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Abstract: With the recent advances in single-cell RNA-sequencing (scRNA-seq) technologies, 
estimation of allele expression from single cells is becoming increasingly reliable. Allele expression 
is both quantitative and dynamic and is an essential component of the genomic interactome. Here, 
we systematically estimate allele expression from heterozygous single nucleotide variant (SNV) loci 
using scRNA-seq data generated on the 10x Genomics platform. We include in the analysis 26,640 
human adipose-derived mesenchymal stem cells (from three healthy donors), with an average 
sequencing reads over 120K/cell (more than 4 billion scRNA-seq reads total). High quality SNV calls 
assessed in our study contained approximately 15% exonic and >50% intronic loci. To analyze the 
allele expression, we estimate the expressed Variant Allele Fraction (VAFRNA) from SNV-aware 
alignments and analyze its variance and distribution (mono- and bi-allelic) at different cutoffs for 
required minimal number of sequencing reads. Our analysis shows that when assessing SNV loci 
covered by a minimum of 3 unique sequencing reads, over 50% of the heterozygous SNVs show bi-
allelic expression, while at minimum of 10 reads, nearly 90% of the SNVs are bi-allelic. Consistent 
with single cell studies on RNA velocity and models of transcriptional burst kinetics, we observe a 
substantially higher rate of monoallelic expression among intronic SNVs, signifying the usefulness of 
scVAFRNA to assess dynamic cellular processes. Our analysis demonstrates the feasibility of scVAFRNA 
estimation from current scRNA-seq datasets and shows that the 3’-based library generation 
protocol of 10x Genomics scRNA-seq data can be highly informative in SNV-based analyses. 

Keywords: single cell; VAFRNA; sc-VAFRNA; sc-RNA-seq; monoallelic expression; SNV; genetic variation; 
RNA-seq; single cell RNA sequencing, single cell RNA-seq 

 

1. Introduction 

In the last several years, single cell RNA-seq (scRNA-seq) has become an accessible platform for 
genomic studies [1-3]. By enabling cell-level transcriptome analyses, scRNA-seq brings a major 
advantage over the conventional averaged bulk RNA-seq: the ability to assess intracellular 
relationships between molecular features. With the recent advances in the scRNA-seq technologies, 
estimations of genetic variation from scRNA-seq data are becoming reliable [4, 5] and several studies 
have demonstrated their usefulness in addressing key biological and clinical questions [6-18].   

Genetic variants are traditionally called from DNA and often analyzed and interpreted in their 
context genotypes (for diploid organisms, homo- or heterozygous). For expressed loci, genetic 
variation can be also assessed from RNA-seq data [19-22], by calculating the variant allele fraction, 
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(VAFRNA= nvar / (nvar + nref), where nvar and nref, are the variant and reference read counts, respectively). 
VAFRNA is an informative measure of genetic variation for several reasons. First, as compared to the 
categorical genotypes (DNA allele count of 0, 1 and 2), VAFRNA is a continuous measure allowing for 
precise allele quantitation, which is important for sites where VAFRNA functions as a continuous 
metric. These include loci exhibiting preferential expression of functional alleles, somatic mutations 
in cancer, and RNA-editing loci. Second, in contrast to the (static) genotypes, VAFRNA is dynamic and 
reflects the actual allele content in the system at any particular time, which allows for the assessment 
of dynamic and progressive processes [23-25]. Importantly, through primarily reflecting genetic 
variation, VAFRNA is an essential component of the genomic interactome and plays a major role in 
phenotype formation [26-30]. 

However, a systematic analysis of the feasibility of VAFRNA estimations from 3’-based scRNA-seq 
libraries, and its usefulness to address biological questions has not yet been performed. One of the 
basic biological processes assessed through VAFRNA is the prevalence of random monoallelic 
expression (RME) across the diploid mammalian genome. Several recent scRNA-seq studies have 
described widespread RME in both human and murine models [15-17]. Most of these studies 
analyzed scRNA-seq data generated on full-length transcript platforms from hundreds of cells.  

