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Abstract 
 
Extra-long tandem repeats (ETRs) are widespread in eukaryotic genomes and play 
an important role in fundamental cellular processes, such as chromosome 
segregation. Although emerging long-read technologies have enabled ETR 
assemblies, the accuracy of such assemblies is difficult to evaluate since there is no 
standard tool for their quality assessment. Moreover, since the mapping of long 
error-prone reads to ETR remains an open problem, it is not clear how to polish draft 
ETR assemblies. To address these problems, we developed the tandemMapper tool 
for mapping reads to ETRs and the tandemQUAST tool for polishing ETR 
assemblies and their quality assessment. We demonstrate that tandemQUAST not 
only reveals errors in and evaluates ETR assemblies, but also improves them. To 
illustrate how tandemMapper and tandemQUAST work, we apply them to recently 
generated assemblies of human centromeres. 
 
 

Introduction 
 
Tandem repeats are formed by multiple consecutive nearly identical sequences that 
are often generated by unequal crossover (Smith, 1976). The early DNA sequencing 
projects revealed that tandem repeats are abundant in eukaryotic genomes (Yunis 
and Yasmineh, 1971; Bacolla et al., 2008). Recent studies of tandem repeats 
revealed their role in various cellular processes and demonstrated that mutations in 
tandem repeats may lead to genetic disorders (McFarland et al., 2015; Giunta and 
Funabiki, 2017; Song et al., 2018; Black et al., 2018).  
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We distinguish between extensively studied short tandem repeats (Willems et al. 
2014; Gymrek et al., 2016; Saini et al., 2018) and extra-long tandem repeats (ETRs) 
that range in length from tens of thousands to millions of nucleotides. Since ETRs 
are difficult to assemble, the vast majority of them remain unassembled even in the 
human genome, let alone other species. Centromeres and pericentromeres contain 
some of the longest ETRs, that account for ~3% of the human genome and span 
megabase-long regions (Miga, 2019). They represent the “dark matter” of the human 
genome that evaded all attempts to sequence it so far and are the biggest gaps in 
the reference human genome (Hayden et al., 2013; Miga et al., 2019).  
 
Emergence of long-read technologies, such as Pacific Biosciences (PacBio) and 
Oxford Nanopore Technologies (ONT), have greatly altered the landscape of 
whole-genome sequencing. The development of long-read assemblers (Chin et al., 
2016; Koren et al., 2017; Kolmogorov et al., 2019; Ruan and Li, 2019) and hybrid 
assemblers that combine long and short reads (Antipov et al., 2016; Zimin et al., 
2017) significantly increased the contiguity of assembled genomes compared to 
short-read assemblies. In addition, long reads contributed to successful semi-manual 
approaches for reconstructing human centromeres (Jain et al., 2018a; Miga et al., 
2019). The Flye assembler successfully resolves bridged tandem repeats that are 
spanned by long reads and even some unbridged tandem repeats that are not 
spanned by long reads (Kolmogorov et al., 2019). The centroFlye assembler 
(Bzikadze and Pevzner, 2019) was designed to automatically assemble unbridged 
ETRs, such as centromeres.  
 
Various alternative strategies for ETR assembly and absence of the ground truth for 
benchmarking these assemblies raise the problem of their quality evaluation. Similar 
problems have been addressed by the short-read quality assessment tools for 
genome assemblies such as GAGE (Salzberg et al., 2011) and QUAST (Gurevich et 
al., 2013; Mikheenko et al., 2018) as well as specialized quality assessment tools 
metaQUAST (Mikheenko et al., 2016) and rnaQUAST (Bushmanova et al., 2016). 
However, these tools are based on known references and thus are not applicable to 
analyzing ETRs since their analysis requires reference-free approaches to 
evaluating assembly quality. At the same time, existing reference-free tools are 
based on analyzing paired-end read alignments or gene content (Hunt et al. 2013; 
Clark et al. 2013; Ghodsi et al. 2013; Simão et al. 2015) and are not applicable to 
ETRs either. 
 
Existing assembly quality assessment tools rely on aligners (Li and Durbin, 2009; 
Langmead et al., 2009; Li, 2016; Li, 2018) that accurately map reads to assemblies. 
However, our benchmarking revealed that these tools often fail in ETRs, for 
example, minimap2 (Li, 2018) results in incorrect alignments of some reads to ETRs, 
especially in regions with assembly errors. We thus developed the tandemMapper 
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tool that efficiently maps long error-prone reads to ETRs. TandemMapper not only 
enabled tandemQUAST development but also led to improvement in ETR 
assemblies due to more accurate read mapping and subsequent polishing.  
 
The initial attempt to evaluate the quality of ETR assemblies was 
centromere-specific (Bzikadze and Pevzner, 2019) and has not resulted in a general 
quality assessment tool for ETR assemblies. Species- and chromosome-specific 
nature of centromeres prevents application of the same approach to other ETRs. 
However, the common principles of centromere organization can be utilized for 
developing a universal assembly evaluation tool for ETRs.  
 
