively
leveraging correlations in the dynamics of SNV trajectories across the genome to overcome some
of the uncertainty involved in any single SNV trajectory.

We performed this procedure for all species that had at least 6 unmasked timepoints (i.e. with
Dt ≥ 5) and at least one baseline timepoint with Dt ≥ 10. A total of 36 species met these criteria
(see Fig. 2). For each species, the total set of temporally variable SNVs (or SNV differences)
was defined as the union of the SNVs identified in any significant timepoint pair. This list was used
to determine the colored trajectories in Fig. 3 and the total number of SNV differences reported
in Fig. 2C. We note that this method of detecting temporally variable SNVs may miss many true
allele frequency changes that do not reach our stringent thresholds (e.g. the Bacteroides vulgatus
example in Fig. S8). The estimates in Figs. 2 and 3 should therefore be viewed as a lower bound,
highlighting only the most dramatic allele frequency shifts. In principle, it should be possible to
increase our detection sensitivity significantly by leveraging the correlations in the allele frequency
changes across multiple timepoints, similar to Refs [8–10]. Such techniques have previously been
employed only in relatively simple metagenomes derived from laboratory evolution experiments
[8–10]. Extending these approaches to the more complex strain mixtures encountered in natural
populations remains an important avenue for future work.

19



5.5.2 Private marker SNVs

To help distinguish instances of strain replacement from the evolutionary modification of resi-
dent strains, we examined the dynamics of so-called private marker SNVs across the sampled
timecourse. Similar approaches have been used to quantify sharing or transmission of bacterial
strains across different hosts [7, 11–13]. Here, we are effectively using the same idea to quantify
transmission of bacterial strains between successive timepoints from the same host.

We used a generalization of the approach we developed in Ref [3] for analyzing pairs of time-
points. This approach is motivated by three basic assumptions:

1. Most of the private SNVs that are found at high frequencies at the initial timepoint are
passenger mutations that were acquired by the resident strain before it colonized the host,
and hitchhiked to high within-host frequencies during the colonization process. We refer to
these SNVs as private marker SNVs. (Some of these private SNVs may also reflect de novo
mutations that have swept to high frequency in the time since colonization; we assume that
these are in the minority due to the different timescales between within- and between-host
evolution.)

2. There is no strong selection pressure to revert private marker SNVs through evolutionary
modification (i.e., most of the alternate alleles are not strongly deleterious).

3. Replacement events draw from a sufficiently diverse pool that the new strain is unlikely to
share the same private marker SNVs as the resident strain.

Together, these assumptions imply that the preservation or disruption of private marker SNVs at
later timepoints can distinguish between strain replacement and evolutionary modification.

Based on this intuition, we defined the set of disrupted private marker SNVs to be the
subset of temporally variable SNVs whose prevalence (defined Section 5.3.3) is exactly 1 (i.e., where
the reference allele as shown in Fig. 3 is private). Conversely, we defined the set of preserved pri-
vate marker SNVs to be the subset of private SNVs that were in the majority at all timepoints,
and had a frequency ≥0.8 in at least 80% of timepoints. These numbers were used to construct the
pie charts in Fig. 5.

6 Antibiotic resistance gene profiling

Since antibiotic resistance genes may have poor coverage within the default MIDAS database, we
used a separate approach to calculate the levels of antibiotic resistance genes in Fig. S2. Our
approach is essentially a lightweight wrapper around the ARGs-OAP pipeline [1], which was specif-
ically developed to detect antibiotic resistance genes in metagenomic data. Briefly, short sequencing
reads were mapped against a database of antibiotic resistance genes using UBLAST [14], and puta-
tive matches refined with BLAST [15]. Reads that matched one of the genes in the database were
extracted and labelled with the class of antibiotics that the gene is known to confer resistance to
(e.g. tetracycline) as well as the gene family of the antibiotic resistance gene (e.g. tetQ). These data
are plotted in Fig. S2, which shows the number of reads (per million mapped) that are assigned to
genes in several antibiotic classes.

7 Inferring genetic linkage from shared read clouds

In principle, read clouds generated from a single DNA molecule could provide direct evidence of
genetic linkage over much longer distances than a typical short sequencing read. In practice, this
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problem is made more difficult due to the presence of read cloud impurities, which occur when
multiple DNA molecules are labelled with the same barcode. Below, we describe our efforts to
quantify the extent of read cloud impurity in our data. We then present a statistical approach
for inferring genetic linkage between variants based on elevated rates of read cloud sharing across
many individual read clouds.

To fix notation in the sections below, we will let Bt denote the total collection of read clouds
that were sequenced in timepoint t, with µ ∈ Bt denoting a particular read cloud from this set.
For each read cloud µ, we will let Dµ denote the total number of read pairs that were sequenced
from that read cloud. A central challenge for our analysis is that the observed values of Dµ span
several orders of magnitude. These large differences reflect both the intrinsic variation between
read clouds from the same timepoint, as well as systematic differences between timepoints that
were sequenced at different overall depths (Fig. 1). This has important consequences for read cloud
impurity, since Dµ places strong constraints on the realized level of impurity in a given read cloud.
For example, a read cloud with Dµ = 2 can contribute reads from at most 2 fragments, regardless
of the number of DNA molecules in the emulsified droplet. Since the empirical distribution of Dµ

is skewed towards these low values, simple averages over µ can severely underestimate the risks of
read cloud impurity when inferring genetic linkage. The methods below are designed to overcome
this problem, by conditioning on the actual values of Dµ that are observed in a given situation.