Here, we demonstrate a pipeline to estimate VAFRNA from scRNA-seq data obtained from 10x 
Genomics Chromium platform [31]. We have selected this platform due to its growing popularity 
along with: (1) high throughput (our analysis includes 26,640 cells obtained from three healthy 
donors), (2) high depth of sequencing (~150,000 sequencing reads per cell), and, (3) support for 
unique molecular identifiers (UMI) for removal of PCR-related sequencing bias. Because VAFRNA is 
sensitive to allele-mapping bias [24,25], we use SNV-aware alignments where reads mapped 
ambiguously due to the variant nucleotide are removed [32]. From the SNV-aware alignments, we 
systematically assess the ability to estimate VAFRNA using three different thresholds for minimum 
required number of unique sequencing reads (minR) - 3, 5 and 10. We compare outputs across 
thresholds and individuals, and outline lists of consistent observations. We also demonstrate an 
approach to assess RME, and compare the results from scRNA-seq generated on 10x Genomics 
Chromium with studies based on different platforms. 

2. Materials and Methods  

2.1. Data 

We used publicly available scRNA-seq data from 26,640 human cells from three healthy donors 
(N8, N7 and N5); the scRNA-seq data was generated on 10x Genomics Chromium v2 platform [31]. 
The library preparation and sequencing are described in detail elsewhere [31]. Briefly, cells were 
partitioned using 10x Genomics Single Cell 3ʹ Chips, and barcodes to index cells (14 bp) as well as 
transcripts (10 bp UMI) were incorporated. The constructed libraries were sequenced on an Illumina 
NovaSeq 6000 System in a 2 × 150 bp paired-end mode.  

2.2. scRNA-seq data processing  

The processing pipeline is shown on Figure 1. First, we extracted cell barcodes and UMIs using 
UMI-tools from the pooled (per donor) raw sequencing reads [33]. Next, we aligned the reads to the 
latest version of the human genome reference (GRCh38, Dec 2013) using STAR v.2.7.3.c [34] in 2-
pass mode with transcript annotations from assembly GRCh38.79. We then called SNVs in the pooled 
alignments using GATK v.4.1.4.1 [20]. We selected heterozygous SNVs based on the presence of 
minimum of 50 high quality reads supporting both (reference and alternative) nucleotide in the 
pooled alignments. From those, we retained for further analysis heterozygous SNVs matching the 
following requirements: QUAL (Phred-scaled probability) > 100, MQ (mapping quality) > 60, QD 
(quality by depth) > 2, and FS (Fisher’s exact test estimated strand bias) = 0.000). In addition, after 
annotation (SeattleSeq v.13.00, dbSNP build 150) we removed SNV loci positioned in repetitive or 
intergenic regions. The SNV lists for each donor were then used as an input for a second, SNV-aware 
alignment using STAR, this time including the WASP-option [32, 34] for removal of reads mapped 
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ambiguously due to the variant nucleotide. The SNV-aware alignments were dedupplicated keeping 
the reads with the highest mapping scores using the UMIs, and demultiplexed using the cell barcodes. 
The raw gene counts were estimated using featureCount [35], after which the gene counts were 
normalized and scaled using Seurat v.3.0 [36]. The gene counts were then used to remove cells with 
low quality data, defined as less than 3,000 detected genes and/or mitochondrial genes’ expression 
higher than 6% of the total gene expression. We estimated VAFRNA on the individual alignments from 
the cells with high quality data using ReadCounts [26] with three different thresholds for minimum 
required number of reads (minR): minR = 10, minR = 5, and minR = 3. 

 
3. Results 

 
3.1. Overall findings 

 
The before- and after-filtering distributions of genes and sequencing reads is shown on Figure 2. 

The number of individual single cells with high quality data retained for further analysis was 8533, 
8125 and 9115 for N8, N7 and N5, respectively. In these cells, we estimated VAFRNA in 50,532 SNV loci 
in N8, 61,407 loci in N7, and 38,822 loci in N5, which were the number of loci retained after filtering 

for heterozygosity, quality, and position in intragenic non-repetitive regions. To support multi-cell 
estimations, we retained for statistical analyses only positions for which VAFRNA is estimated from the 
selected number of unique sequencing reads (minR) from a minimum of 10 individual cells. 
Accordingly, unless otherwise indicated, the hereafter presented analyses are assessments from a 
minimum of 10 cells (per donor). For minR = 10, the absolute number of these positions was 366, 431 
and 277 for N8, N7 and N5, respectively. This number was approximately 4-fold higher for positions 
assessed at minR = 5 and up to 20x-higher for positions at minR=3; the outputs are summarised in 

Figure 1. Analytical workflow for estimation of VAFRNA from sc-RNA-seq data. 