Centromeres of primates are comprised of retrotransposon repeats and AT-rich 
alpha satellites, a DNA repeat based on a 171 bp monomer (Manuelidis and Wu, 
1978). In humans and many primates, consecutive monomers are arranged 
tandemly into higher-order repeat (HOR) units (Willard and Waye, 1987a). The 
number of monomers and their order in the HOR are chromosome-specific. For 
example, the chromosome X HOR, referred to as DXZ1, consists of twelve 
monomers (Willard and Waye, 1987b). These twelve monomers evolved from an 
ancestral pentameric satellite repeat ABCDE and can be represented as C1D1E1 

A1B1C2D2E2A2B2C3D3. For consistency with Bzikadze and Pevzner, 2019, we took the 
liberty to refer to the chromosome X HOR as ABCDEFGHIKL.  
 
Here we present tandemMapper, a tool for mapping reads to ETRs, and 
tandemQUAST, a tool for evaluating and improving ETR assemblies. We used 
tandemMapper and subsequent polishing to modify assemblies of the human 
centromere X generated by both centroFlye (Bzikadze and Pevzner, 2019) and 
curated semi-manual approach (Miga et al., 2019). We further illustrated 
tandemQUAST work by analyzing quality of resulting assemblies and demonstrating 
that they improve on original assemblies. These improvements suggest that 
tandemQUAST will become a popular tool for evaluating quality and polishing of 
many assemblies since nearly all genomes have ETRs. 
 
TandemMapper and tandemQUAST are open-source software that are freely 
available as command-line utilities on GitHub at 
https://github.com/ablab/tandemQUAST.  
 

Methods 
 
As an input, tandemQUAST requires one or several ETR assemblies and the set of 
long reads (PacBio continuous long reads (CLR) or ONT) that contributed to these 
assemblies. Additionally, error-prone long reads can be complemented by accurate 
reads such as PacBio high-fidelity (HiFi) reads (we do not consider accurate but 
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short Illumina reads since they proved to be very difficult to unambiguously map to a 
centromere). TandemQUAST consists of the read mapping module that identifies 
positions of read alignments to the assembly, polishing module for improving the 
quality of an assembly based on the identified read alignments, and the quality 
assessment module. TandemQUAST uses general metrics for evaluating ETRs of 
any kind and centromeric metrics designed specially to account for HOR structure of 
centromeric ETR.  
 
Simulated assembly. To evaluate tandemMapper and tandemQUAST results, we 
simulated an ETR of length ~1.03Mb which is a concatenation of 500 randomly 
mutated copies of the consensus HOR sequence on chromosome X (DXZ1) that 
diverge from the consensus sequence by 1% (substitutions only). Then, we 
simulated 1400 reads from this ETR using NanoSim (Yang et al., 2017) trained on 
the real ONT dataset enriched for ultra-long reads (longer than 50 kb) and generated 
by Telomere-to-Telomere (T2T) consortium (Miga et al., 2019). We refer to the 
centroFlye assembly of these reads as simulated. We further introduced various 
artificial errors (described below) into the simulated assembly and ran 
tandemQUAST.  
 
TandemMapper module. The key part of many long-read assemblers is a read 
mapping procedure that operates with short sequences of length k or simply k-mers. 
Most long-read mapping algorithms are based on minimizers (Li, 2016; Jain, 2018b; 
Li, 2018), k-mers that are carefully chosen and used as stepping stones for read 
mapping. However, mapping a long read to an ETR is a non-trivial problem since 
minimizers are expected to be reduced in numbers and irregularly arranged due to 
local expansions of identical tandem repeats. Bzikadze and Pevzner, 2019 used 
unique k-mers (that appear just once in the assembly) to improve read mapping to 
ETRs. However, the T2TX7 assembly of chromosome X (referred to as cenX) has 
only 16,163 unique 21-mers across the 3.1 Mb cenX array, with the largest distance 
between unique 21-mers equal to 42 kb (Miga et al., 2019).  
  
The density of unique k-mers may significantly vary along an assembly, leading to 
incorrect mappings and drops in coverage by mapped reads in some regions 
(Figure 1). Therefore, tandemMapper uses locally unique k-mers that are more 
abundant than unique k-mers. It partitions the assembly into t segments (the default 
value t=5) and defines a locally unique k-mer as a k-mer that is unique in a given 
segment. The segment size may vary depending on the assembly length, read 
lengths, and distribution of unique k-mers along the assembly. Figure 1 illustrates 
that density of locally unique k-mers is significantly larger than density of unique 
k-mers, thus providing more “signposts” for read mapping.  
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Figure 1. Distribution of unique (left) and locally unique (right) k-mers along the cenX 
assembly of the CHM13 cell line constructed by centroFlye. Each bar shows the number of 
unique (locally unique) k-mers in a bin of length 20 kb. The total number of unique (locally unique) 
k-mers is 33,545 (41,296) with k=19 and t=5 (each segment is approximately 600 kb long).  
 
Since ETR assemblies can be error-prone, some locally unique k-mers may 
represent assembly errors rather than low-frequency k-mers in the genome. To filter 
out such locally unique k-mers we analyze their frequencies in the read set. We 
assume that a k-mer from an assembly was erroneously attributed to locally unique if 
it has an unusually low frequency (lower than MinFrequency) or an unusually high 
frequency (higher than MaxFrequency) in reads. The MinFrequency (MaxFrequency) 
threshold is defined as a value such that at least 1% (95%) of all locally unique 
k-mers have the same or lower frequency in reads.  
 