7.1 Empirical estimates of read cloud impurity

In metagenomic settings, crude estimates of read cloud impurity can be obtained by counting the
number of species that contribute reads to a given read cloud. This is effectively a lower bound on
the number of DNA fragments, which becomes increasingly tight for large and uniformly distributed
communities. To calculate the effective number of species in Fig. 1, we used the species assignments
implicit in the gene-level mapping in Section 5.4. For each read cloud µ ∈ Bt, we calculated the
total number of reads (rµs) that map gene families in species s in the reference panel. If all species
contribute the same number of reads, then the number of species is given by the naive estimator,

Sµ =
∑
s

θ(rµs) , (6)

where θ(z) is the Heaviside step function. In practice, we opted to use the root mean squared
estimator,

Sµ ≡
√√√√ ∑

s θ(rµs)∑
s

(
rµs∑
s′ rµs′

)2 , (7)

since we expect this to be more robust in the presence of a small number of misassigned reads.
The curves in Fig. 1D were obtained by binning reads according to their total coverage Dµ, and

plotting the median value of Sµ for each bin. As expected, the effective number of species increases
with the total coverage of each read cloud, reflecting higher realized rates of read cloud impurity
with increasing Dµ. The typical values of Sµ range from 2 to 20, consistent with previous work by
Danko et al. [16]. These values indicate that read cloud impurity is not a rare error mode, but is
instead a typical property of our read cloud data.

7.2 Empirical estimates of long-range linkage within read clouds

Despite the high rates of read cloud impurity in Fig. 1, these data still contain many true examples
of long range linkage. To quantify this signal, we calculated the fraction of shared read clouds
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between pairs of SNVs as a function of the genome coordinate distance ` between them (Fig. 4B).
High rates of sharing are always expected for short distances (when both SNVs are present on
the same short sequencing read). Elevated rates of sharing at intermediate distances indicate true
examples of long-range linkage, and they allow us to estimate the typical length scales accessed by
our HMW DNA extraction protocol.

We estimated ` using the locations of the SNVs on the reference genome. We only considered
pairs of SNVs on the same contig, we estimated ` as the minimum of ` and `c − ` (where `c is
the length of the contig) to account for circular chromosomes. Although differences in synteny
may cause the true value of ` to vary between strains, we expect this to have only a minor impact
on the genome-wide signal in Fig. 4B. We binned SNV pairs in logarithmic intervals of `, and we
calculated the sharing fraction

P (`) =

∑
ij Bij∑
ij Bi

, (8)

for each bin, where Bij is the total number of shared read clouds between SNVs i and j across all
timepoints, and Bi is the total number of read clouds that cover SNV i (equivalent to Di in section
Section 5.5). To reduce potential mapping artifacts, we excluded SNVs with Bi ≤ 10, or which fell
outside the middle 80% of the distribution of Bi for that species.

As expected, the curves in Fig. 4B show high rates of read cloud sharing for SNVs within a
typical read length of each other (∼150bp), and a second peak at ∼300bp expected from paired
end reads. Beyond this point, we observe a broad shoulder that extends out to `∼8kb before
rapidly decaying. This represents the additional linkage information captured by the read cloud
protocol, and indicates the typical length scale (. 10kb) where we can hope to observe this linkage
information. This length scale is consistent with independent measurements of the fragment sizes
produced by our HMW DNA extraction protocol (Fig. S9). However, we note that only ∼10% of
read clouds contain this long-range linkage information. Thus, a site must be covered by at least
10 distinct read clouds before we expect to observe any linkage beyond 100bp, and much larger
coverages are required to reliably observe multiple instances of read cloud sharing. For a given
total depth of sequencing, this sets a minimum abundance threshold for species where we expect
read cloud sequencing to be useful.

7.3 Statistical null model of read cloud sharing

The strong global signal in Fig. 4B, combined with the high levels of read cloud impurity in Fig. 1,
has important implications for inferring local genetic linkage between specific pairs of sequences.
Since typical read clouds contain several fragments, individual examples of read cloud sharing do not
provide conclusive evidence for genetic linkage on their own. We must instead adopt a statistical
approach, scanning for sequences with higher rates of barcode sharing than expected by chance
(e.g., given the background rates of read cloud sharing in Fig. 4B).

To determine these thresholds, it is necessary to model the patterns of read cloud sharing that
could be produced by read cloud impurities alone. Previous approaches have focused on the special
case where the sequences are derived from pure cultures of long, diploid genomes (e.g. humans).
In this section, we present an extension of this approach that can account for the highly skewed
abundances of different genomes in a complex metagenomic sample.