 

nGenes nCounts percent.mt nGenes nCounts percent.mt nGenes nCounts percent.mt

N8 N7 N5

Before 
filtering

After 
filtering

Figure 2. Number of genes, number 
of sequencing reads and percent 
mitochondrial genes for N8, N7 and 
N5 before (top) and after (bottom) 
filtering out of cells with low 
quality data. 
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Table 1. We note that the relaxed thresholds are inclusive for the more stringent ones (i.e. minR = 5 
loci include the loci at minR = 10, etc.). Of note, between 6 and 14% of all captured SNVs have been 
previously associated with clinical phenotype or highlighted by GWAS analyses (See Table 1). 

 
Table 1. Summary statistics for the scRNA-seq data of the 3 ADSC samples. We estimated the 
number of SNV loci in at least 10 individual cells with different requirements for minimum number 

of unique reads (minR), and from those, the number of SNVs associated with phenotype. 
 

3.2. Position-based SNVs annotation 

To assess the distribution of the SNVs in regard to their position in the gene and predicted 
functionality, we annotated the SNVs via SeattleSeq (v13, dbSNP build 150); the distribution of 
functional annotations at each of the three thresholds is shown on Figure 3.  

At minR = 10, close to three-quarters of the captured SNV loci were positioned in the 3’-UTRs of 
the transcripts, while at minR = 5 this proportion decreased to slightly over 50%. At minR = 3 
approximately a quarter of the captured SNVs were positioned in the 3’UTR, while the intronic SNVs 
increased in proportion to more than 50%. At all thresholds, over 15% of the SNVs were exonic. The 
complete annotations are shown in Supplementary Tables 1-3. 

 
3.3. Allelic expression from single cells at SNV level 

 
To assess allelic expression from single cells, we analyzed VAFRNA at all SNV loci covered with the 

required number of sequencing reads (minR = 10, 5 and 3), in at least 10 individual cells. For each 
VAFRNA estimation in each cell, we computed a number of statistics, including mean, median, and 
percentage of mono- and bi-allelic expressing cells (See also Supplementary Tables 1-3). At all 
thresholds, the distribution of the VAFRNA mean and median values was generally symmetrical in 
regard to the VAFRNA scale (Supplementary Figure 1). At all thresholds, more than half of the SNVs 
presented with bi-allelic expression (0.2<VAFRNA<0.8, Table 2). Specifically, VAFRNA obtained at minR 
= 3 shows biallelic expression for over 50% of the SNVs, and this proportion increases to 
approximately 90% when confining the analysis to VAFRNA estimated at minR = 10. 

N8 N7

Chart Title

3-prime-UTR
synonymous
intron
missense
non-coding-exon
5-prime-UTR
synonymous-near-splice
intron-near-splice
downstream-gene
upstream-gene
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stop-gained
splice-donor

N5
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Figure 3. Functional annotation 
(based on the position in regard 
to the harboring genes) of SNVs 
captured by the 10x Genomics 
platform with different required 
minimal count of unique 
sequencing reads. At minR = 5, 
over 45% of the SNVs are 
positioned downstream from 
the 3’-UTR regions. 
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N8 9,256 1,285,218,728 138,852 5,559 9,115 366 1,567 7,253 47 181 552 

N7 8,478 1,579,342,505 186,287 6,049 8,125 431 1,994 9,032 57 184 568 

N5 8,906 1,071,156,174 120,273 5,439 8,533 277 1,134 5,357 23 134 422 
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Table 2. Percent mono- and bi-allelic expression of SNVs covered with different required minimum 
count od sequencing reads. *Predominantly monoallelic expression is inclusive for strict monoallelic 
expression. 
 

 
 
The distribution of scVAFRNA estimations at minR = 10, 5 and 3 for all the heterozygous SNVs in 

the corresponding sample is shown on Figure 4; the histograms include bins for strictly mono-allelic 
expression, defined as VAFRNA values of 0 and 1. 

We next compared our observations to one of the largest previous studies that uses VAFRNA on 
human scRNA-seq data [17]. The VAFRNA distribution in our data observed at minR = 3 is similar to that 
in Borel et al [17] and is consistent with frequent RME of low- and moderately expressed genes [14-
17]. In contrast, at minR = 5, strictly mono-allelic VAFRNA measurements represented less then half of 
those with VAFRNA = 0.5 + 0.1, while at minR = 10 we observed gradual decrease of the number of 
measurements from VAFRNA = 0.5 + 0.1, towards VAFRNA values of 0 or 1.   

