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Abstract 
We describe the assembly and annotation of a chemogenomic set of protein kinase inhibitors as an 
open science resource for studying kinase biology. The set only includes inhibitors that show potent 
kinase inhibition and a narrow spectrum of activity when screened across a large panel of kinase 
biochemical assays. Currently, the set contains 187 inhibitors that cover 215 human kinases. The kinase 
chemogenomic set (KCGS) is the most highly annotated set of selective kinase inhibitors available to 
researchers for use in cell-based screens. 
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Introduction 
The protein kinases have emerged as one of the most productive family of drug targets in the 21st 
century. Over 50 small molecule kinase inhibitors have been approved by the FDA since 2001 for the 
treatment of cancer, inflammation, and fibrosis [1]. Many of these drugs, specifically those that are used 
in oncology, owe their efficacy to inhibition of multiple kinases [2]. For some targets second- and third-
generation inhibitors have been designed to block the activity of mutant kinases that cause drug resistance 
after first line therapy. In total these drugs target only a small fraction of the 500+ human kinases. We and 
others have proposed that the remaining kinases represent an untapped trove of new drug targets [3-5].  

Despite the concerted efforts of academic and industrial scientists over the past 25 years, the vast 
majority of the human kinases remain understudied. Various bibliographic analyses show that, like many 
other protein families, 90% of the research effort has been expended on < 20% of the kinases [6]. 
Initiatives such as the NIH-sponsored Illuminating the Druggable Genome (IDG) program have sought to 
change this dynamic by making available high-quality data sets and research tools for the ‘dark’ kinases 
[7]. The availability of a set of potent and selective inhibitors of the understudied kinases could greatly 
aid the study of their biology and uncover new targets for drug development. 

An ever-growing number of kinase inhibitors are commercially available. Many of these compounds 
have advanced to clinical studies and may be useful for investigators seeking to repurpose kinase drugs 
for a secondary indication but they do little to expand the number of new kinase targets [8]. Notably, the 
commercially-available kinase inhibitors vary widely in the amount and depth of annotation provided. 
Their vendors typically list the primary target of each inhibitor and perhaps a handful of off-targets but do 
not always provide full kinase selectivity profiles. Although some of these data can be found in public 
databases [9], it is often either unavailable or described in a multitude of assay formats in supporting 
information accompanying a primary publication. While commercially-available kinase sets contain 
valuable inhibitors of the well-studied kinases, they do little to provide tools to expand research across the 
breadth of the kinome. 

The public availability of a high-quality chemical probe for every understudied kinase would be an 
ideal way to embolden researchers to explore the therapeutic potential of each of kinase target [10]. 
However, the development of potent and selective chemical probes for over 500 kinases would be an 
insurmountable task using current resources and technologies. A chemogenomic set [11] of kinase 
inhibitors provides a practical solution to the problem [12]. The vast majority of kinase inhibitors, by 
virtue of competing with the common cofactor adenosine triphosphate (ATP) in a highly conserved 
binding site, invariably show some cross-activity on multiple kinases. Landmark studies by Bristol-Myers 
Squibb and GlaxoSmithKline scientists showed that kinome-wide profiling could identify inhibitors with 
collateral activity on the understudied kinases [13, 14]. Building on these observations, the kinase 
inhibitor sets PKIS and PKIS2 were assembled as collections of published kinase inhibitors using the 
principles that chemical diversity and the inclusion of multiple exemplars of each chemotype would 
increase the breadth of kinase coverage and aid analysis of phenotypic screening data [15]. Both sets have 
found widespread use in the research community and demonstrated that repurposed inhibitors from past 
projects could be used to probe the biology of the kinase they were made to target and their off targets as 
well. However, the full kinase profile of each inhibitor in PKIS and PKIS2 was not known in advance of 
their selection, and as a result both sets contained many inhibitors that were either too promiscuous 
(inhibition of too many kinases) or lacked sufficient target potency to be useful contributors to a 
chemogenomic set [16]. In spite of this limitation, PKIS and PKIS2 contained many valuable inhibitors 
for a broad set of understudied kinases. Encouraged by these results we proposed a community 
experiment to build an optimized kinase chemogenomic set (KCGS) to cover every human kinase [17]. 
Each inhibitor would have its full kinome profile determined in advance and only those compounds that 
met a prespecified potency and selectivity would be added to KCGS. 

At the outset, we chose to make KCGS an open science experiment. All of the compound structures 
and associated kinase inhibition and selectivity data would be made publicly available. KCGS would be 
distributed under a Material Trust Agreement (S1 File) that supported its use as a public resource and 
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prevented the recipients from blocking other researchers from using the set [18]. Eight pharmaceutical 
companies answered the call to donate kinase inhibitors from their internal compound collections to the 
effort. Many, but not all of these companies, were current partners in the Structural Genomics Consortium 
(SGC) [19]. In addition, several leading academic groups contributed compounds to the initiative. To date 
over 1200 kinase inhibitors have been profiled as candidates for inclusion into KCGS. Here we present 
the first version of KCGS as well as its initial characterization and examples of its use in cell-based 
assays. The set will be broadly useful to the scientific community for phenotypic screening to identify the 
roles of various kinases in biology and disease. 