We begin by considering some genomic feature i, e.g., a particular site from the reference genome
panel in Section 5.1. We will refer to this as the focal site . Let Bi ⊂ Bt denote the total set
of read clouds in which at least one read maps to the the target site, so that Bi = |Bi| denote
the total number of such read clouds. We want to formulate a null model for the number of read
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clouds Bij ≤ Bi that are shared with some other target site j. Under the null hypothesis, the two
SNVs cannot be present on the same fragment, so the only way that they can share a read cloud
is if separate fragments containing these SNVs appear in the same read cloud by chance. We wish
calculate the null distribution of Bij in this scenario, conditioned on the observed distribution of
read coverages in each cloud, Di = {Dµ : µ ∈ Bi}.

To do so, it is useful to first consider a random read cloud with a particular value of Dµ. We
assume that there are constants pi and pj , and a function F (D), such that the probability that i
and j are covered by reads in µ can be written in the Poisson-like form

Pr[i ∈ µ|Dµ] ≈ piF (Dµ) ,

Pr[i ∈ µ, j ∈ µ|Dµ] ≈ pipjF (Dµ)2 ,
(9)

The function F (D) will depend on the details of the barcoding and sequencing reaction, but is
crucially independent of i and j. For example, in a simple model where every read cloud contains
M fragments of size `f , the function F (D) can be written in the form

F (D) = M
(

1− e−D`r/M`f
)
≈

{
D`r/`f if D �M`f/`r ,

M if D �M`f/`r .
(10)

This suggests that Eq. (9) will be a good approximation provided that M � 1 and piM � 1.
In practice, the actual shape of F (D) is likely to be more complicated than the simple version in
Eq. (10). We therefore treated it as an arbitrary function to be estimated self-consistently from
the data.

Assuming that read clouds are generated approximately independently, we have

Bi ∼ Poisson

pi ∑
µ∈Bt

F (Dµ)

 . (11)

This suggests that we can estimate pi from the observed values of Bi via

p̂i ≈
Bi∑

µ∈Bt
F (Dµ)

≡ qi
〈F (D)〉

, (12)

where we have defined

qi ≡
Bi
|Bt|

, (13)

and

〈F (Dµ)〉µ∈Bt ≡
1

|Bt|
∑
µ∈Bt

F (Dµ) . (14)

The conditional distribution of Bij is therefore approximately given by

Bij ∼ Poisson

qj ∑
µ∈Bi

G(Dµ)

 , (15)

where we have defined a standardized version of F (D),

G(D) =
F (D)

〈F (D)〉
. (16)
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Estimating G(D). We now describe an empirical method for estimating G(D) directly from the
data. To do so, we’ll make use of the fact that the vast majority of SNV pairs in different species
satisfy the null model above (i.e., they should never be found on the same fragment). Thus, we
can try to estimate G(D) by taking averages over all barcodes µ. It will be helpful to introduce
some new notation. Let s(i) denote the species corresponding to SNV i, and we’ll let j ∈ s(i) and
j 6∈ s(i) indicate that SNV j is or is not in the same species, respectively. For a given barcode µ
(with coverage Dµ), we can look at all the SNVs i ∈ µ that are covered by at least one read in that
barcode. We’ll let nµ,s denote the number of SNVs of this sort that belong to species s. We’ll also
let Qs =

∑
i∈s qi and Q =

∑
sQs.

With these definitions, for each SNV i in a barcode µ, the observed number of shared barcodes
in other species is given by ni,other = n− ns(i). Furthermore, its expectation is given by

E[ni,other|i ∈ µ,Dµ] = (Q−Qs(i))G(Dµ) . (17)

Thus, for all µ with Dµ ≈ D, we can estimate

Ĝ(D) =

∑
µ:Dµ≈D

∑
i∈µ

n−ns(i)
Q−Qs(i)∑

µ:Dµ≈D
∑

i∈µ 1
, (18)

or after coarse-graining at the species level,

Ĝ(D) =

∑
µ:Dµ≈D

∑
s∈µ ns ·

n−ns
Q−Qs∑

µ:Dµ≈D
∑

s∈µ ns
. (19)

We used this formula to estimate G(D) separately for each timepoint t, binning read clouds accord-
ing to Dµ using 16 equally spaced logarithmic bins from D = 10 to D = 104. For bins with less than
104 read clouds, we replaced Eq. (19) with the value of Ĝ(D) calculated from the nearest bin that
exceeded this occupation threshold. The estimated values of Ĝ(D) are shown in Fig. S12 below.
As anticipated from our discussion above, the estimated values of Ĝ(D) can vary dramatically,
both when comparing different timepoints and within timepoints when comparing read clouds with
different values of Dµ.

7.4 Inferring linkage between pairs of SNVs

Using the null model above, we developed a statistical approach for quantifying genetic linkage
between pairs of SNVs. For each pair of SNVs i and j, we first searched for evidence that the sites
were linked, regardless of the specific alleles involved. To do so, we calculated the total number
of shared barcodes Bij across all 19 timepoints. Under the null hypothesis, Bij should be Poisson
distributed with mean

Bij =
∑
t

qjt
∑
µ∈Bt

Gt(Dµ) . (20)

Using the observed value of Bij , we then calculated a P -value,

Pij =
∑
k≥Bij

Bkije−Bij

k!
, (21)
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Figure S12: Calibrated null model of read cloud sharing as a function of read cloud coverage.
Colored lines denote the Ĝ(D) function in Eq. (19) estimated for each of the 19 timepoints.

which quantifies how surprising the observed levels of barcode sharing are under the null hypothesis.
We used a Bonferonni correction to control for multiple comparisons, recording a significant hit
when the corrected P -value was less than 0.1 and the total number of shared read clouds was ≥ 12.

