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Abstract: 

Currently most methods take manual strategies to annotate cell types after clustering 

the single-cell RNA-seq data. Such methods are labor-intensive and heavily rely on 

user expertise, which may lead to inconsistent results. We present SCSA, an 

automatic tool to annotate cell types from single-cell RNA-seq data, based on a score 

annotation model combining differentially expressed genes and confidence levels of 

cell markers in databases. Evaluation on real scRNA-seq datasets from different 

sources shows that SCSA is able to assign the cells into the correct types at a fully 

automated mode with a desirable precision. 

 

Introduction 

Recent development of single-cell RNA sequencing (scRNA-seq) methods has 

enabled unbiased, high-resolution transcriptomic analysis of individual cells in a 

heterogeneous cell population [1-4]. scRNA-seq methods have been used to 

characterize thousands to millions of cells in developing embryos [5], immune cells 

[6], complex tissues such as brain [7] and tumor [8], which have greatly promoted our 

understanding of human development and diseases. 

 At the core of myriad scRNA-seq applications is the ability to identify different 

cell types and cellular states from a complex cell mixture based on gene expression 

profiles. Unsupervised clustering methods such as principal components analysis 

(PCA) and T-distributed stochastic neighbor embedding (t-SNE) have been developed 

to partition the cells based on the similarity of their gene expression patterns [9, 10]. 

Although computational toolkits such as Cell Ranger[11] and Seurat [12] have 

automated the analysis steps from raw data processing to cell clustering, they leave it 

to the user to provide the biological interpretation of these cell clusters [10].  

   A common practice is to manually assign a cell type to each cluster based on 

differentially expressed genes between clusters, by consulting the literature for 

cell-type specific gene markers. However, it is not only a labor-intensive process, but 

also may generate biased results with uncontrolled vocabularies for cell type labels, 
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making it impossible to compare between different datasets. Expert-curated 

knowledge databases such as CellMarker [13] and CancerSEA [14], have been 

developed to provide a comprehensive and unified resource of cell markers for 

various cell types in human and mouse tissues. Yet it is still rely on the users to 

manually label the cells based on the information. An automated tool is needed for the 

reproducibility and consistency of cell type annotation.  

To overcome these difficulties and to streamline the cell type assignment process 

for scRNA-seq data, we developed SCSA, an algorithm that can automatically assign 

cell types for each cell cluster in scRNA-seq data. SCSA follows the logic of the 

manual annotation that marker genes of known cell types highly expressed in a cell 

cluster could be used to label the cluster. To mimic the human decision-making 

process, SCSA exploits a score annotation model that accounts for differentially 

expressed genes, the confidence levels of the marker genes and discrepancies of 

marker genes in different cell marker databases. For cell clusters lacking known cell 

markers, SCSA will also perform a GO enrichment analysis and report the results to 

give some clues to the user. We evaluated the performance of SCSA on several real 

single cell datasets, which generated from different platforms including Smart-seq2 [4] 

and 10x Genomics[11]. We demonstrated that SCSA successfully classified the cell 

types in these datasets.  

 

Materials and methods 

Marker genes identification 

The input of SCSA is a gene expression matrix, in a format that is supported by 

the output of CellRanger or Seurat. Based on these cells-genes expression matrix, 

SCSA identifies the marker genes of each cell cluster through differential gene 

expression analysis with log2-based fold-change (LFC) value and P-value (LFC >= 1, 

P <= 0.05). For each cell cluster, a marker gene identification vector is generated for 

j	genes with LFC values, which is defined as	𝐸$ = &𝑒(, 𝑒*,⋯ 𝑒$, = (𝑒)$×(, here, 𝑒 

represents the absolute value of LFC multiplied by mean of all differentially 
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expressed genes. 

 

Cell marker database 

In order to improve the accuracy of cell cluster annotation for single-cell 

RNA-seq, SCSA uses cell markers from two public databases: CellMarker and 

CancerSEA. Up to now, CellMarker database contains 13,605 manually curated cell 

markers of 467 cell types in 158 human tissues or sub-tissues, and CancerSEA 

database provides a cancer single-cell functional state atlas, involving 14 functional 

states of 41,900 cancer single cells from 25 cancer types. Furthermore, SCSA can 

accept users-based marker gene database as additional information for cell cluster 

annotation. The users-based marker gene database must have two columns, with the 

first column as the name of a cell type and the second column as a marker gene name 

of the cell type. In that case, SCSA will combine both known databases and the 

custom database to predict the annotations for cell clusters. 