Results 
Compound selection 

Candidate kinase inhibitors were received from GlaxoSmithKline, Pfizer, Takeda, Abbvie, MSD, Bayer, 
Boehringer Ingelheim, and AstraZeneca. In addition, Vertex gave permission to include their 
commercially available inhibitors. Academic laboratories that donated inhibitors were Cancer Research 
UK, Nathanael Gray, and multiple SGC sites. In total 250 new inhibitors were donated to the initiative as 
candidates to complement the 950 inhibitors of PKIS and PKIS2.  

At the outset, we selected the DiscoverX scanMAX assay to profile all kinase inhibitors donated to the 
initiative [20]. The scanMAX assay provided kinase binding data on 401 wild type human kinases (Table 
1), which was at the time the broadest coverage by any single assay panel [21]. All kinase inhibitors were 
profiled at a concentration of 1 µM. Using a cut-off of 10% activity remaining (PoC, equivalent to 90% 
inhibition), an activity profile was determined for each inhibitor and a selectivity index (S10) was 
calculated as the fraction of kinases meeting the cut-off. Compounds with an S10 (1 µM) < 0.04 were 
initially selected for consideration for inclusion in KCGS. For these compounds we performed full-dose 
response experiments in order to determine KD values for all kinases with PoC < 10% in the scanMAX 
experiment. 

For inclusion in KCGS, an inhibitor was selected if the DiscoverX assay panel showed KD < 100 nM 
on its target kinase and S10 (1 µM) < 0.025 in a full panel kinase screen [17]. For inhibitors from PKIS, 
the assay data from the Nanosyn screening panel of 230 kinases was used to calculate the selectivity 
index in lieu of submitting the compounds to scanMAX. For inhibitors from PKIS2 and the newly 
donated compounds, the data from the DiscoverX scanMAX panel of 401 kinases was used to calculate 
the selectivity index. Compounds that met the inclusion criteria were manually triaged to maximize the 
coverage of the human kinome. Our aspirational goal was to include two unique chemotypes for each 
kinase and care was taken not to over represent kinases that had been more heavily studied (such as 
EGFR, MAPK14, GSK3, and ERBB2). For the poorly studied dark kinases, there was often only one or 
two compounds to select that met the inclusion criteria. Finally, in those cases where two compounds had 
equivalent kinase profiles, preference was given to inclusion of the chemotype with fewer exemplars in 
the set. Using these guidelines, version 1.0 of KCGS was assembled with a total of 187 kinase inhibitors. 
Summary information for each inhibitor is contained in S1 Table and the full kinase profiles can be 
accessed at www.randomactsofkinase.org. 

Kinase coverage 

The set covered a total of 215 human kinases, which was more than 50% of the full scanMAX assay 
panel (Table 1 and S2 Table). Across the branches of the kinome, the broad coverage was found in the 
TK family (67%) and CMGC family (62%). While KCGS appears to cover 71% of the atypical kinases, 
only small fraction of these kinases has assays in the scanMAX panel. Lower coverage was seen for the 
CK1 (38%) and STE (31%) families. 114 kinases were covered by two or more inhibitors, while the 
remaining 98 kinases have only one useful inhibitor in the current set (S1 Table). Ideally every kinase 
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would be covered by inhibitors from multiple chemotypes to aid analysis of phenotypic screening data 
and this remains a goal for future expansion of the set. 

 
 
 
 
 
 
 
 
 
 
Table 1. Kinase coverage by KCGS version 1. The human kinases are 
divided into 10 subfamilies [22]. Kinases: The number of human kinases 
in each subfamily. Assays: The number of kinases in the DiscoverX 
scanMAX panel. KCGS: The number of kinases covered by an inhibitor. 
%: The percentage of kinases screened that are covered by an inhibitor. 

 

Despite the tractability of kinases as drug targets, the majority of the kinome is poorly annotated and 
remains dark with respect to its role in human biology, in part due to a paucity of reagents. The NIH IDG 
initiative has nominated 162 dark kinases (Fig 1 and S2 Table) for development of chemical and 
biological tools in an effort to seed research on these understudied proteins [7]. KCGS contain inhibitors 
of 37 of the IDG dark kinases (S2 Table), which may be useful as initial chemical tools to study these 
kinases. These KCGS compounds can also be used as starting points for development of high-quality 
chemical probes as the biological function of their kinase targets becomes better understood and the 
investment in additional optimization is warranted. We utilized a recent data set [23, 24] annotated to 
human protein-coding genes and their genetic relevance to look at the frequency of PubMed publications 
on individual kinases. Fig 1 depicts the publication counts for kinases covered by KCGS. The set contains 
inhibitors of most of the more highly studied (top 25%) kinases, but importantly it also contains inhibitors 
that cover some of the darkest kinases. Future expansion of KCGS will focus on filling the gaps in 
coverage of the dark kinases. 