We applied this approach in two different contexts. In the first case, we scanned for evidence
of genetic linkage within the subset of temporally varying SNVs identified in each panel of Fig. 3
(Supplementary Data 2). We performed this test separately to maximize statistical power within
this subset of highly interesting SNVs. For the second application (Fig. 4), we performed a genome-
wide scan for all pairs of SNVs within each of the species in Fig. 2. To preserve statistical power,
we again restricted this scan to pairs of SNVs in the same species, since examples of SNV sharing
across species are expected to be rare (see Section 7.5).

Quantifying linkage at the allelic level. For each of the significant SNV pairs identified above,
we next sought to quantify the patterns of genetic linkage at the allelic level. For a pair of biallelic
sites, there are 4 possible combinations of alleles (or haplotypes) that can be observed together
in a read cloud. We refer to these using the standard notation, ab, aB, Ab, and AB (Fig. 4A),
with h denoting an arbitrary haplotype within this set. As above, these combinations could reflect
true examples of linkage on the same DNA fragment, or spurious signals produced by two separate
fragments in the same read cloud. To distinguish between these two scenarios, we repeated our
null model calculations above, with i and j now ranging over the two alleles at each site. We
calculated the total number of shared read clouds (Bij,h) for each h ∈ {ab, aB,Ab,AB}, as well as
the corresponding expected values (Bij,h). In this case, however, it is important to augment the
null hypothesis to include the possibility of sequencing or PCR errors, since an error at the target
site can produce a spurious haplotype where none actually exists. We incorporated this additional
source of error using the empirical rates estimated in Section 5.4. We first calculated an average
error rate,

perr,ij = 〈perr,i〉B. vulgatus , (22)
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where the average is taken over all sites in Bacteroides vulgatus. This species was chosen because
it has one of the highest coverages and SNV densities across our dataset, yielding the most robust
estimates of perr, i. We used this average value to form a pair-specific error estimate,

perr,ij = max {perr, perr,i, perr,j} , (23)

and we augmented the expected number of shared read clouds by

Bij,h → Bij,h + perr,ijBij , (24)

where Bij is the total number of observed read clouds shared between the two SNVs.
Based on this null model, we tested for the presence of the various haplotypes in a specific

order, which was designed to maximize statistical power and provide biological insights into the
patterns of linkage between the two SNVs. For each species, we first compiled a list of significantly
linked SNV pairs using the procedure described above. We only considered SNVs in the personal
core genome, and we excluded SNV pairs with ` > 50kb or perr > 0.01. To ensure that there were
sufficient opportunities to observe instances of 3 or 4 haplotypes, we only considered SNV pairs
where all single-site alleles were present in at least 10% of the shared read clouds, and with at least
4 counts in total. We also restricted our attention to SNV pairs where we expect to observe at least
4 reads for the smallest haplotype under linkage equilibrium (Bijfifj ≥ 4). The total number of
resulting SNV pairs for each species is shown in Fig. 4C. We then examined the linkage structure
within each of these SNV pairs as described below.

1. Perfect linkage between SNV pairs. The simplest form of genetic linkage between two
SNVs is known as perfect linkage. It describes a situation where a mutation at one site always
co-occurs with a mutation at the other site (consistent with a mixture of just two strains).
In terms of the four haplotypes, perfect linkage requires that either ab/AB are present and
aB/Ab are absent, or vice versa. Deviations from this pattern indicate that the two mutations
occurred in a nested fashion (or have undergone recombination, see below), and require at
least three haplotypes to explain. To scan for deviations from perfect linkage, we tested
whether Bab+BAB and BAb+BaB were both higher than expected by chance, using the same
procedures as described in Eq. (21) above. To correct for multiple hypothesis testing, we
converted the raw P -values into genome-wide Q-values using the formula,

Qij = min
Q>Pij

{
Q
∑

i′,j′ 1∑
i′,j′ θ(Q− Pi′j′)

}
. (25)

rejecting perfect linkage if Qij < 0.05. To be conservative, we only considered SNV pairs with
at least 3 read clouds supporting the alternate haplotype pair. We performed this calculation
for the entire set of SNV pairs in each species, as well as subsets stratified by different values of
` (Fig. 4D). Some species are dominated by SNV pairs in perfect linkage, while other species
have a significant fraction of SNV pairs supporting 3 or more haplotypes.