We select locally unique k-mers that occur in reads at least MinFrequency and at 
most MaxFrequency times, and refer to them as solid k-mers. Filtering k-mers by 
frequency in reads reduces the number of spurious k-mers erroneously defined as 
locally unique. For example, applying this filtration to the centroFlye cenX assembly 
v0.8.3 (Bzikadze and Pevzner, 2019) reduced the number of locally unique k-mers 
from 41,296 to 37,728. Comparison with PacBio HiFi reads generated from the same 
cell line (Vollger et al., 2019) revealed that 1,723 of 3,586 filtered out k-mers are 
absent in the HiFi read set or, on the contrary, have a very high frequency (higher 
than a frequency of 95% of k-mers in the read set).  
 
The k-mer selection procedure can be affected by the fact that ETRs may harbor 
various transposable elements (TEs) such as LINE repeats, Alu repeats, etc. Single 
copies of TEs within ETRs are likely to contain many locally unique k-mers that may 
affect the mapping accuracy and complicate further analysis. To minimize their 
influence, we mask TEs using RepeatMasker (Smit and Green, 
http://repeatmasker.org) before selecting locally unique k-mers.  
 
The tandemMapper algorithm is inspired by the minimap2 (Li, 2018) and Flye 
mappers (Lin et al., 2016, Kolmogorov et al., 2019). Given two solid k-mers a and b, 
shared between a read R and an assembly A, we define dR(a,b) and dA(a,b) as 
distances between a and b in R and A, respectively. We further define 
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distance(a,b)=min{dR(a,b),dA(a,b)},  diff(a,b)=|dR(a,b)-dA(a,b)|, and 
penalty(a,b)=diff(a,b)/distance(a,b). We call k-mers a and b compatible if 
distance(a,b) < maxDistance (default value maxDistance = 60 kb) and diff(a,b) < C * 
distance(a,b), where C is a constant (the default value is 0.15).  
 
Given a read, we define a directed weighted compatibility graph with a vertex set 
equal to a set of all solid k-mers shared between R and A. We connect vertices a 
and b by an edge if (i) a precedes b in R and (ii) a and b are compatible. We further 
define the weight of an edge between a and b as premium-penalty(a,b), where 
premium is a constant selected to optimize the number of correctly mapped reads  
(default value penalty=0.1). A chain between R and A is defined as the longest path 
in the compatibility graph.  
 
A chain for a given read represents a potential mapping of this read to the assembly. 
TandemMapper finds a chain for each read using dynamic programming, filters out 
short chains (shorter than 3 kb in length or containing less than 20 k-mers by 
default), and constructs the corresponding nucleotide alignments within the derived 
chain boundaries for each remaining chain.  
 
We benchmarked tandemMapper and minimap2 by aligning simulated reads to the 
simulated assembly and comparing their known exact positions in the assembly to 
the inferred positions (Table 1). To analyze how these metrics capture breakpoints, 
we generated simulateddel assembly by introducing an artificial deletion of length 10 
kb in the simulated assembly at position 400 kb.  
 
TandemMapper split all alignments spanning the breakpoint of this deletion, while 
minimap2 erroneously extended alignments through this breakpoint due to highly 
repetitive sequence of the ETR. Using locally unique k-mers instead of unique 
k-mers increased the number of correctly mapped reads even in an easy case of the 
simulated assembly with uniform density of distribution of unique k-mers.  
 

 tandemMapper 
(unique k-mers) 

tandemMapper  
(locally unique k-mers)  

minimap2 

# mapped reads 1228 1242 1239 

# incorrectly mapped 
reads  

4 2 34 

# reads spanning the 
deletion breakpoint 

0 0 58 

 
Table 1. Benchmarking of tandemMapper and minimap2 on the simulated dataset. A read is 
considered correctly mapped if its starting position is within 100 bp from the read start position 
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calculated for the longest read alignment (an alignment is elongated to both ends of a read). Only 
alignments longer than 3 kb were considered.  
 
Polishing module. Due to high error rate in reads, most long-read assemblers have 
to include a polishing step to improve base-calling accuracy of the assembly (Chin et 
al., 2013; Loman et al., 2015; Lin et al., 2016). However, our benchmarking revealed 
that standard polishing tools may even decrease the assembly quality in tandem 
repeats due to incorrect and ambiguous read alignments against the assembly. On 
the other hand, Miga et al., 2019 demonstrated that the marker-assisted read 
mapping (based on unique k-mers) significantly improves accuracy of ETR 
assemblies. TandemQUAST uses read alignments generated by tandemMapper as 
an input for a modified Flye polishing module (Lin et al., 2016, Kolmogorov et al., 
2019). The Results section demonstrates that this polishing procedure fixes 
erroneous deletions and base-calling errors.  
 
Quality assessment module. To evaluate the assembly quality and reveal possible 
errors, we developed two general metrics (indel-based and k-mer-based) and a 
centromeric metrics (monomer-based) that we describe below. General metrics are 
applicable to any ETRs and centromeric metrics are applicable to centromeric ETRs 
only.  
 
Indel-based metrics. ETR assemblies are prone to large-scale deletions and 
duplications that lead to misassembly breakpoints. QUAST (Gurevich et al., 2013) 
defines a misassembly breakpoint based on differences between an assembly and a 
reference genome. In contrast, since the reference is not available, tandemQUAST 
detects breakpoints based on abnormalities in read coverage. Below we describe the 
coverage metric and the breakpoint metric and use them to reveal putative 
breakpoints. To analyze how these metrics capture breakpoints, we used  
the simulateddel assembly (Figure 2).  
 