 
Fig 1. Analysis of kinase 
coverage in KCGS by 
publication frequency. The 
blue histogram indicates the 
number of publications for 
each kinase in PubMed 
(Table S2) [23, 24] ordered 
by frequency with the top 
25% noted by the horizontal 
bar. The red vertical bars 
indicate the 162 poorly 
studied dark kinases 
nominated by the NIH IDG 
initiative [7]. The black 
vertical bars indicate the 215 
kinases covered by an 
inhibitor in KCGS version 1. 

 

 

Kinases Assays KCGS %
AGC 63 46 20 43

Atypical 34 7 5 71
CAMK 74 58 28 48
CK1 12 8 3 38
CMGC 64 60 37 62
Lipid 20 13 10 77
Other 81 51 26 51
STE 47 42 13 31
TK 90 81 54 67
TKL 43 35 19 54
Total 528 401 215 54
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Chemotype analysis 

To aid analysis of screening data and to support future expansion of KCGS, a method was developed to 
assign each inhibitor to a specific chemotype based on the chemical structure of its hinge-binding moiety. 
To accomplish this, 119 known kinase hinge-binder substructures were defined manually and codified 
using SMILES arbitrary target specification (SMARTS) [25]. To resolve issues where an inhibitor could 
be assigned to multiple bins, SMARTS were given a priority order. Kinase inhibitors that lacked an 
obvious hinge binding group were grouped separately into an additional SMARTS bin. Applying this 
analysis to the 187 KCGS inhibitors, the compounds were found to occupy 67 of the 120 SMARTS bins 
(Fig 2A and S3 Table). Nine of the bins contained six or more inhibitors, 27 bins had two to five 
members, and 31 bins contained only one exemplar. The nine most highly populated SMARTS bins 
contain well known kinase inhibitor scaffolds, such as indazoles, oxindoles, quinazolines, quinolines, and 
pyrimidines. Six KCGS compounds that lack an obvious hinge-binder group were placed in the “other” 
bin. They include an allosteric PAK inhibitor and two allosteric MEK inhibitors. For bins containing 
multiple exemplars, the individual inhibitors often showed activity on kinases located in several different 
branches of the kinome. For example, the 13 oxindoles in KCGS showed a cluster of activity on CMGC 
kinases, but they also inhibited TK, TKL, and STE kinase (Fig 2B). While the oxindole chemotype has 
been found in many highly promiscuous kinase inhibitors, the inclusion of several oxindoles in KCGS 
demonstrated that this chemotype can also produce highly selective kinase inhibitors by judicious 
optimization of the molecules. KCGS contained 9 exemplars in the 4-anilino-quinazolines bin (Fig 2C). 
Six FDA-approved kinase inhibitors that target EGFR and ERBB2 also fall into this bin. However, the 
SMARTS analysis highlights that modification of the 4-anilino-quinazoline chemotype can also generate 
inhibitors with activity on several adjacent kinase subfamilies. 
 

 
 
 
 
 
 

 

 

 

 

Fig 2. KCGS contains inhibitors 
from 67 distinct chemotypes. (A) 
The dendrogram displays the number 
of inhibitors in each SMARTS bin. 
The inset names the 9 most highly 
populated bins. (B) Tree plot of the 
human kinases with each subfamily 
uniquely shaded. Kinases covered by 
a member of the oxindole SMARTS 
bin are displayed as red dots, scaled 
by the number of compounds 
inhibiting a specific kinase. 
Representative chemical structures 
form the oxidole SMARTS bin are 
shown. (C) Kinases covered by the 
4-anilino-quinazoline SMARTS bin 
with representative chemical 
structures. 
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Calculated properties 

All of the inhibitors in KCGS were originally the product of medicinal chemistry projects to target 
specific kinases. As such many of them had been optimized with an eye on physicochemical properties 
and cellular activity. To evaluate the overall quality of the set, the calculated properties of each inhibitor 
from KCGS were determined in SwissADME [26] and compared to a set of 52 FDA-approved kinase 
inhibitors [27]. SMILES strings representing each inhibitor were input to SwissADME to generate the 
predicted solubility and calculated lipophilicity (S1 Table). For predicted solubility the inhibitors were 
binned into four categories ranging from poorly to very soluble. The solubility profile of both inhibitor 
sets was similar (Fig 3A). The majority of compounds were predicted to be moderately soluble or better 
for both KCGS (88%) and the FDA-approved inhibitors (78%). LogP is a common measure of 
lipophilicity and is considered a critical factor in assessing the drug-like properties of small molecules 
[28]. The SwissADME consensus logP (cLogP), which is the arithmetic mean of five calculated values 
(XLOGP3, WLOGP, MLOGP, SILICOS-IT, and iLOGP), was used to compare KCGS to the FDA-
approved kinase inhibitors. The results showed that KCGS clogP values trended towards lower 
lipophilicity than the FDA-approved drugs, with 65% of the KCGS inhibitors falling between cLogP 2–4 
and proportionally fewer inhibitors with cLogP > 4 (Fig 3B). Overall these calculations support the 
premise that the inhibitors in KCGS have physical properties and are well suited for use in cell-based 
assays. 