2. The four gamete test and recombination. SNV pairs that are not in perfect linkage can
arise in two ways. They can be produced by nested mutation events, where only a subset of
the individuals with the first mutation will also possess the second one. This scenario is often
referred to as complete linkage, since it consistent with a single origin of each mutation and
purely clonal inheritance. Alternatively, violations of perfect linkage can arise from recurrent
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mutations or recombination between the two SNVs. In the limit of infinite recombination,
the haplotypes frequencies should approach linkage equilibrium,

Bij ≈

(∑
j Bij

)
(
∑

i Bij)∑
ij Bij

, (26)

which is equivalent to randomly permuting the observed alleles across the sampled read
clouds. Complete linkage can be ruled out if all four haplotypes are present in the sample
(the so-called four gamete test [17]). We implemented a version of the four gamete test
using our error model above, by testing whether the Bij,h values for all four haplotypes were
higher than expected by chance. Four haplotypes were deemed to be present if the adjusted
Q-value was less than 0.05, and if there were at least 3 read clouds supporting the smallest
haplotype; all other SNVs pairs were classified as being in complete linkage. We performed
this calculation for the entire set of SNV pairs where perfect linkage could be rejected, as well
as subsets stratified by different values of ` (Fig. 4D). Only a small fraction of 4-haplotype
SNVs are observed across the different species. Furthermore, this fraction remains constant
(or even decreases) for SNVs separated by increasing genomic distances, in contrast to the
recombination-mediated decay of linkage observed in the dominant strains from different
hosts [3]. This provides further evidence that within-host recombination events are rare in
our dataset.

7.5 Inferring linkage between SNVs and species backbones

In addition to inferring linkage between specific pairs of SNVs, we also used the read cloud infor-
mation to determine whether the temporally variable SNVs in Fig. 2C were linked to the correct
species backbone. To do so, we leveraged patterns of read cloud sharing between the temporally
variable SNVs and the core genomes of each of the species in our personalized reference panel. Be-
cause these core genes were defined to be present in most strains of a given species, we hypothesized
that they would be a useful proxy for the true species backbone. For each of the SNVs in Fig. 2C,
we created a list of the core genes that shared read clouds with either of the two alleles, and we
also kept track of the number of shared read clouds for each allele/gene pair. For species with
more than 1000 temporally variable SNVs, we chose a random subset of 1000 SNVs to serve as a
representative sample. For each allele, we recorded the 10 most frequently shared genes, provided
that they shared at least 5 read clouds in total and were present in least 5% of the read clouds that
mapped to that allele. We then calculated the fraction of these top scoring genes that originated
from the correct species. We considered there to be a positive confirmation if, for both alleles, more
than two thirds of the top genes originated from the correct species. We considered there to be a
negative confirmation if either of alleles had more than a third of their top genes originating from
a different species.

The results are shown in Fig. S7. Across species, we observe an average positive confirmation
rate of ≈ 80% and a negative confirmation rate of < 1%, with most of the negatives clustering in
just 3 species (where they still comprise only a small fraction of the total identified SNVs). This
is an important sanity check: it suggests that many of the temporally variable SNVs identified
in Section 5.5.1 are truly changing within their respective species, and are not solely driven by
mis-mapped reads from other temporally fluctuating species.
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8 Clustering SNVs into haplotypes

The low levels of recombination in Fig. 4 suggest an interesting simplification, in which the dy-
namics of many individual SNVs may be captured by a mixture of just a few clonal haplotypes
(or “strains”). Several approaches have been developed to infer the sequences of these haplotypes
and their mixture proportions using the co-occurrence patterns of SNVs in different timepoints
[18–21]. However, since SNV frequencies can always be fit exactly using a sufficiently large number
of haplotypes, these methods suffer from an inherent overfitting problem, and it is necessary to
constrain both the number and structure of the haplotypes to be fitted. This is typically done
by first fixing the number of haplotypes at some value K, and then using model selection criteria
like AIC [19, 21], Bayes factors [18], or other heuristic approaches [20] to choose the optimal value
of K. While these approaches have been shown to work well in certain test cases, they can be
difficult to extrapolate to new datasets, since it is not always clear how the tradeoff between model
fit and model simplicity interacts with the geometry of haplotype space. For similar reasons, it is
not known how the presence of a small fraction of outlier SNVs (e.g. from mapping errors or other
metagenomic artifacts) could influence the reported results.

To illustrate these issues more concretely, we focused on the Bacteroides vulgatus population
in Fig. S8. This species has one of the highest rates of intra-population diversity across our panel
(Fig. 2B) while also displaying high levels of linkage disequilibrium (Fig. 4D), making it an ideal
candidate for compression via haplotype clustering. In addition, this species benefits from one of
the highest levels of sequencing coverage across our panel, making it a best-case scenario for existing
strain detection algorithms that leverage temporal correlations in SNV frequencies.