Coverage metric. Assembly errors may affect the coverage near the assembly 
breakpoints. TandemQUAST uses read mappings truncated with respect to their 
longest chains to construct the coverage plot and reveal regions with abnormal 
coverage that may point to assembly errors (Figure 2).  
 
Breakpoint metric. In case an assembly contains a breakpoint caused by a long 
indel, longest chains for the majority of reads spanning this indel breakpoint cannot 
be extended through this indel due to a substantial discrepancy in distances between 
solid k-mers in reads and the assembly. Thus, if longest chains for many reads start 
or end in a certain region, this region may contain an assembly breakpoint.  

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 23, 2019. ; https://doi.org/10.1101/2019.12.23.887158doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.23.887158
http://creativecommons.org/licenses/by-nd/4.0/


 

However, stochastic differences in coverage and various biases also may result in 
drops or peaks in read coverage. Our goal is to distinguish these cases and reveal 
assembly breakpoints.  
 
A chain for a read R defines its partitioning into prefix(R), middle(R), and suffix(R), 
where middle(R) starts at the first k-mer in the chain and ends in the last k-mer in the 
chain. This chain defines a chain-segment in the assembly between the first and the 
last k-mer in the chain that is aligned to middle(R). We also define an elongated 
chain-segment as a chain-segment extended by |prefix(R)| and |suffix(R)| 
nucleotides in the beginning and the end, respectively.  
 
Given a solid k-mer Kmer, we define breaks(Kmer) as the number of chains starting 
or ending in this k-mer (over all reads). We also define number(Kmer) 
(number+(Kmer)) as the number of chain-segments (elongated chain-segments) 
containing this k-mer. Finally, we define breakpointRatio(Kmer) as 
breaks(Kmer)/number(Kmer) and breakpointRatio+(Kmer) as 
breaks(Kmer)/number+(Kmer).   
 
While drops in values of breakpointRatio usually correspond to poorly covered 
regions, peaks in values may reveal breakpoints in the assembly. We expect that 
regions where breakpointRatio(Kmer) has significantly higher values than 
breakpointRatio+(Kmer) contain assembly breakpoints, because the longest chains 
for many reads were not extended through this region (Figure 2). 
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Figure 2. Coverage (top) and breakpoint (bottom) metrics for simulated (left) and simulateddel 

(right) assemblies. The coverage plot does not show a significant drop at the point of the deletion but 
the breakpoint plot reveals a peak at the position of the deletion (400 kb). The red plot is based on the 
breakpointRatio(Kmer) values, the gray plot is based on the breakpointRatio+(Kmer) values.  
 
k-mer-based metrics. To benchmark metrics evaluating the base-calling accuracy 
of an assembly, we introduced 10,000 (~1% of the sequence length) random 
single-nucleotide substitutions in the simulated assembly (we refer to this assembly 
as simulatedmut).  
 
In contrast to the tandemMapper tool, the k-mer-based metrics need a reliable set of 
k-mers that appear just once in the assembly. We thus filter out solid k-mers that 
occur more than once in the assembly or more than once in a single read and refer 
to the rest as unique solid k-mers.  
 
After constructing read alignments, tandemQUAST finds where a unique solid k-mer 
in a read aligns to the assembly and calculates coordinates of all found alignments 
across all reads containing this k-mer. Afterwards, it clusters these coordinates (for a 
given unique solid k-mer) if they are located within MaxClumpDistance from each 
other (default value MaxClumpDistance = 1 kb). After single linkage clustering, we 
define a cluster as a clump if it contains more than MinClumpSize elements (default 
value MinClumpSize = 2). Ideally, all occurrences of a unique solid k-mer should 
form a single clump. We divide all k-mers having at least MinClumpSize occurrences 
in reads into three groups: a single clump, multiple clumps, and spurious k-mers that 
do not form clumps (Figure 3). TandemQUAST reports the percentage of each group 
and their distribution in the assembly (Figure 4). 
 

 
Figure 3. Coordinates of unique solid k-mers in the assembly and reads. Purple and red dots 
represent k-mer position in reads (shown as blue lines) and in the assembly (shown as a gray line), 
respectively. Clumps are flanked by vertical lines. (Left) k-mers forming a single clump, (Middle) 
k-mers forming multiple clumps in different parts of the assembly, (Right) k-mers that do not form 
clumps (spurious k-mers).  
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Figure 4. Distribution of different types of unique solid k-mers in the simulated (left) and 
simulatedmut (right) assemblies. Each bar shows the number of different types of k-mers in a bin of 
length 5 kb. The total number of unique k-mers in the assembly that do not occur in reads increased 
from 3,269 in the simulated assembly to 13,792 in the simulatedmut assembly. The percent of unique 
solid k-mers forming a single clump decreased from 91% in the simulated assembly to 74% in the 
simulatedmut assembly, mostly due to increased number of spurious k-mers. 
 
In the case when a complementary set of accurate PacBio HiFi reads is provided, 
tandemQUAST compares k-mer frequencies in the assembly and accurate reads. If 
the assembly contains k-mers that do not occur in HiFi reads or frequent k-mers from 
reads have a low frequency or are even absent in the assembly, it is likely that the 
assembly requires additional polishing. TandemQUAST reports absolute and relative 
abundance of such k-mers and generates a plot showing their distribution (Figure 11 
in the Results section). Multiple clumps or spurious k-mers appearing along the 
entire assembly may point to poor base-calling quality of this assembly. Multiple 
clumps or spurious k-mers appearing in certain regions of an assembly reflect either 
a poor base-calling quality in these regions or collapsed duplications with 
subsequent "consensus" polishing with reads from both copies.  
 