 

Annotation model construction 

   For those genes which existed in both the DEGs and known cell marker databases, 

SCSA constructs a cell-gene sparse matrix (defined as 	𝑀( = 1𝑎3$456×76 ) with 

𝑐((𝑐( ≤ i) cells and 𝑔((𝑔( ≤ j) genes as “marker evidence”. Here, for each cell 𝑖 

and each gene j in the matrix	𝑀(, 𝑎	refers to the sum number of references in the 

CellMarker database. To eliminate the huge differences of marker evidence between 

the well-known gene and less-known genes, we transform the value to log2-based and 

plus a constant (0.05). Also, to represent the whole gene set for a certain cell, we 

create a cell style vector which takes multiplication of standard deviation of the 

marker evidence and marker numbers (defined as	𝐿( = {𝑙(, 𝑙*, ⋯ 𝑙5(}	, where	𝑙 =

𝑠𝑡𝑑(𝑎3$) ∗ 𝑛𝑢𝑚(𝑎3$ > 0)). So, for the known marker database, the raw score vector 

of a cell type is	𝑆56 = 𝑀( × 𝐸7( ∗ 𝐿( = &𝑠(, 𝑠*, ⋯ 𝑠56,. 

For marker databases from multiple sources including known and users-defined, 

we define 𝑘 as the total number of databases. Then 𝑘 cell-gene sparse matrix could 
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be constructed according to the DEGs, which are defined as	𝑀L = 1𝑎3$4M×N, 𝑝 × 𝑞 ∈

{(𝑐( × 𝑔(), (𝑐* × 𝑔*),⋯ , (𝑐L × 𝑔L)} . We define 𝐸L = (𝑒)N×(, 𝑞 ∈

{𝑔(, 𝑔*,⋯ , 𝑔L}, (𝑞 ≤ j)  as multiple gene expression vectors. Then 𝑘  raw score 

vectors will be generated, which is defined as	𝑆L = 𝑀L𝐸L𝐿L = 1𝑎3$4M×N × (𝑒)N×( ∗

(𝑙)N×( = (𝑠)M×(, 𝑝 ∈ {𝑐(, 𝑐*,⋯ 𝑐L}. Suppose 𝑆L  to be a function to the score vectors, 

which is defined as		𝐹S. To eliminate the difference of those vectors and compare them 

with each other standardly, SCSA performs z-score normalization for them. In detail, 

𝐹S = 𝑀S𝐸S𝐿S = (𝑓S)M×(, 𝑙 ∈ [1, 𝑘] 

𝑍S = (𝑧Z[)M×( = (𝑓′S)M×(, 𝑙 ∈ [1, 𝑘] 

𝑓′S =
𝑓S − 𝑓̅
𝑑 , 𝑓̅ =

1
𝑝_𝑓S

M

S`(

, 𝑑 = a
1

𝑝 − 1_(𝑓S − 𝑓)̅*
M

S`(

 

Notably, the score vectors derived from different kinds of databases may have 

different lengths. To give a uniform score to a certain cell type, SCSA transforms 

them to the same length: 

 𝑍′S = (𝑧Zb[b)Mb×(, 𝑧Zb[b = c𝑧Z[, 𝑚 = 𝑚b, 𝑛 = 𝑛′
0, 𝑚 ≠ 𝑚b ∥ 𝑛 ≠ 𝑛b , 𝑝′ = 𝑛𝑢𝑚{𝑐( ∪ 𝑐* ∪ ⋯∪ 𝑐L}  

Finally, an annotation model will be constructed by merging the database weight 

coefficient matrix 𝑊 and the last uniform score vector.  