We used the recently published StrainFinder [21] program as a representative example of existing
algorithms. We ran StrainFinder (using default parameters) on the collection of ∼16,000 SNVs in
the resident genome that reached intermediate frequency (0.2 < f < 0.8) in at least one timepoint.
The optimal AIC score was observed for K = 9 strains, after scanning over values in the range
2 ≤ K ≤ 20. The estimated frequencies of these 9 strains, along with the predicted and observed
SNV frequencies, are shown in Fig. S13. The estimated strain frequencies seem reasonable at first
glance, but closer examination of the predicted SNV trajectories reveals a peculiar banded structure,
suggesting that StrainFinder is going to great lengths to fit some other systematic deviation from
the model, and that the inferred haplotypes may not be trustworthy. To test this hypothesis, we
used the 9 estimated strain genotypes to generate predictions for linkage disequilibrium between
pairs of SNVs, similar to what we measured in Fig. 4C,D. We observed violations of the 4-gamete
test among these 9 predicted strains for ∼10% of the SNV pairs with `<50kb. This is more than
an order of magnitude higher than the rate estimated from the read cloud data in Fig. 4D, and
suggests that the haplotypes estimated by StrainFinder may contain significant errors. Since we
expect B. vulgatus to be a best-case scenario for this program (and that there will be reduced power
to detect similar errors in other species), we decided not to apply these existing strain detection
methods in the present study.

Instead, we pursued a non-parametric approach inspired by recent experimental evolution stud-
ies [8, 10], which leverages the graphical information contained in joint allele frequency trajectories
like Fig. 3. Rather than aiming to reconstruct the full set of haplotypes, the goal of this approach
is to first identify clusters of SNVs that are in perfect LD with each other, so that they can be
replaced with a single representative trajectory. In simple cases, coarse-grained features of the
haplotype dynamics can be visually inferred from the dynamics of the relatively small number of
cluster trajectories (e.g. Fig. 3 in Ref [8] or Fig. 5 in Ref [22]), while systematic errors and other
metagenomic artifacts can be identified and excluded separately (see, e.g. Ref [10]).

We developed an agglomerative clustering method to identify SNV clusters based on similarities
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Figure S13: Results from the StrainFinder algorithm [21] for the Bacteroides vulgatus population.
The top panel shows the estimated frequencies for each of the 9 predicted strains. The middle
panel shows the expected SNV frequencies obtained by combining the strain frequencies with the
inferred strain genotypes. The bottom panel shows the observed SNV frequencies.
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Figure S14: The distribution of the distance metric dij for all pairs of Bacteroides vulgatus SNVs in
Fig. S13. SNV pairs are classified according to the linkage categories using read cloud information
as described in Section 7.4. We have further divided the perfect LD category into weak and strong
sub-classes, respectively, depending on whether we observe any read clouds that support the third
haplotype.

in their allele frequency trajectories. We used a distance metric informed by binomial sampling
noise expected for allele frequency data. For two observed trajectories f̂it and f̂jt with the same
relative polarization, we defined the distance metric,

d(f̂it, f̂jt) =
1

T

T∑
t=1

2(Dit +Djt)(f̂it − f̂jt)2(
f̂it + f̂jt

)(
1− f̂it + 1− f̂jt

) , (27)

where Dit and Dij are the total sequencing coverages at each timepoint. If the true frequencies

were identical, we would expect the product T ·d(f̂it, f̂jt) to approach a χ2
T distribution in the limit

of large D, so that the typical distances should be of order d ≈ 1± 2/
√
T .

However, our task is complicated by the fact that we do not typically know the relative orien-
tations of SNVs in natural microbiome populations. To overcome this problem, we defined a pair
of distance matrices,

d+ij = d(f̂it, f̂jt) ,

d−ij = d(f̂it, 1− f̂jt) ,
(28)

that account for both relative polarizations of each SNV pair, along with an effective distance,

dij = min
{
d+ij , d

−
ij

}
. (29)

Under perfect linkage, we expect that the smaller value of d+ij and d−ij will typically indicate the
correct relative polarization, so that the typical value of dij should still be close to one.

We performed UPGMA clustering on the distance matrix dij using the linkage function in the
SciPy hierarchical clustering package [23], and we used a maximum distance criterion to identify
flat SNV clusters from the resulting UPGMA dendrogram. We used an empirically calibrated
distance threshold derived from the patterns of read cloud sharing in B. vulgatus. Fig. S14 shows
the distribution of distances dij for pairs of SNVs in Fig. S13 with significant rates of read cloud
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sharing, stratified according to the linkage categories described in Section 7.4. As expected, SNVs
that are observed to be in perfect linkage have a mode near dij ≈ 1, consistent with our theoretical
predictions above. However, we also observe two additional modes at much larger distances, similar
to SNV pairs in complete LD or where all four haplotypes are present. We assumed that the first
mode reflects SNV pairs that are truly in perfect LD, while the second two modes reflect mis-
classified SNV pairs produced by finite sampling effects (e.g., not observing the third haplotype in
a small sample of read clouds) or within-population variation in the genomic locations of different
SNVs. In either case, this finding suggests that naive clustering based on read cloud sharing alone
is likely to yield a substantial fraction of false positives. Based on this data, we estimated a distance
threshold of d∗ ≈ 3.5 that separates the perfect linkage mode from the modes at higher distances.
We used this threshold to form flat SNV clusters using fcluster function in SciPy [23], and we
used the relative values of d−ij and d+ij to determine the relative polarization of the SNVs in each
cluster. We then estimated a frequency trajectory for each cluster by summing up the ancestral
and derived read counts of the polarized SNVs.