Centromeric metrics. The additional set of metrics takes into account centromere 
organization into monomers and units. Currently, tandemQUAST focuses on 
analysis of a particular type of centromeres that are formed by HORs. When a set of 
specific monomer sequences is known, tandemQUAST can analyse the assembly 
using the monomer-based metric described below and the unit-based statistic 
described in Appendix “Unit-based statistic”. In order to illustrate monomer-based 
metric and unit-based statistic, we generated the simulateddel_monomer  assembly by 
introducing a deletion of 3 consecutive monomers in the simulated assembly at 
position 226 kb.  
 
Centromere assemblies may include difficult-to-detect indels of multiple monomers. 
In case monomer sequences are known, tandemQUAST attempts to detect 
discrepancies between reads and the assembly at the monomer level. The 
assembled centromere and all reads are aligned to the provided monomer 
sequences and are subsequently translated into the monomer alphabet using the 
StringDecomposer tool (Dvorkina et al., 2019), resulting in a monocentromere and 
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monoreads. Using nucleotide read alignments, for each monomer ReadMonomer in 
each monoread tandemQUAST calculates StartPos(ReadMonomer), the starting 
nucleotide position of ReadMonomer in the monocentromere. In case ReadMonomer 
is aligned against a deletion in the monocentromere, StartPos(ReadMonomer) is 
recursively defined as StartPos(NextReadMonomer) where NextReadMonomer is 
the following monomer in the monoread. For each monomer CenMonomer in the 
monocentromere we define StartPos(CenMonomer) as the starting nucleotide 
position of this monomer in the centromere. We define 
ReadMonomers(CenMonomer) as a multiset of such ReadMonomers that 
|StartPos(ReadMonomer) - StartPos(CenMonomer)| < MaxStartPosDist (the default 
value MaxStartPosDist = 50 bp). Finally, we define MonomerRatio(CenMonomer) as 
the frequency of CenMonomer in ReadMonomers(CenMonomer). If 
MonomerRatio(CenMonomer) is below MinMonomerRatio (default value 
MinMonomerRatio = 0.8), the assembly is likely to have an error (Figure 5). 
However, in the case of heterozygous sites this ratio is close to 0.5 as roughly half of 
the reads support (do not support) the monomer.  
 

 
Figure 5. MonomerRatio for simulated and simulateddel_monomer assemblies. Even though 
MonomerRatio is defined for CenMonomers, we prefer to show nucleotide coordinates over the 
centromere (X-axis) for the sake of consistency with other metrics. The sharp drop in MonomerRatio 
in the simulateddel_monomer  assembly corresponds to the position of the monomer deletion.  
 
Although individual monomers may significantly vary in sequence, their length is 
fairly conserved within species that have alpha-satellites (Haaf and Willard, 1998; 
Hall et al., 2003). Thus, the monomer length distribution across the centromere 
assembly in such species may point to flaws in the assembly. Figure 6 demonstrates 
that most monomers have conserved length across the assembly. However, the first 
monomer A and the last monomer L show surprising variability in length, suggesting 
that the accuracy of the simulated assembly deteriorates at the ends of HOR units 
due to imperfect polishing. This imperfect polishing is caused by limitations of the 
existing read mapping tools in ETRs, forcing centroFlye to perform separate 
polishing for each HOR. Since the polishing procedure (Lin et al., 2016) is known to 
have limitations in the very beginning/end of each segment subjected to polishing, 
the beginning of the first (A) and the end of the last (L) monomers are poorly 
polished.  
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Since tandemMapper accurately maps reads, it eliminates the need to polish each 
HOR separately and thus improves polishing of the first and the last monomers. Just 
a single round of polishing with tandemQUAST resulted in the simulatedpolish 
assembly with increased assembly length (by ~4 kb) and complete sequences of the 
first and last monomers (Figure 6).  

 
Figure 6. Monomer length distribution for the simulated (a) and simulatedpolish (b) assemblies. 
Monomer sequences forming a consensus DXZ1* sequence derived in Bzikadze and Pevzner, 2019 
were used for analysis. In the simulated assembly, the length of A-monomers varies from 131 to 203 
bp (mean 165 bp) and the length of L-monomers varies from 137 to 187 bp (mean 171 bp). In the 
simulatedpolish assembly, the length of all A-monomers (L-monomers) is equal to 171 (173) bp. Since 
all monomers, except for L, have lengths 171 bp after polishing, they all are represented by the color 
corresponding to the K-monomer.  
 
Comparison of various ETR assemblies. TandemQUAST performs pairwise 
comparison for each pair of analyzed assemblies using the bi-mapping plot and the 
discordance test.  
 
A bi-mapping plot (Figure 7) provides an overview of read alignments from the 
perspective of both assemblies. Each read aligned to both assemblies represents a 
dot with its starting mapping positions in two assemblies as the x- and y- 
coordinates. Positions of read alignments for two assemblies can be compared to 
reveal structural discrepancies between them. 
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Figure 7. The bi-mapping plot illustrates the discrepancy between simulated and simulateddel 

assemblies at the deletion breakpoint.  
 