 
Fig 3. Calculated properties 
(A) Predicted solubility of the 
KCGS compounds (black) 
compared to 52 FDA-
approved kinase inhibitors 
(white) split into four 
categories and shown as 
percentage of the set. (B) 
Hydrophobicity analysis of the 
KCGS compounds (black) 
using SwissADME compared 
to the FDA-approved kinase 
inhibitors (white) split into six 
ranges of cLogP and shown as 
percentage of the set. 

 

Chemogenomic screening 

To format KCGS for distribution to a large number of researchers, 10 mM DMSO stock solutions of the 
187 inhibitors were aliquoted into 384-well format plates. 1 µL of each inhibitor was dispensed to each 
well of the plate using an Echo 550 acoustic dispenser for accurate delivery. This 1 µL/10 mM volume 
provides sufficient compound to run 100 assays at a 1 µM inhibitor concentration in 96-well format and 
200 assays in a 384-well format (assuming 100 µL and 50 µL working volume respectively, see S2 File). 
KCGS is delivered with a plate map that delineates compound identification numbers as well as the 
kinase profile for each compound (S1 Table). Based on the kinase selectivity profile of the inhibitors, 1 
µM is the recommended screening concentration for chemogenomic experiments to support hit 
identification and target deconvolution. Screening at higher concentrations is likely to complicate data 
interpretation due to additional undocumented off-target activity of the inhibitors. To aid with hit follow-
up additional quantities of each inhibitor are available from the SGC-UNC for full-dose response and 
secondary assays. 
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Cell toxicity 

To facilitate the use of KCGS in cell-based assays, we determined the acute toxicity of the individual 
inhibitors at a high dose (10 µM) in HeLa cells. After 24 h treatment, high content imaging [29] was used 
to measure healthy cell count as well as the percent necrotic and apoptotic cells, which identified those 
inhibitors that exhibited varying degrees of toxicity (Fig 4 and S4 Table). 134 of the kinase inhibitors had 
little or no effect on total cell count. 43 of the inhibitors reduced cell count by 20% or more. The most 
toxic compounds that decreased cell count by >67% are highlighted in Figure 4A. The cell toxicity 
displayed by these compounds may be due to their inhibition of kinases that affect cell division or cell 
viability, either as a primary or secondary target. Among the compounds with the largest effect on cell 
count were inhibitors of kinases involved in cell cycle progression, checkpoint regulation, and cell 
division including the CDKs (GW416981X, THZ531, BI00036838), AURKC (GW814408X), ATR (VE-
822), and CHK1/2 (CCT244747, CCT241533). Others compounds with significant toxicity in HeLa cells 
at the 10 µM dose were GW683134A, a type II inhibitor of KDR, KIT and TEK, and PFE-PKIS 29, a 
very potent (< 10 nM) inhibitor of mTOR and several lipid kinases including all isoforms of PI3K.  

To gain further insight into kinases associated with cell toxicity, we performed an analysis of every 
kinase that is covered in KCGS by two or more distinct chemotypes (Fig 4B). Several kinases were 
identified whose inhibition resulted in significantly lower healthy cell count. Several inhibitors of the 
polo-like kinases (PLK) showed toxicity, as did inhibitors of the PIK3C and PI4KB lipid kinases. The 
apparent toxicity of NEK2/NEK9 inhibition by GSK579289A, GSK461364, GSK579289, and 
GSK237701A may also be attributed to the collateral PLK inhibition of these compounds at the high 
concentration that the assay was performed. The apparent toxicity of inhibition of dark kinases CDKL5 
and ICK by JNK-IN-7 and BI00036838 may also be due to the inhibition of the other kinase targets of 
these two inhibitors (S1 Table). 