When applied to B. vulgatus, this methods suggests that ≈85% of the SNVs can be grouped
into just 3 SNV clusters, which persist at intermediate frequencies throughout the sampling period
(Fig. S8). The trajectories of the three clusters suggest a mixture of three dominant haplotypes:
(i) the ancestral alleles of all three clusters, (ii) the derived alleles of the blue and green clusters
and the ancestral allele of the orange cluster, and (iii) the derived alleles of the green and orange
clusters and the ancestral allele of the blue cluster. In this case, the three SNV clusters contain a
sufficiently large number of SNVs that we can test this hypothesis directly using the patterns of
read cloud sharing between SNVs in each cluster (Fig. S8, Supplementary Data 7). This analysis
confirms that each of the clusters is consistent with perfect LD, while the linkage across clusters
was consistent with the haplotype structure above. This provides a striking example of the oligo-
colonization model suggested by Ref [3] and others, in which just a few distantly related strains
can be maintained at intermediate frequencies in the same host.

We used this same approach to cluster the temporally variable SNVs in Fig. 3. To boost
computational efficiency for species with large numbers of SNVs, we used a modified version of
UPGMA clustering in which flat clusters are seeded using a random subset of 1000 of the temporally
variable SNVs, and the remaining SNVs are assigned to those clusters if the distance between the
cluster trajectory and the SNV trajectory was < d∗. This results in a 10-fold speedup for species
like E. eligens and B. vulgatus, with minimal loss of accuracy.

9 Distinguishing between genetic drift and natural selection in allele
frequency time series

To show that the allele frequency changes in Fig. 3 are inconsistent with a simple model of genetic
drift, we developed a new statistical test to compare these data against the standard Wright-Fisher
diffusion,

∂f

∂t
=

√
f(1− f)

Ne
η(t) , (30)

where Ne is an effective parameter describing the (constant) strength of genetic drift and η(t) is
a Brownian noise term. Note that f(t) here is the true allele frequency, rather than the sample
frequency f̂t estimated from the read counts. The two are connected through an additional sampling
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process,

At ∼ Binomial(Dt, f(t)) , (31)

where At and Dt respectively denote the alternate allele count and total coverage at timepoint t.
at the observed coverage Dit. Together, Eqs. (30) and (31) constitute a hidden Markov model for
the observed frequency trajectory with two unknown parameters: the effective population size Ne

and the value of f(t) at some reference timepoint t0 (discussed in more detail below). The goal is
to determine when a single realization of this stochastic process is sufficient to rule out the general
class of models described by Eq. (30).

Several previous approaches have been developed to address this problem [24–29]. The vast
majority of these methods attempt to reject the model in Eq. (30) by comparing it to a model with
an explicit natural selection term,

∂f

∂t
= sef(1− f) +

√
f(1− f)

Ne
η(t) , (32)

with a constant effective selection coefficient se. In this case, rejecting the neutral model in Eq. (30)
is equivalent to showing that se is significantly different from zero.

However, in large microbial populations, the natural selection term may behave very differently
from the simple form assumed in Eq. (32). For example, genetic linkage between selected mutations
will generally cause the selection coefficient to take on a time dependent form,

∂f

∂t
= se(t)f(1− f) +

√
f(1− f)

Ne
η(t) , (33)

where se(t) is the difference between the mean fitness of all the haplotypes that cary the alternate
allele and the mean fitness of the haplotypes that carry the reference allele. The effective selection
coefficient in Eq. (33) may only be tangentially related to the direct selection pressure on the
allele itself, since it emerges from a sum of selection pressures across many genomic loci. Since
the frequencies of the underlying haplotypes will generally shift over time, the effective selection
coefficient can be time-dependent even when the fitnesses of the underlying haplotypes are fixed.
Furthermore, we note that our present study focuses on a highly non-equilibrium scenario involving
the transient introduction and removal of antibiotics, as well as the correlated perturbations this
induces in the species level composition of the community. It is therefore reasonable to suppose that
selection pressures will vary over time due to these external reasons as well. We therefore require
methods for distinguishing Eq. (30) from the more general class of selection models encoded in
Eq. (33).

A simple extension of the existing parametric approaches proves to be difficult, since Eq. (33)
is capable of fitting any frequency trajectory exactly with the appropriate choice of se(t). We
therefore developed a goodness-of-fit test to directly quantify how unlikely the observed data are
under the model in Eq. (30), without explicitly comparing to Eq. (33).

The basic idea behind our approach is simple: though there is considerable freedom to generate
different trajectories under the random process in Eq. (30), these trajectories must still satisfy
several statistical regularities. For example, genetic drift requires a time of order ∆t ∼ Ne to shift
the allele frequency from low frequencies (e.g. 20%) to high frequencies (e.g. 80%). If we observe
a shift in frequency of this magnitude over a time interval ∆t, then we know that Ne ∼ ∆t, and
the corresponding shifts in frequency across all the other time intervals in the trajectory must be
consistent with this estimate. In particular, there is a high probability that the mutation will have
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either fixed or gone extinct after another ∆t generations. Thus, a characteristic signal against the
constant genetic drift model in Eq. (30) arises when the frequency changes by a large amount in
some time intervals, and then changes more slowly in others, particularly if the allele is close to
one of the boundaries at the later timepoints.