Bzikadze and Pevzner, 2019 introduced the discordance test for comparing two 
assemblies. A k-mer is shared between an assembly and a read aligned to this 
assembly if it occurs in both the assembly and the read approximately at the same 
position in their alignment. Given a set of k-mers Anchors, we define 
sharedAnchors(Read, Assembly) as the number of k-mers from Anchors that are 
shared between Read and Assembly. The larger sharedAnchors(Read, Assembly) 
is, the better the assembly “explains” the read with respect to a given set of k-mers. 
Given a read set Reads, we define sharedAnchors(Reads, Assembly) as the sum of 
sharedAnchors(Read, Assembly) over all reads in Reads. 
 
To compare two assemblies, we define Anchors as the set of shared unique k-mers 
between them (the default value k=19) and compute the discordance between these 
assemblies as discordance(Assembly’, Assembly’’) = sharedAnchors(Reads, 
Assembly’) - sharedAnchors(Reads, Assembly’'). We classify a read Read as 
discordant with respect to assemblies Assembly’ and Assembly’’ and a set of k-mers 
Anchors if there is a large difference (by at least k) between sharedAnchors(Read, 
Assembly’) and sharedAnchors(Read, Assembly’'), thus showing preference for one 
of the assemblies. We say that a discordant read votes for Assembly’ (Assembly’’) if 
this difference is positive (negative). 
 
Figure 8 shows a cluster of discordant reads voting for simulated over simulateddel 

assembly at the deletion breakpoint and no reads voting for simulateddel assembly. 
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Figure 8. Coverage of simulated and simulateddel assemblies by discordant reads. 
  

Results 
 
Analysis of cenX assemblies. We analyzed the following centromere X (cenX) 
assemblies: the Telomere-to-Telomere consortium assembly v0.4 (T2T4), v0.7 
(T2T7)  (Miga et al., 2019), and centroFlye v0.8.3 assembly (centroFlye) (Bzikadze 
and Pevzner, 2019). Note, that the T2T4 assembly is an interim version that was not 
polished with the marker-assisted methods described in Miga et al., 2019. We added 
it to the comparison to show how tandemQUAST analyzes unpolished assemblies. 
The T2T7 version was first semi-manually assembled and further improved based on 
centroFlye assembly as described in Miga et al., 2019. The T2T7 assembly was 
further polished using a novel marker-assisted read mapping strategy using both 
nanopore and PacBio CLR reads. In contrast, the centroFlye assembly utilized only 
information derived from ONT reads at the polishing step.  
 
We also applied our polishing method to the T2T4 and centroFlye assemblies 
(resulting in T2T4polish and centroFlyepolish assemblies) to demonstrate how 
tandemQUAST improves assemblies.  
 
Indel-based metrics. Figure 9 illustrates that T2T4, T2T4polish, and centroFlye 
assemblies have a coverage drop in the center of the centromere at ~1300-1600 kb 
that has a low concentration of unique k-mers (Figure 10). 
 
Low base-calling accuracy of the assembly can prevent chain extension. As a result, 
the longest chains for many reads may end in a poorly polished region, causing an 
increase in breakpointRatio values. Thus, to verify breakpoints found in the T2T4 
assembly, we compared them to the T2T4polish assembly. Both assemblies have 
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peaks in breakpointRatio values at ~270 kb, ~800 kb, ~1500 kb, ~2000 kb, and 
~2500 kb that correlate with their bi-mapping plot (Figure 13). A small peak at 
~800kb reveals a deletion (~3.5kb) in T2T4 and T2T4polish. The breakpoint metric for 
centroFlye and T2T7 assemblies are generally consistent between 
breakpointRatio(Kmer) and breakpointRatio+(Kmer) values, suggesting that these 
assemblies do not have large indels and rearrangements. 

 

 
Figure 9. Breakpoint metric for the T2T4, T2T4polish, T2T7, centroFlye, and centroFlyepolish 
assemblies. The red plot and the gray plot are based on the breakpointRatio(Kmer) and 
breakpointRatio+(Kmer) values correspondingly. The vertical light gray bands represent regions with 
low coverage (<10x). Discrepancies in these regions should be considered as not necessarily related 
to flaws in an assembly.  
 
k-mer-based metric. Figure 10 and Table 2 show the distribution of different types 
of  unique solid k-mers across the assemblies. The T2T4 assembly has a very high 
number of spurious k-mers as expected for an unpolished assembly, while T2T4polish 
demonstrates significant improvement in base-calling accuracy across the assembly. 
The high percentage (92-96%) of k-mers forming a single clump in the T2T7 and 
centroFlye assemblies suggest a high base-level quality in these assemblies. 
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 T2T4 T2T4polish T2T7 centroFlye centroFlyepolish 

single clump 14848  
(36%) 

16004  
(95%) 

16276 
(96%) 

15956  
(92%) 

16732  
(95%)  

multiple clumps 1566  
(4%)  

496  
(3%)  

351  
(2%)  

513  
(3%)  

423  
(2%) 

no clumps  24814  
(60%) 

 284  
(2%) 

 363  
(2%) 

 929  
(5%) 

628  
(3%) 

Table 2. Distribution of different types of unique solid k-mers in the T2T4, T2T4polish, T2T7, 
centroFlye, and centroFlyepolish assemblies. Most k-mers forming multiple clumps form clumps 
of size 2. If we set MinClumpSize = 3, only 31 k-mers form multiple clumps and only 16 of them 
are in non-overlapping positions. Note that T2T4, T2T7, centroFlye and centroFlyepolish assemblies 
do not utilize information derived from accurate HiFi PacBio reads.  
 