 

 
 
Fig 4. Cell toxicity assessment. (A) Effects of KCGS compounds at 10 µM on HeLa cells after 24 h. Measurements were made 
in triplicate and with standard errors shown. Shown is the normalized healthy cell count with highlighted thresholds of 0.8 (80% 
healthy cells) and 0.5 (50% healthy cells). The panel on the right side displays the compounds with the greatest effect on healthy 
cell count in HeLa cells. (B) Averaged toxicity measured by normalized healthy cell count for every target covered by two or 
more chemotypes. Highlighted are target kinases that show a significantly lower healthy cell count than the DMSO control. 
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Cell growth 

To further document the effect of KGCS on cell viability we performed assays for cell growth [30] in 16 
immortalized cell lines that were selected to cover breast, ovarian, prostate, colorectal, lung, skin, brain, 
and pancreatic cancer (S5 Table). Non-malignant breast and lung cell lines were included for comparison. 
Using a 1 µL aliquot of KCGS (10 mM in DMSO), the set was screened in duplicate across the 18 cell 
lines at a compound concentration of 1 µM. The effects on cell growth and viability were determined 
after 72 h treatment using high-throughput microscopy [31]. Growth rate inhibition metrics (GR), 
employed to account for variable division times, were computed [32]. One cell line (SW1783) did not 
grow under the assay conditions and was excluded from analyses (S6 Table). The effect of KCGS across 
the remaining 17 cell lines is depicted in Fig 5. 

Analysis of GR across the 17 cell lines identified three categories of kinase inhibitors. The first 
category included the majority of inhibitors in KCGS that showed no discernable effect on cell growth, 
with GR values within 10% of the DMSO control. The second category containing 15 inhibitors showed 
> 30% decrease in GR across most of the cell lines. Six of these compounds (TPKI-24, TPKI-26, 
GSK461364, GSK579289A, GSK237701A, and BI2536) have PLK inhibitory activity, two are allosteric 
MEK inhibitors (PFE-PKIS 21 and TPKI-16), and two are inhibitors of aurora kinases (XMD-17-51 and 
GSK1070916). Notably, only two of these inhibitors (THZ531 and PFE-PKIS 29) were shown to be 
cytotoxic at a higher concentration in the HeLa cell experiment. The third category contained 23 
inhibitors that showed cell line-dependent effects on GR. Six of these compounds (GW416981, 
BI00036838, GW814408X, SGK-GAK-1 (CA93.0), CCT244747, and VE-882) had been identified as 
toxic to HeLa cells, but when tested at 1 µM across a wider range of lines their effects were now shown to 
be dependent on other cellular factors and not intrinsic to the compounds alone. Based on the annotation 

 
Fig 5. The kinase inhibitors in KCGS have different effects on cell growth across a wide range of lines. Growth rate (GR) 
was determined at 72 h post compound treatment. Each row displays data from a single cell line. Each column displays data from 
a single compound. GR is colored from -0.5 in black to 1.3 in yellow. The expanded views display data for compounds that 
showed cell-line selective decrease in GR and relatively cell-line independent effects, respectively. 
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of these compounds, inhibition of several kinases was highlighted as being responsible for the cell line-
dependent effects. These kinases include multiple CDK isozymes, GAK, BRAF, and BLK. Determination 
of whether selective inhibition of these kinases would have potential therapeutic utility in specific cancers 
will require confirmatory follow-up studies such as CRISPR dropout screens and screening of alternate 
inhibitors of the same targets. However, these data highlight the power of screening a chemically and 
biologically diverse chemogenomic set of kinase inhibitors to determine how they perturb a simple cell 
phenotype. 

Kinases linked to autophagy 

Autophagy is a central mechanism that helps maintain cellular homeostasis. Autophagy is activated in 
response to different stress conditions such as starvation, protein aggregation, oxidative stress, bacterial 
infection, inhibition of the TOR1 pathway, and others [33, 34]. To determine the effect of kinases on 
autophagic flux, the KCGS library was screened at 1 µM concentration in RPE1 cells stably expressing 
the autophagic flux reporter construct GFP-LC3B-RFP-LC3B∆C [35] (Fig 6). The cells were monitored 
in a time-dependent manner so that the ratio of GFP/RFP intensity ratio represented the level of 
autophagic flux. The averaged GFP/RFP ratio was subsequently normalized to time point 0 h in order to 
facilitate easy visualization of differences to the autophagy control compounds Torin1 (inducer) and 
Torin1+ Bafilomycin A (inhibitor and deacidifier of lysosomes) compared to the DMSO vehicle control 
(S7 Table). 

As expected, DMSO-treated cells had a stable level of autophagic flux until nutrients in the media 
were depleted and they entered a starvation induced phase of autophagy induction. In contrast, the 
GFP/RFP ratio of Torin1-treated cells rapidly decreased within the first screening hours and stayed low 
over the complete time period of the five-day screen. Of note, treatment with Torin I caused an arrest of 
cell proliferation but no cell death. Confluence analysis was based on phase contrast images 
corresponding to the cell-covered area of each well. In this assay, cell health can only be assessed based 
on visual appearance of the cells and cell proliferation. 