Our present method is an attempt to make this intuition precise, while accounting for the
additional complications of sampling noise and the fact that we have conditioned on observing at
least one large frequency change in scanning for temporally variable SNVs in Section 5.5.1. As a
goodness-of-fit statistic, we used likelihood of the data under the best fit model from the class in
Eq. (30):

Λ({At}) = − log Pr[{At}|{Dt}, N̂e] , (34)

where N̂e is the best-fit value of Ne.
Since we are working with a hidden Markov model, the log-likelihood can be calculated efficiently

using standard dynamic programming approaches. In particular, the backward table is defined by
the recursion relation,

B(f, tk−1) =

∫
df ′p(f ′|f,∆t = tk − tk−1, Ne) · Pr(Atk |Dtk , f

′) ·B(f ′, tk) , (35)

where Pr(A|D, f) is the binomial sampling distribution in Eq. (31) and p(f ′|f,∆t,Ne) is the tran-
sition probability defined by the diffusion process in Eq. (30). We calculated this transition prob-
ability by exploiting the known equivalent between the diffusion process and discrete individual
Wright-Fisher model at a finite value of Ne:

p(f ′|f,∆t = 1, Ne) =

(
Ne

Nef ′

)
fNef

′
(1− f)Ne(1−f

′) , f, f ′ = 0,
1

Ne
, . . . ,

Ne − 1

Ne
, 1. (36)

Extensions to ∆t > 1 can be obtained by simple matrix multiplication. The likelihood follows from
integrating the backward table over the initial frequency

Pr[{At}|{Dt}, Ne] =

∫
dfp0(f0)B(f0, t0) , (37)

where p0(f0) is a prior distribution described in more detail below.
To account for the additional conditioning caused our scan for temporally variable SNVs, we

split the trajectory into two smaller segments. The latter segment contains all the timepoints
after the sample frequency first exceeded 70%, while the prior segment contains all the timepoints
before this point from the initial timepoint until the sample frequency was last below 20%. Any
timepoints that fall between the two segments (typically the antibiotic timepoints) were excluded
from further analysis. We then approximated the likelihood of the full trajectory as the product
between independent trajectories for the later and prior segments:

Pr[{At}|{D}, Ne] = Pr[{At}prior|{D}, Ne] · Pr[{At}latter|{D}, Ne] . (38)

The likelihood of the latter segment can be calculated from the algorithm described above, while
the likelihood of the prior segment can be calculated from the same algorithm using the time-
reversed version of the trajectory, where the final timepoint of the prior segment is used as the
initial timepoint of the time-reversed process.

Using this approach, we evaluated the likelihood of a given trajectory across a grid of 11
logarithmically spaced Ne values, and we identified the maximum likelihood estimator,

N̂e = argmaxNePr[{At}|{D}, Ne] . (39)
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Since the “initial” timepoints for the likelihood calculation were chosen to be in the interior of the
trajectory, we used a uniform prior for f0 in Eq. (37). Using the inferred value of N̂e, we simulated
n = 10, 000 bootstrapped trajectories from the null model in Eq. (30). For each trajectory, we
calculated the goodness-of-fit statistic Λ in Eq. (34), and we compared it to the observed value
of Λ calculated from the data. We then defined a P -value based on the fraction of bootstrapped
samples that were more extreme than the corresponding value of Λ for the observed trajectory:

P = Pr[Λ ≥ Λobs] ≈
1 +

∑n
`=1 θ(Λ` − Λobs)

n+ 1
. (40)

We applied this approach to the temporally variable SNV trajectories from the example species
in Fig. 3. To minimize the effects of sampling noise, we we merged the alternate and reference
read counts from each SNV cluster into a single effective trajectory (up to a maximum coverage of
D = 2000 in any individudal timepoint). We carried out this procedure for the full timecourse, as
well as a second version where we fit a different value of Ne separately for each of the two segments.
The P -values for the combined timecourse, as well as for the individual segments are shown in
Supplementary Table 3. The neutral model in Eq. (30) provides a poor fit to the observed data for
all species except A. finegoldii.
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Supplementary Table 1: List of samples and associated metadata.

Supplementary Table 2: DNA yield and quality from different extraction methods.

Supplementary Table 3: Evidence for natural selection in SNV frequency trajectories. Results of
the natural selection test in Section 9 for each of the species in Fig. 3.
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Supplementary Data Files

Supplementary Data 1
List of SNV differences shown in colored lines in Fig. 3. SNV clusters with more than 300 SNVs
(e.g. E. eligens) were randomly downsampled to ∼300 SNVs.

Supplementary Data 2
Statistics of read cloud sharing between SNV differences in Fig. 3.

Supplementary Data 3
Analogous version of Supplementary Data 1 for Fig. S5.

Supplementary Data 4
Analogous version of Supplementary Data 1 for Fig. S6.

Supplementary Data 5
Fragment analyzer output for HMW DNA samples used in this study (Part 1/2).

Supplementary Data 6
Fragment analyzer output for HMW DNA samples used in this study (Part 2/2).

Supplementary Data 7
Aggregate patterns of read cloud sharing for each of the SNV clusters in the B. vulgatus example
in Fig. S8.
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