𝑆′ = (𝑍′(, 𝑍′*, ⋯ , 𝑍′L)𝑊 + 𝑏,𝑊 = (𝑤k)L×( 

 

GO enrichment analysis 

Not all gene markers of cell types have been curated in known cell marker 

databases. To solve this problem, SCSA employs a GO enrichment analysis to allow 

identification of new cell types. In detail, for a certain GO term, SCSA uses Fisher’s 

exact test to calculate the P-values, using the differentially expressed genes of the 

selected cluster as foreground and DEGs in other clusters and background values, 

respectively. After that, P-value was adjusted by the Benjamini-Hochberg (BH) 

method [15].  
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Real datasets  

   To assess the performance of SCSA, we used two kinds of real datasets. The first 

is the scRNA-seq data of experimentally mixed cells with known cell types. It 

includes four real datasets (GSE72056 [16], GSE81861 [17], E-MTAB-6149 [18], 

E-MTAB-6653 [18] and Fantom5 [19]), which were downloaded from NCBI GEO 

database. The other is the real tissue sample dataset with unknown cell types. It 

includes six peripheral blood mononuclear cells (PBMCs) datasets from a healthy 

donor of Homo sapiens downloaded from the 10X Genomics official website 

(https://www.10xgenomics.com/).  

Evaluation of SCSA performance 

For the known cell type datasets, we defined cell type cluster by their real cell 

types. Then we generated calculated the differentially expression genes for each 

clusters using Student’s t-test. We obtained the final list of differentially expression 

genes through setting the threshold with P-value of 0.05 and LFC value of 1.5. Finally, 

we compared the cell types predicted by SCSA with the real cell type to check the 

accuracy. 

For the PBMC datasets, data preprocessing, normalization and unsupervised 

clustering were already performed by CellRanger workflow from its website. Also 

10X Genomics official website illustrated a workflow example using 3k peripheral 

blood mononuclear cells (PBMCs) from a healthy donor containing 5 cell clusters and 

gave a final annotation results, they were monocytes, T cells, NK cells, 

megakaryocytes, and B cells, respectively. Here, we termed them as the “reference 

cell type annotation”. In order to compare SCSA with CellRanger and Seurat 

uniformly for cell type annotation, we downloaded six datasets from 10X Genomics 

official website (https://www.10xgenomics.com/). Then, all six datasets were first 

processed using the CellRanger software (cellranger count). Notably, we diSCSArded 

the results of 1k and 10k PBMCs datasets because their existing clusters cannot be 

annotated without enough differentially expressed genes. So, for the rest four PBMCs 

datasets, we compared these results by SCSA with the “reference cell type annotation” 

to assess the performance of SCSA.  
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SCSA identified the marker genes of each cluster through the LFC (LFC>=1.5) 

value and P-value (P<=0.05). And then SCSA calculates the score vector of verified 

cell types that contain these marker genes based on these databases. In the annotation 

score model of SCSA, the cell type having the highest score in the score vector of 

verified cell types was used as the final annotation result for a cluster. 

To evaluate the stability of SCSA in annotating the cell type of a cluster, we 

calculated the percentage of the five cell types (monocytes cells, T cells, NK cells, 

megakaryocytes cells, and B cells) in the four PBMCs datasets, respectively. And we 

generated the abundance of the same cell type in the four PBMCs datasets. To further 

demonstrate the performance of SCSA, we clustered all cell types of top five scores in 

a cell cluster as a heat map from the four PBMCs datasets using hierarchical 

clustering method. 

Software availability 

SCSA is implemented in Python3 as an open source software under the GNU 

General Public License, and the source code is freely available together with full 

documentation at https://github.com/bioinfo-ibms-pumc/SCSA. 

 

Results 

 The SCSA algorithm is a three-step procedure that includes marker genes 

identification, annotation model construction, and gene ontology (GO) enrichment 

analysis (Figure 1). First, the input of SCSA is a gene expression matrix with cell 

cluster information (such as the output results of CellRanger or Seurat). SCSA 

identifies a group of marker genes for each cluster from input expression matrix by 

differential gene expression analysis. Next, for each cluster, genes identified as 

marker genes that have one or more linked cell types in a database will be used to 

generate a cell-gene matrix for that cluster. For each cell type in the matrix, SCSA 

then used a decision model to assign a score by combining the enrichment of marker 

gene expression and the strength of evidence for the marker genes in the database. 

SCSA could also take marker gene information from multiple databases and assign 
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different weights to them. Finally, if none of the marker genes of a certain cluster 

exists in known databases, SCSA performs an alternative gene ontology enrichment 

analysis step to annotate that cell cluster. 

 

We first benchmarked the performance of SCSA on four scRNA-seq datasets from 

mixed cells with known cell types (Table 1). The GSE72056 dataset have five cell 

types that have been annotated manually by experts. Compared with it, SCSA 

predicted four cell types precisely except for “Cancer-associated fibroblast (CAF)”. 