 

 

 

 
Figure 10. Distribution of different types of unique solid k-mers along the T2T4, T2T4polish, T2T7, 
centroFlye, and centroFlyepolish assemblies. Each bar shows the number of different types of 
k-mers in a bin of length 20 kb. The green peaks in the T2T4 assembly show that most unique solid 
k-mers in the assembly are spurious due to limited polishing.  
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In addition, we compared k-mer frequencies in assemblies and in accurate PacBio 
HiFi reads generated from the same cell line CHM13 (Vollger et al., 2019). The 
number of k-mers that do not occur in the HiFi read set was the highest in the 
unpolished T2T4 assembly (223,579) and the lowest (842) in the T2T7 assembly.  
 

 

 

 
 
Figure 11. Distribution of k-mers absent in PacBio HiFi read set but present in the T2T4, 
T2T4polish, T2T7, centroFlye, and centroFlyepolish assemblies. Each bar shows the number of k-mers 
in a bin of length 20 kb that are present in an assembly but missing in HiFi reads. The numbers of 
k-mers that do not occur in the HiFi read set are 223,579 (T2T4), 5,038 (T2T4polish), 842 (T2T7), 7,867 
(centroFlye), and 1,284 (centroFlyepolish). 
 
Monomer metrics. Figure 12 presents the monomer length distribution across 
various assemblies. The T2T7 and centroFlye assemblies have a few unusually 
short (145-146 bp) A-monomers at ~1000 kb. We checked these monomers further 
and confirmed that they are supported by reads. Besides that, the T2T7 assembly 
has very conserved monomer lengths except for a few monomers at ~2150 kb. In the 
centroFlye assembly, L-monomers significantly vary in length as in the simulated 
assembly (Figure 6), suggesting that centroFlye assembly requires additional 
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polishing of HOR unit ends. The centroFlyepolish assembly has significantly more 
uniform monomer lengths as compared to the centroFlye assembly. 

 
 
Figure 12. Monomer length distribution along the assembly in the T2T7, centroFlye, and 
centroFlyepolish assemblies. 
 
Pairwise comparison of assemblies. Figure 13 shows bi-mapping plots for each 
pair of assemblies. As expected from the analysis of the breakpoint metric (Figure 9), 
the centroFlye and T2T7 assemblies are nearly identical. The T2T4polish assembly 
differs from the T2T7 assembly around ~350 kb, ~1600 kb, ~2100 kb, and ~2800 kb 
(coordinates are given for the T2T7 assembly).  
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Figure 13. Bi-mapping plots for the T2T7 versus T2T4polish and T2T7 versus centroFlye 
assemblies. 
 

Discussion 
 
We presented the tandemMapper and tandemQUAST tools and applied them to 
various cenX assemblies. Although these tools detect flaws in ETR assemblies and 
provide a possibility to assess their quality, they have certain limitations discussed 
below.  
 
False assembly errors. TandemQUAST is based on mapping reads to the 
assembly and subsequent analysis. Such an approach implies that inherent errors or 
systematic biases in the sequencing platforms may affect evaluation of the assembly 
and bring in some discrepancies that could be considered as false assembly errors. 
To reduce this effect, tandemQUAST has an option of using accurate PacBio HiFi 
reads. 
 
Analysis of arbitrary ETRs in human and other genomes. Sequence and 
structural organization of ETRs, and particularly centromeres, varies widely across 
species. Since assembly of arbitrary ETRs remains an open problem, there is 
currently only one tool (centroFlye) for an automatic assembly of some ETRs and 
few examples of ETR assemblies. Thus, we purposefully limited the scope of our 
study to the recently completed human cenX assemblies. Since the 
Telomere-to-Telomere consortium aims to a gap-free assembly of a human genome 
that includes centromeric regions (Miga et al., 2019), we anticipate that more 
high-quality ETR assemblies will soon be generated. These new assemblies will help 
us in improving the tandemMapper and tandemQUAST tools.  
 
Analysis of diploid assemblies. Since centroFlye is now limited to haploid 
assemblies, the current version of tandemQUAST also focuses on haploid 
assemblies. Extending tandemQUAST functionality to diploid assemblies presents a 
complex algorithmic challenge. However, even effectively haploid cell lines may 
contain somatic heterogeneity due to clonal genomic instability in the cell culture. In 
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this case, tandemQUAST can report heterozygous sites based on the discrepancies 
in mapped reads. 
 

Analysis of transposable elements in ETRs. TandemMapper currently masks TEs 
before selecting locally unique k-mers. This approach is not optimal for TE-rich 
centromeric regions such as Drosophila centromeres (Chang et al., 2019). We plan 
to minimize the influence of TEs on k-mer selection without masking them by setting 
a limit on the maximum number of k-mers that can be selected in each window of a 
fixed length (e.g., 5 kb).  

 
Using additional data types for assessing quality of ETR assemblies. We used 
accurate HiFi PacBio reads to analyze various centromere assemblies but not 
bacterial artificial chromosomes (BACs) and other alternative technologies that 
represent valuable resources for analyzing tandem repeats (see Appendix 
“Alternative technologies for ETR assembly quality assessment”).  
 