Hits were defined as compounds that showed > 20% aberration of the GFP/RFP ratio in at least 5 or 
more consecutive time points, equivalent to a 10 h assay window. Hits were grouped in 6 categories based 
on the increase or decrease in proliferation rate, cell appearance and autophagy flux, respectively (detailed 
in Fig 6). Category 1 hits included GW416981X, a potent CDK1–3 inhibitor. The CDK inhibitors 
roscovitine and purvalanol have previously been shown to induce autophagy [36]. Likewise, CHK1 
inhibition, represented by the category 1 hit CCT244747, has been previously linked to autophagy 
induction [37]. However, we also identified several new potential kinase targets for autophagy. For 
example, GSK204919, a potent dual PRKD1/2 inhibitor, caused a reduction in autophagic flux. The role 
of PRKD in autophagy has not been well-documented. Additional studies are required to link the 
observed autophagy reduction to PRKD inhibition rather than another kinase target of GSK204919 (e.g. 
JAK). Categories 3 and 5 compounds contained inhibitors of kinases known to induce autophagy, such as 
GSK1070916 (an aurora kinase [38] inhibitor) and PFE-PKIS 40 (a PI3K and mTOR [39] inhibitor. 
Notably, the RPE-1 cells used in the screen did not show any reduction of cell proliferation at 1 µM PFE-
PKIS 40, despite its toxicity at 10 µM in HeLa cells (see above). The behavior of the category 4 
compounds THZ531 (CDK inhibitor) and PFE-PKIS 29 (mTOR inhibitor) likely resulted from overlap of 
autophagy induction with cell toxicity as already identified in the cell health and cell growth assays. Most 
of the compounds in category 6 have also been identified in the cell growth assays, including several 
inhibitors with activity on PLK (TPKI-24, TPKI-26, GSK461364, GSK579289A, GSK237701A, and 
BI2536), a kinase known to regulate both autophagy as well as mitosis [40]. 
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Fig 6. Autophagic flux assay. Compounds (1 µM) were analyzed for their effect on autophagy flux in RPE1 cells stably 
expressing the general autophagy flux reporter GFP-LC3B-RFP-LC3∆C. Phase contrast as well as fluorescent images (GFP, 
RFP) were taken at indicated time points. (A) Ratio of the GFP/RFP signal correlating with high (Torin1; defined as 100%) and 
low (DMSO; defined as 0%) autophagy flux. Compound-induced changes in autophagic flux are represented as percentage of this 
difference. (B) Hits are defined as compounds showing > 20% aberration of the GFP/RFP ratio compared in five or more 
consecutive time points and categorized according to their cell proliferation rate as well as visual appearance. (C) Examples of 
compounds with an effect on autophagic flux. Cell confluence is presented as percentage of covered growth area. Visual 
appearance of cells and cell confluence were ascertained by examining fluorescent images of the GFP channel at 96 h screen 
time. Graphs contain the individual average of experiments run in triplicate at two different times. 
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Discussion 
KCGS version 1.0 is currently the best publicly available set of well-annotated potent and selective kinase 
inhibitors. All of the inhibitors have narrow selectivity profiles as ascertained from screening across an 
assay panel covering the majority of the human protein kinases. The set can be obtained by any 
investigator who agrees to the open science principles of not restricting its use by others and also 
promises to publish the results of their screen (S1 File). This manuscript describes the chemical structure 
and kinase annotation of all of the inhibitors in the current set. We recognize that there is additional room 
for improvement in the breadth (more kinases) and depth (more chemotypes per kinase) of kinase 
coverage and in the biological annotation of the set. However, initial characterization of KCGS in 
phenotypic screens confirmed the utility of the set for chemogenomic exploration of kinase signaling. 
Screening across 18 cell lines identified a subset of compounds that selectively inhibit their growth. Some 
of these compounds point to dark kinases that have received little attention as potential drug targets. A 
screen for autophagy uncovered additional kinase pathways that warrant for further exploration. The 
narrow spectrum kinase activity of the individual inhibitors and the accompanying annotation supports 
rapid identification of target kinases for additional study. While, the compounds are generally non-toxic, 
we recommend that KGCS is screened at a maximum concentration of 1 µM in cells to minimize the 
potential for inhibition of additional kinases or off-target toxicity. 

Several ongoing activities will support KCGS remaining the best publicly available set of kinase 
inhibitors. Currently, 51% of the screenable kinome, as defined by the DiscoverX scanMAX, is covered 
by KCGS version 1.0 for a total of 215 human kinases. Over 100 of these kinases were selectively 
inhibited by two or more chemotypes in the set. Our originally stated goal was to cover all human kinases 
with two or more chemotypes, so additional inhibitors are still required for those kinases that are covered 
by only single chemotype. There are an additional 250 ‘gap kinases’ where we are still seeking an 
inhibitor that meets our minimal potency and selectivity criteria for inclusion in the set. For many of the 
gap kinases that are routinely screened in the DiscoverX scanMAX, identification of a non-promiscuous 
inhibitor is the primary challenge but may be achievable through iterative medicinal chemistry to improve 
selectivity. Additionally, there are over 50 human kinases for which robust biochemical screening assays 
are not readily accessible in any format. For these kinases, it is not yet known if useful inhibitors already 
exist in the current set or among molecules that are in the public domain. Many of these dark kinases are 
difficult to express and purify or represent pseudokinases with little or no catalytic activity. Development 
of new screening formats or assay methodologies will be required to identify a complete set of inhibitors 
for the whole kinome. 