Next, we analyzed the data per SNV, across all the cells from which the VAFRNA was estimated at 
the required minR. For this analysis, to compare findings to Borel et al [17], we used similar definitions 
for allelic expression. Specifically, as monoallelic expression (including RME) we defined SNVs for 

Sample 

% strictly monoallelic 
VAFRN A = 0 or 1 

% predominantly monoallelic* 
VAFRN A = 0 – 0.2 or 0.8 - 1 

% biallelic 
VAFRN A = 0.2 - 0.8 

minR 10 minR 5 minR 3 minR 10 minR 5 minR 3 minR 10 minR 5 minR 3 

N8 4.4 15.1 38.2 16.1 30.6 45.5 83.9 69.4 54.5 

N7 2.9 15.8 41.3 13.1 30.3 47.9 86.9 69.7 52.1 

N5 2.4 12.5 35.9 10 26.1 42.0 90 76.9 58.0 

 

Figure 4. Histograms 
representing the distribution of 
scVAFRNA at minR = 10 (top), 
minR =5 (middle) and minR = 3 
(bottom) for all the 
heterozygote SNVs in N8, N7 
and N5. The bin width (x-axes) 
is 0.1; bin intervals are 
indicated in the middle of each 
plot. The y-axes show the 
numbers of VAFRNA 
measurements in the 
individual cells. The total 
number of VAFRNA estimations 
(n, across all the cells per 
group) is shown on the top of 
each histogram. The 
histograms are scaled in 
regards to number of cells. 
Across the entire dataset, at 
minR=10 and minR=5, the 
majority of the SNVs showed 
biallelic expression centered 
around VAFRNA of 0.5 (0.4 < 
VAFRNA < 0.6). In contrast, at 
minR = 3, the majority of the 
SNVs presented with strict 
monoallelic expression 
(VAFRNA = 0 or 1). The VAFRNA 
distributions showed 
remarkable similarity across 
the three individuals (N8, N7 
and N5).  
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which fewer than 5% of the cells displayed VAFRNA between 0.2 and 0.8 (0.2<VAFRNA<0.8). Skewed 
allelic expression was assigned to SNVs where less than 10% of the cells expressed one type of allele 
and the rest expressed either the second allele or both alleles (<80% cells with 0.2 < VAFRNA < 0.8). 

VAFRNA distributions for all the SNVs (genome-wide) assessed from a minimum of 1000 cells are 
plotted on Figure 5. Aligned with the above observations, at minR = 10, the majority of the SNV loci, 
had biallelic expression, with substantial proportion of the cells having scVAFRNA estimations between 
0.2 and 0.8; this proportion gradually decreased at the lower thresholds, but remained above 50% at 
minR = 3. 

 
 
3.4. Allelic expression from single cells at gene level 

We analyzed allele-specific expression at gene level, again, comparing our findings to [29]. We 
first performed this analysis at minR=10, at which cutoff 21 genes from our dataset overlapped with 
the 60 genes highlighted in Borel et al [17] (Figure 6, top); all 21 genes showed biallelic expression in 
a complete agreement. From the above-mentioned 60 genes, autosomal genes with RME were 
observed only at minR = 3 in our dataset, all of them in complete concordance with Borel at el [17]. 
Examples of such genes are shown (Figure 6, bottom), including the strictly monoallelic RAD52. Out 
of the 12 genes with reported skewed allelic expression, 4 were present in our dataset: CNN3, 
C12orf75 and CCDC80 had skewed expression, while SPC3 showed symmetrically distributed alleles 
in both samples where it was detected (See Supplementary Table 3).  

In this gene-set, for genes with multiple SNVs, we observed concordant allelic expression (See 
COL1A2, SPARC, CCDC80, and MGST1 on Figure 6). We also observed complete concordance across 
the three individuals for the SNVs shared between donors; SNVs common for the three donors and 
assessed from more than 50 cells per donor are shown on Figure 7 (chromosome 1, the rest of the 
chromosomes showed similar results; see also CAP1, DAD1, SPARC, MGST1, CD44, STARD7 on Figure 
6).  