For the CAF cell cluster, SCSA gave a different label named “Mesenchymal stem 

cell”. We checked the evidence in the CellMarker database and found that the 

“Mesenchymal stem cell” type had 34 marker genes but CAF only had 17 marker 

genes . Similarly, for seven known clusters in GSE81 861 datasets, SCSA correctly 

predicted six clusters except for the “Fibroblast” group. SCSA also gave a different 

annotation named “Mesenchymal stem cell” with 19 evidence marker genes instead of 

“Fibroblast” with 11 marker genes. This phenomenon was also found in public 

datasets [18]. It was reported that fibroblasts shared more common features with 

mesenchymal stem cells [20] by expressing similar cell immunophenotypic markers, 

as well as the genes that are known to be expressed in stem cells [21]. So we 

considered that “Mesenchymal stem cell” may also be suitable for the disputable 

cluster.  

In addition, we also tested SCSA on the FANTOM5 dataset, which contains both 

human and mouse cell data. SCSA achieved a 52.4% and a 52% accuracy for human 

and mouse data respectively, when we removed the cell clusters containing lower than 

10 cells. Interestingly, if we filtered the clusters containing lower than 40 cells, the 

accuracy of SCSA were improved to 75% and 72% for human and mouse data, 

respectively. To test whether the cell number of each cluster may have an impact on 

the accuracy of SCSA, we compared the cell number between the clusters with 

positive and negative prediction. As illustrated in Figure 2, the cell number with 

positive predictions was significantly different with that of negative predictions. So 

we demonstrated that more cells in clusters will improve the accuracy of SCSA. For 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 23, 2019. ; https://doi.org/10.1101/2019.12.22.886481doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.22.886481
http://creativecommons.org/licenses/by-nc-nd/4.0/


cell clusters with low cells, SCSA was likely to give a random cell type prediction, 

which may be due to the lack of consensus marker genes from the database for such 

clusters.  

 In order to evaluate the robustness of SCSA, we used four PBMCs (3k, 4k, 6k 

and 8k) datasets from 10X genomics website. We collected all possible cell types of a 

cell cluster according to the top five scores under the score annotation model of SCSA. 

The correlation of all cell types and scores were calculated and compared. As shown 

in Figure 3A, based on the five annotated cell types (monocyte cells, T cells, NK cells, 

megakaryocytes cells, and B cells) of CellRanger, SCSA achieved a great consistency 

in the four PBMCs datasets. Notably, the “macrophage cell” type was predicted as the 

second top score in a cluster, which was annotated as “monocytes” by SCSA due to 

the reason that they share many marker genes.  

To further demonstrate the robustness of SCSA over the five annotated cell types 

(monocytes cells, T cells, NK cells, megakaryocytes cells, and B cells), we compared 

their abundance in each cluster using the four PBMCs datasets. As shown in Figure 

3B, the percentages of cell numbers for five cell types annotated by SCSA remained 

stable across these datasets. T cells occupied half of the PBMCs, and monocytes cell 

represented another 25%, B cells and NK cells had similar levels, while 

megakaryocytes cell has the lowest number among all the five cell types. These 

results were consistent with the reference information of PBMCs. 

 

Discussion 

Currently, for scRNA-seq data, cell type annotation of cell clusters after 

unsupervised clustering is mainly conducted manually. The limitation of the manual 

procedure makes it impossible to generate high-quality, reproducible, and 

standardized annotation results for the growing number of scRNA-seq datasets. To 

address this challenge, we presented a novel tool, SCSA, for automatic annotating the 

cell types from single-cell RNA sequencing data, which can be applied directly on the 

output generated from CellRanger or Seurat. By introducing the newly developed 
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annotation model merging DEG and cell markers reference information to replace the 

manual steps, SCSA can perform the annotation task at a high accuracy and efficient 

level. 

In cell type annotation, it is usually hard to find high-quality marker genes to 

describe a cell cluster. A strategy is to use genes specifically expressed in a cell cluster 

to mark the cell type. However, using a few marker genes is often not sufficient to 

distinguish a cell cluster from the others. In addition, using the whole expressed gene 

sets may decrease the power to find the true patterns within each cell cluster. 