One limitation to the design and selection of the inhibitors in KCGS was the use of potency and 
selectivity data from cell-free biochemical assays. The activity of kinase inhibitors in cells can be affect 
the binding of small molecules to the kinase. In addition, some inhibitors may be less potent in cells if 
they are not efficient at crossing the cell membrane. However, the provenance of compounds included in 
KCGS, either from lead optimization programs in the pharmaceutical industry or the product of academic 
chemical probe development projects, suggests that most of them are likely to be cell active. In fact, the 
profile of physical properties across KCGS is as good if not better than a set of 52 FDA-approved kinase 
inhibitor drugs. Regardless, it is not uncommon for kinase inhibitors to demonstrate lower potency in 
cells than in cell-free assays. A recent advance in application of NanoBRET technology to measure the 
target engagement of kinase inhibitors in living cells has provided a method to study this issue [41]. 
NanoBRET assays have now been developed for 133 of the human kinases that are inhibited by the 
molecules in KCGS version 1.0. Using these NanoBRET assays we have begun the process of annotating 
each of the inhibitors in KCGS for its activity against its corresponding target kinase in live cells. These 
data will aid the deconvolution of phenotypic screening data of KCGS and identify kinases for which 
inhibitors with improved cell activity will be required in future releases. 

The inhibitors in KCGS were sourced from multiple industrial and academic laboratories in a 
conscientious effort to maximize both the number of chemotypes (chemical diversity) and the breadth of 
kinase coverage (biological diversity). While the core of the set is still composed of molecules that were 
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published by GlaxoSmithKline chemists, KCGS version 1.0 contains inhibitors that originated from the 
laboratories of four pharmaceutical companies and three academic laboratories. We continue to seek new 
inhibitors to add to KCGS that represent either a new chemotype or an inhibitor of a gap kinase. To this 
end, we have completed profiling of molecules that have been donated by three additional companies as 
well as molecules synthesized in our laboratories and by academic collaborators. Inhibitors representing 
new chemotypes that increase the depth of coverage on many kinases will be made available as a 
supplemental set (KCGS version 1.1). Identification of potent and selective inhibitors of the gap kinases 
represents a more formidable yet surmountable challenge. We continue to welcome donations of 
candidate inhibitors of these kinases from industrial and academic laboratories to support expansion of the 
KCGS. All donor laboratories receive in return copies of the full KCGS set and the satisfaction of 
contributing to the goal of maintaining the best publicly available set of a high-quality kinase inhibitors. 

Conclusion 
KCGS is the largest fully annotated set of selective kinase inhibitors that is accessible to the scientific 
community. It is available in a format to support phenotypic screening in cells. Importantly, the set is a 
key resource to support expansion of the druggable genome. Biological annotation of a common set of 
diverse kinase inhibitors will deepen our understanding of the role of kinases in cell signaling and may 
uncover new targets for drug discovery programs and precursors to new medicines. 

 

Materials and Methods 
KCGS 

The current version of KCGS is available in 1 µL aliquots of a 10 mM DMSO solution at www.sgc-
unc.org/request-kcgs/ 

Kinase assays 

Compounds were screened at 1 µM using the KINOMEscan technology in the scanMAX assay panel of 
401 wild-type human kinase and S10 was calculated as previously described [17]. Compounds with S10 < 
0.04 were submitted for KD measurement on kinases with POC < 20%. Compounds with KD < 100 nM 
and S10 (1 µM) < 0.025 were selected as candidates for inclusion in KCGS. 

Chemotype binning 

Each molecular substructure or bin representing the desired hinge binder was manually codified in 
SMARTS language [25] and were given a priority order. Each molecule in KCGS was represented as a 
SMILES code. The SMARTS search was performed using Open Babel [42] to generate a .smi file to 
associate the SMILES code of each molecule with a specific SMARTS bin. All .smi files were processed 
in MATLAB [43] to create a compound-SMART matrix. Compounds with multiple matches were 
assigned to bin that corresponded to the highest priority SMARTS. 