Figure 5. scVAFRNA 
estimated at 
positions covered by 
a minimum of 10 
sequencing reads 
(top), 5 sequencing 
reads (middle) and 
3 sequencing reads 
(bottom) across 
more than 1000 
cells. For the 
majority of the 
positions, VAFRNA 
showed biallelic 
expression, with 
substantial 
proportion of the 
scVAFRNA 
estimations in the 
interval 0.4 – 0.6.   
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Next, we assessed mono- and bi-allelic SNV-expression at gene level across our entire dataset. 
We confined this assessment to SNVs seen in a minimum of 50 cells per sample; 7408 SNVs in 3406 
genes were eligible for this analysis at minR=3 across the three donors. Predominant RME (fewer 
than 5% of the cells with VAFRNA between 0.2 and 0.8) was seen in 451 SNVs positioned in 376 genes; 
from those, 49 SNVs in 42 genes did not have any cells expressing both alleles.  

We next assessed if the allelic status is consistent across multiple SNVs from the same gene. To 
do this, we pooled the SNVs from the three donors together and selected genes with more than 3 
SNVs, each assessed from a minimum of 50 cells per donor; 3922 SNVs in 815 genes were available 
for this analysis. The first striking observation was that, for the majority of the genes, intronic SNVs 
have substantially higher rates of monoallelic expression, as compared to SNVs in the spliced mRNA 
(Figure 8). This was evident both at the level of the individual genes (examples shown on Figure 8a),  
and genome-wide, where the average proportion of cells expressing both alleles (0.2<VAFRNA< 0.8)  
was significantly lower for SNV positioned in introns, as compared to SNVs in exons and UTRs (Figure 

Figure 7. Percentage of cells (y-axis) displaying VAFRNA<0.2 (for each cluster of three, left), VAFRNA between 0.2 and 0.8 
(middle), and VAFRNA > 0.8 (right) in the three donors (N5 – dark blue, N7-light blue, N8 – grey). High concordance 
between the three donors is seen; SNVs on chromosome 1 are shown, the results were similar genome-wide. 

Figure 6. scVAFRNA distribution at positions covered by a minimum of 10 sequencing reads (top), and 3 sequencing reads 
(bottom) across more than 1500 cells for genes reported by Borel et al [17]. For the positions with minR = 10, no RME was 
suggested by the scVAFRNA distribution for autosomal genes (i.e. multiple scVAFRNA values between 0.4 – 0.6, while 
positions covered with minR = 3 showed frequent monoallelic signals (scVAFRNA > 0.8 or scVAFRNA < 0.2. As expected, chrX 
shows strong RME patterns (see gene TSPAN6). 

VAFRNA

< 0.2
0.2  - 0.4
0.4  - 0.6
0.6  - 0.8
< 0.8
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8b). Aligned with the above, the proportion intronic SNVs was significantly higher among the genes 
with RME (p < 2.2e-16, chi-square test, Figure 8c). Within the groups of intronic and non-intronic 
SNVs in the same gene, highly consistent VAFRNA distributions were observed. 

4. Discussion 

Our analysis includes more than 4 billion RNA-seq reads and over 7.8 million individual scVAFRNA 
estimations, making it, to our knowledge, the largest study on SNV-based allele-specific expression 
from human scRNA-seq data. We note that, as we do not have the genotypes to select heterozygous 
loci, we confined our analysis to SNVs that are confidently bi-allelic (a minimum of 50 reads 
supporting each allele from the pooled RNA-seq data per donor). By default, this selection excludes 
heterozygous SNVs with strong non-random mono-allelic expression (which would appear as 
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monoallelic in the pooled RNA-seq data). Therefore, the presented here results need to be 
considered strictly in the light of this selection.   

We use the advantage of the large number of cells (over 24K) and high sequencing depth (150K 
reads per cell) to explore the feasibility of scVAFRNA estimations, and define a set of scVAFRNA 

characteristics. Our results show that SNV assessment from scRNA-seq generated through the 3’-
based 10x Genomics platform can be highly informative for several reasons.  