For example, a BAC from an ETR is often easier to assemble than an entire long 
ETR such as a centromere. For example, centromere Y was recently sequenced 
using ONT reads to generate assemblies of BACs spanning this centromere (Jain et 
al., 2018a). However, certain limitations of the BAC technology make BACs a 
non-ideal option for ETRs sequence classification, (Miga et al., 2019). In particular, 
BACs (i) do not represent a high-throughput approach and thus limit the scope of 
studies, (ii) have severe differences in coverage that  complicate analysis, (iii) 
require partial restriction digests that introduce biases in cloning, (iv) may have 
secondary structures making them incompatible with a bacterial host, (v) since 
existing short-read assemblers are unable to assemble highly repetitive centromeric 
BAC from short reads (or even Sanger reads), it is not clear how to reproduce the 
semi-manual assemblies of such BACs (some of them assembled two decades ago) 
with current state-of-the-art assemblers like SPAdes (Bankevich et al., 2012). It is 
also difficult to accurately assemble BACs from centromeres using long error-prone 
reads, e.g., recent large BAC sequencing effort has not resulted in assembling such 
BACs (Dennis et al., 2017). Thus, if a BAC sequence and a centromere assembly 
disagree, it is not clear whether this disagreement is caused by an error in the BAC 
assembly or an error in the centromere assembly. A possible way to address this 
challenge is a hybrid BAC assembly that combines short and long reads like in Jain 
et al., 2018a.  
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Appendix: Unit-based statistic  
 
If an assembly is represented as an array of monomers, tandemQUAST splits this 
array into repeated units (a sequence of monomers, e.g., a series of twelve 
monomers forming a HOR on cenX can be represented as m1m2...m12). To 
automatically derive a unit, tandemQUAST uses the StringDecomposer tool 
(Dvorkina et al., 2019) to translate the assembly from the nucleotide to the monomer 
alphabet (the alphabet size is the number of distinct monomers). Afterwards, it 
collects all t-mers in the monomer alphabet  (the default value t=5), calculates the 
average distance d between two consecutive occurrences of the same t-mer, and 
selects the most frequent d-mer in the monomer alphabet as a standard unit. 
Afterwards, it removes all standard units and split the rest of the sequence into 
non-standard units, where each non-standard unit is the longest substring of a 
standard unit sequence. For example, given a standard unit 
m1m2m3m4m5m6m7m8m9m10m11m12, the monomer sequence m1...m9m5...m12 will be 
split into two units m1...m9 and m5...m12. TandemQUAST reports the assembly length 
in units, the number of distinct units, the number of monomers per each unit, and the 
unit frequency in the assembly and the read set.  
 
Analysis of the simulateddel_monomer  assembly demonstrated that it has 495 units, 494 
of them are standard 12-monomers m1...m12 units, and, as expected, two units have 
non-standard sequences m1m2m3 and m7...m12.  
 
Table S1 lists the distinct HOR units and their distribution in the assemblies and the 
reads. The centroFlye and T2T7 assemblies share the same set of units: 1536 HOR 
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units, including 65 non-standard units. The centroFlye and centroFlyepolish, as well as 
T2T4 and T2T4polish assemblies also have the same set of units. The T2T4 assembly 
has a smaller length than the centroFlye and T2T7 (~2.7Mbp vs ~3.1Mbp), so the 
total number of units is lower, although the set of non-standard units is the same. All 
non-standard units are supported by reads. 
 

 T2T4 T2T7 centroFlye Reads 

m1...m12 1298 1471 1471 25654 

m1...m4 1 1 1 154 

m1...m5 9 9 9 204 

m1...m6 8 8 8 233 

m1...m7 1 1 1 122 

m1...m9 4 4 4 159 

m1...m10 9 9 9 226 

m2...m12 1 1 1 164 

m3...m12 1 1 1 231 

m5...m12 5 5 5 252 

m6...m12 8 8 8 376 

m7...m12 5 5 5 270 

m8...m12 3 3 3 255 

m9...m12 8 8 8 328 

Table S1. Distribution of distinct units in the T2T4, T2T7, and centroFlye assemblies and the 
read set. The first and the last units in the assembly are not listed in the table. The first unit in T2T4 
and T2T7 assemblies is m4...m12, and in the centroFlye assembly is m6...m12. The last unit in all 
assemblies is m1...m10.  The first unit in centroFlye assembly differ from those in T2T4 and T2T7 
assemblies because of the choice of start sites and differences in the consensus HOR sequence.  
 
 

Appendix: “Alternative technologies for ETR assembly quality 
assessment”  
 
CLR PacBio reads probably add little to centromere assemblies since they are shorter than 
ONT reads and have similar error rates. Although they are better suited for polishing than 
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ONT reads, difficulties with mapping shorter error-prone reads to repetitive centromeres may 
offset this advantage. 
 
Optical mapping data was used by the T2T Consortium only for quality assessment (Miga 
et al., 2019). Even though incorporating optical mapping data into tandemQUAST remains 
an open problem, we hypothesize that the quality assessment metrics based on other data 
types, such as HiFi PacBio read, will be more beneficial.  
 
Hi-C data. Mapping of short Hi-C reads to ETRs presents a complex challenge that, to the 
best of our knowledge, remains unaddressed. Even though Hi-C data may be useful for 
quality assessment of ETR assemblies (especially for analysis of diploid assemblies) it is 
non-trivial to incorporate such data into tandemQUAST.  
 
10X Genomics data may potentially be useful but it is also non-trivial to incorporate this data 
type in tandemQUAST. We note that an even simpler problem of developing a 10X-based 
tool for analyzing quality of general assemblies remains unsolved.  
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