Cytotoxicity 

A triple staining high content screen was performed as previously described [29]. HeLa cells exposed to 
KCGS compounds at 10 µM for 24 h were stained with the three dyes: Hoechst 33342 (1 µM), Yo-Pro 3 
(1 µM) and Annexin V (0.3 µL per well) for 1 h. Cellular fluorescence was measured using the JQ1 high 
content imaging system (Yokogawa) with the following setup parameters: Brightfield transmitted light at 
70% for 50 ms; Hoechst 33342 was excited by 100 ms exposure; Ex 405 nm/Em 447/60 nm, Yo-Pro 3 by 
100 ms exposure; Ex 561 nm/Em 617/73 nm and Annexin V (Alexa 488) by 50 ms exposure; Ex 488 
nm/Em 525/50 nm. All data were analyzed by the Pathfinder software and four categories for cells were 
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designated: healthy cells, early apoptosis, late apoptosis, and necrosis. Each category was calculated as 
percentage for every inhibitor. Cell nuclei were classified as either healthy, pyknosed, or fragmented. 

Cell Growth 

The KCGS library compounds were arrayed in a 384-well plate at a concentration of 1 mM. 4 breast cell 
lines, (SUM159, MCF7, MCF10A, and HCC1954), 2 ovarian cell lines (COV362 and KURAMOCHI), 2 
prostate cell line (PC-3 and DU145), 2 colorectal cell lines (HT29 and HCT116), 2 lung cell lines (A549 
and MRC-5), 2 melanoma cell lines (COLO858 and A375), 2 glioblastoma cell lines (Cas1 and SW1783), 
and 2 pancreatic cell lines (Panc-1 and HPAF-II) were maintained in their recommended growth media at 
37 ˚C in 5% CO2, were seeded in 384-well CellCarrier plates (Perkin Elmer) at the densities listed in S5 
Table. Cells were allowed to adhere for 24 hours and treated in duplicate with the KCGS library by pin 
transfer for a final concentration of 1 µM. Cells were stained and fixed at the time of pin transfer and 
following 72 hours of treatment. Cells were pulsed for one hour with EdU (Lumiprobe, Hunt Valley, MD) 
and stained with 1:2000 LIVE/DEAD Far Red Dead Cell Stain (LDR) (Thermo Fisher Scientific, 
Waltham, MA). Cells were then fixed with 3.7% formaldehyde (Sigma Aldrich, St. Louis, MO) for 30 
minutes and permeabilized with 0.5% Triton X-100 in PBS. The EdU was labeled with cy3-azide 
(Lumiprobe, Hunt Valley, MD) for 30 min. The cells were then blocked for one hour with Odyssey 
blocking buffer (LI-COR, Lincoln, NE), and stained overnight at 4˚C with 2 µg/ml Hoechst 33342 
(Sigma Aldrich, St. Louis, MO) and a 1:1000 dilution of anti-phospho-histone H3 (pHH3) Alexa 488 
(Ser10, clone D2C8) conjugated antibody (Cell Signaling Technologies, Danvers, MA). Fixed cells were 
imaged with a 10x objective using an IXM-C microscope and analyzed using MetaXpress software 
(Molecular Devices, San Jose, CA). Nuclei were segmented based on their Hoechst signal. DNA content, 
defined by the total Hoechst intensity within the nuclear mask, was used to identify cells in the G1 and 
G2 phases of the cell cycle. The average LDR, EdU and phospho-histone H3 intensities within the nuclear 
masks were determined and used to classify cells as dead, in S phase or in M phase respectively. Cells 
with intermediate DNA content and no EdU signal were classified as S phase dropout cells. Live cell 
counts were normalized to DMSO-treated controls on the same plates to yield normalized growth rate 
inhibition (GR) values as described previously [30].  

Autophagy 

RPE1 cells (1500 cells/well in 50 µl DMEM/F12, 10 % FBS, and 1 % P/S) stably expressing the GFP-
LC3-RFP-LC3∆C autophagy flux reporter [35] were seeded in 384-well plates and grown for 
approximately 18 h. 50 µl media with 2 x compound concentration was added and plates were 
subsequently placed and monitored in an IncuCyte® (Sartorius) instrument. Cells were scanned at 
indicated times for phase contrast and fluorescence intensity (GFP and RFP) to obtain information about 
confluence and autophagic flux, respectively. Hits are defined as compounds showing > 20% aberration 
of the GFP/RFP ratio compared to the control compounds DMSO (0.1 %) and Torin1 (250 nM) in at least 
5 or more consecutive time points (equivalent to 10h screening time). Compounds were tested in triplicate 
and the complete screen was performed twice. 

Supporting information 
S1 File. KCGS Material Trust Agreement 
(PDF) 

S2 File. Protocol for dilution and use of KCGS 
(PDF) 

S1 Table. KCGS kinase profiles 
 (XLSX) 
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S2 Table. KCGS kinase coverage 
 (XLSX) 

S3 Table. SMARTS analysis 
 (XLSX) 

S4 Table. Cell toxicity screen 
 (XLSX) 

S5 Table. Plating densities and media 
 (XLSX) 

S6 Table. GR values 
 (XLSX) 

S7 Table. Autophagy raw data 
 (XLSX) 
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