First, the annotation of the captured variants (See Figure 3) supports analyses on variant 
functionality. As expected, 10x-Genomics scRNA-seq data contains a significant proportion of the 
gene 3’-UTR variants, which are known to strongly affect both gene expression and splicing [37-41]. 
In addition, approximately 15% of the captured SNVs are exonic, and include missense, nonsense, 
and near-splice variants, many of which can potentially affect the protein structure and function (See 
Supplementary Tables 1-3). Importantly, the platform captures a substantial number of intronic SNVs. 
Intronic sequences are reported in 15-25% of the RNA-sequencing reads from both bulk and single-
cell based studies [18, 42, 43]. ScRNA-seq intronic sequences can be used to estimate the relative 
abundance of precursor and mature mRNA, thereby assessing the RNA velocity, and respectively, 
cellular dynamic processes [18]. Consistent with a major recent study on RNA velocity [18] and 
models of transcriptional burst kinetics [13-15] we observe significantly higher monoallelic expression 
for intronic SNVs as compared to non-intronic SNVs in the same gene (See Figure 8). Specifically, it is 
established that at times of increased transcription, unspliced precursors are rapidly produced (often 
from one of the alleles), and conversely the proportion of unspliced mRNAs is quickly lessened during 
times of reduced transcription. Therefore, at any given moment a single cell is likely to contain 
unspliced precursors produced from one of the alleles, compared to the longer-living spliced mRNAs 
of the same gene, which are more likely to accumulate both alleles over time. Because the balance 
of unspliced and spliced mRNA abundance is predictive for the future state of the mature RNA [18], 
scVAFRNA analyses can be applied to assess dynamic cellular processes. 

Second, to our knowledge, this is the first study to estimate allele expression from a minimum 
of 10 unique sequencing reads from scRNA-seq data. Our findings mostly agree with previous studies 
and also indicate, that at such stringency the majority of the autosomal genes show largely symmetric 
biallelic expression. This effect is expected given that genes captured with a minimum of 10 unique 
sequencing reads from a single cell correspond to highly expressed genes, which are frequently 
associated with house-keeping functions [44]. We provide this data (minR = 10, Supplementary Table 
1), together with the estimations at minR = 5 and minR = 3 (Supplementary Tables 2 and 3) which can 
be used for analyses of allele-specific expression both genome-wide and at the level of individual 
genes of interest.  

Third, we present a set of characteristics of VAFRNA obtained from scRNA-seq data. Several factors 
facilitate the applicability of VAFRNA to assess functional genetic variants (from both bulk and scRNA-
seq data). First, as mentioned earlier, VAFRNA allows for precise allele quantitation, particularly 
important for sites with allele-specific regulation, RNA-editing, and somatic mutations in cancer. Here 
it is important to note that allele mapping bias might be critical for accurate VAFRNA estimation, 
especially from loci with a low number of sequencing reads as is common in scRNA-seq data. We 
correct our alignments for allele-mapping bias using the WASP package [32]. WASP is implemented 
in the latest versions of the herein used popular alignment STAR [20], which significantly streamlines 
the data processing, especially for datasets with predefined lists of SNV loci of interest (i.e. available 
genotypes, lists of known SNVs of interest such as RNA-editing, dbSNP, etc.). Second, VAFRNA is 
dynamic and reflects the actual allele content in the cell at a particular moment in time. In scRNA 
studies, where the different cells are commonly in gradual states of progressive processes, VAFRNA 
analyses can be adopted to study lineages and cellular dynamics. Third, VAFRNA can be used to study 
functional SNVs from sets where matched DNA (and, respectively genotypes) is not available [24,25]. 
Ultimately, these analyses apply to expressed SNVs and will not capture loci positioned in 
transcriptionally silent regions. The single-cell resolution of this approach brings further advantages. 
First, due to preservation of intracellular relationships between molecular features, single-cell 
analyses facilitate the discovery of correlations between SNVs and other transcriptome features, such 
as gene expression or splicing. Finally, scRNA-seq projects typically utilize cells with (largely) identical 
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genotypes (i.e. from the same system/individual), thus supplying context for assessment of SNVs 
implicated in RNA-specific regulation. 

5. Conclusions 

In conclusion, we present a large SNV-focused study on allele expression from scRNA-seq data 
that addresses three major technical factors known to bias single cell allelic studies: PCR-related bias, 
allele-mapping bias, and a low number of sequencing reads. To facilitate similar studies, we describe 
a step-by-step approach for confident scVAFRNA estimations. Our study is largely consistent with 
existing knowledge, reports findings on previously unassessed genes and SNVs, and supplies datasets 
for further analyses. In addition, our analysis demonstrates the feasibility of scVAFRNA estimation from 
current scRNA-seq datasets and shows that the 3’-based library generation protocol of 10x Genomics 
scRNA-seq data can be highly informative in SNV-based analyses.  

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, 
S_Figure_1_Mean_and_Median_VAFRNA, S_Table_1_SNV_loci_minR10_10cells, 
S_Table_2_SNV_loci_minR5_10cells, S_Table_3_SNV_loci_minR10_10cells. 
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