Therefore, we used differentially expressed genes (DEGs) in the marker gene 

identification step in SCSA. This step avoids the influence of ubiquitously expressed 

genes and collects the appropriate genes for calculating the optimal score in the 

annotation model.  

There still exist some limitations, which may influence the accuracy of cell type 

annotation using SCSA. First, the quantity of marker genes in these cell marker 

databases greatly impacted the results of cell type annotation. Since cell marker 

collection is far away from completion, it is possible that some cell types are 

unclassifiable due to the lack of appropriate markers. Specifically, this phenomenon is 

quite common for unknown tissues and novel sub-clusters of cells at different states. 

User-defined marker combinations need to be developed to solve this problem. SCSA 

can accept them as additional information to improve the annotation results. Second, 

for complex tissues such as cancer tissues, the accuracy of cell annotation is heavily 

relied on the clustering algorithms. Different unsupervised clustering method could 

have different results, especially when the cluster size is unevenly distributed in the 

population [10]. In that situation, algorithms using supervised clustering may be more 

appropriate for cell type classification [22].  

Compared with the results of SCSA over different datasets, SCSA exhibited a 

reasonable accuracy and robustness in cell type annotation. Further efforts could be 

made to improve the annotation ability of SCSA by taking into account more 

information (e.g., the more accurate information of cell marker genes, the 

comprehensive clustering algorithm). We believe that SCSA is an important addition 
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to the toolbox used for single-cell studies and will greatly improve our efficiency and 

capacity to explore the functional potential of novel cell types. 
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Figure 1.  Flowchart of the SCA 

First, DEGs of each cluster will be extracted and filtered from gene expression file. 

Next, SCSA employs marker gene databases to annotate cell clusters. In this step, 

both known marker gene database and user-defined marker database could be used 

simultaneously. For each cluster each database, a cell-gene matrix (M) with two 

vectors (E, L) will be generated to form a raw score vector (S). If multiple databases 

were selected, vectors would be normalized and combined together to make a new 

vector (Z), then multiplied with a database weight matrix (W) to make the last uniform 

vector. In the last step, ranked cell type vector will be generated according to the 

uniform score. In addition, SCSA employs GO enrichment analysis to give users 

some clue for unidentified clusters. 
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DataSet Cell Number Number of clusters Accuracy Species 

GSE72056 2,840 5 100%* Human 

GSE81861 266 7 100%* Human 

Lambrechts D, et al 

(E-MTAB-6149 and 

E-MTAB-6653) 

45,251 7 100%* Human 

Fantom5(>10) 1,280 24 54% Human 

Fantom5(>10) 1,329 20 55% Mouse 

Fantom5(>40) 996 11 73% Human 

Fantom5(>40) 1,048 8 75% Mouse 

Table 1.  The predicted results of four known datasets 

Four known datasets were selected to test the accuracy of SCA. For GSE72056, 

GSE81861, and Lambrechts D, et al (E-MTAB-6149 and E-MTAB-6653), SCSA 

successfully predicted all clusters precisely except for the “Cancer-associated 

fibroblast” cluster in GSE72056, “Fibroblast” cluster in GSE81861 and Lambrechts D, 

et al (E-MTAB-6149 and E-MTAB-6653). For the three clusters, SCA gave the same 

cell type “Mesenchymal stem cell” instead. Since more marker genes were found in 

the predicted cell type than the raw cell type and the cell types were similar and 

associated with each other, we thought SCA gained 100% accuracy prediction for the 

three datasets subjectively. For the first two Fantom5 datasets, cluster with cell 

number larger than 10 for each species were retained. While in the last two datasets, 

the threshold of cell number in cluster was up to 40. 
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Figure 2. The comparison of cell numbers in cluster for FANTOM5 datasets 

prediction. Datasets were split according to the species. P-values were calculated 

using the Student’s t-test,  
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A                                        B 
 
Figure 3. Cell components of PBMC cells predicted by SCSA. A. Clustering of 

uniform scores of top 5 predicted cell types in 4 PBMC sets by SCA. Each column 

stands for one cluster of 4 PBMC sets and each row stands for one cell type. Uniform 

scores were normalized using z-score method to make clusters comparable. B. Steady 

percentage of different cells in 4 PBMC sets. Percentage of cell number of each 

predicted cell type in 4 PBMC sets was calculated.  
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