```
A cellular stress response induced by the CRISPR/dCas9 activation system is not
heritable through cell divisions.
Andrew D. Johnston }\mp@subsup{}{}{1}\mathrm{ (andrew.johnston@med.einstein.yu.edu)
Alali Abdulrazak}\mp@subsup{}{}{1}\mathrm{ (Abdulrazak.k.Alali@gmail.com)
Hanae Sato (hanae.sato@einstein.yu.edu)
Shahina B. Maqbool1 (shahina.maqbool@einstein.yu.edu)
Masako Suzuki1 (masako.suzuki@einstein.yu.edu)
John M. Greally }\mp@subsup{}{}{1}\mathrm{ (john.greally@einstein.yu.edu)
Claudia A. Simões-Pires }\mp@subsup{}{}{1,2*}\mathrm{ (claudia.avello@unige.ch)
1'Center for Epigenomics and Department of Genetics, Albert Einstein College of Medicine,
Bronx, NY, 10461, USA. Tel: +1 718 6781234.
2}\mathrm{ 2school of Pharmaceutical Sciences, University of Geneva, CH-1211 Geneva 4, Switzerland.
Tel: +41 22 379 6028.
Running title: CRISPR -triggered cellular stress response
Keywords : CRISPR, guide RNA, VP16, stress response genes, cell division
*Corresponding author
```


Authorship confirmation statement

23 Project design: C.A.S.-P.. Project oversight: M.S., J.M.G and C.A.S.-P. Experimental design:
24 A.D.J., C.A.S.-P., M.S., and J.M.G. Experiment execution: A.D.J., H.S., A.A, S.B.M. and
25 C.A.S.-P. Data analysis: A.D.J. and C.A.S.-P. Manuscript preparation: A.D.J. and C.A.S.-P.
26 Manuscript editing and finalization: A.D.J., A.A., H.S., S.B.M., M.S., J.M.G. and C.A.S.-P. This manuscript has been uploaded to bioRxiv. It is currently under submission.
bioRxiv preprint doi: https://doi.org/10.1101/2019.12.23.887224; this version posted December 23, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

29 Author disclosure statement

31 No competing financial interests exist.

Abstract

The CRISPR/Cas9 system can be modified to perform 'epigenetic editing' by utilizing the catalytically-inactive (dead) Cas9 (dCas9) to recruit regulatory proteins to specific genomic locations. In prior studies, epigenetic editing with multimers of the transactivator VP16 and guide RNAs (gRNAs) was found to cause adverse cellular responses. These side effects may confound studies inducing new cellular properties, especially if the cellular responses are maintained through cell divisions - an epigenetic regulatory property. Here we show how distinct components of this CRISPR/dCas9 activation system, particularly untargeted gRNAs, upregulate genes associated with transcriptional stress, defense response, and regulation of cell death. Our results highlight a previously undetected acute stress response to CRISPR/dCas9 components in human cells, which is transient and not maintained through cell divisions.

INTRODUCTION

The prokaryotic clustered regularly interspaced short palindromic repeats (CRISPR) system has been extensively used for eukaryotic genome editing, allowing precise point mutations, insertions and deletions, as well as epigenetic editing. ${ }^{1-3}$ Tempering the the promise of CRISPR/Cas9 systems is the concern of off-target effects. The Cas9 nuclease protein has been shown to bind promiscuously across the genome, ${ }^{4}$ resulting in undesirable insertiondeletion events as a consequence of this off-target cleavage. ${ }^{5}$

Epigenetic editing uses dCas9 (dead Cas9), a mutated Cas9 devoid of endonuclease activity, allowing the recruitment of effector proteins to specific loci without causing mutations at those sites. Over time, different CRISPR activation (epigenetic editing) systems have been proposed and compared in regards to their efficacy and off-target effects. ${ }^{6}$ The first constructs consisted of the standard activator VP64 (four copies of VP16) linked to the C-terminus of dCas9. ${ }^{7,8}$ VP16 is a viral protein that forms a transcriptional regulatory complex in host cells to induce early gene transcription upon herpes simplex infection. ${ }^{9}$ Subsequent CRISPR activation systems have been developed, many of them expressing VP16 repeats (VP64 or VP160), either fused to dCas9 ${ }^{7,10-13}$ or recruited by protein tagging and programmable RNA scaffolds. ${ }^{14,15}$ Off-target activation has not been detected using CRISPR activation, suggesting that guide RNA (gRNA) sequences are not inducing off-target recruitment of dCas9 leading to gene activation. However, a prior study points to a possible side effect of epigenetic editing using VP64 that involves the downregulation of the Interleukin 32 gene (IL32). ${ }^{7}$ Moreover, when produced via in vitro transcription, CRISPR gRNAs triggered side effects related to the innate immune response in human cells, with the upregulation of genes involved in the type I interferon response. ${ }^{16,17}$

Given these potential side effects of epigenetic editing, we aimed to investigate the genomewide, off-target effects of the CRISPR components on human transcriptional regulation. Here we examined the gene expression effects of distinct components of a VP16-based CRISPR/dCas9 activation system, by analyzing cells transiently transfected with different
combinations of dCas9, gRNAs and VP16 repeats, applying normalized transfected DNA amounts, and selection of positively transfected cells. This strategy allowed us to characterize a previously undetected acute stress response to the CRISPR/dCas9 components in human cells.

MATERIAL AND METHODS

Plasmid construction

To generate the dCas9 vectors, plasmid pAC154-dual-dCas9VP160-sgExpression (Addgene plasmid \# 48240) ${ }^{18}$ was linearized to introduce the 2A-GFP sequence downstream to the dCas9-VP160 fusion. Reverse complement oligonucleotides were annealed and amplified to generate the 2 A sequence. The GFP sequence was amplified by PCR from plasmid pBI-MCS-EGFP (Addgene plasmid \#16542) ${ }^{19}$ and all fragments were Gibson assembled to provide the sgRNA-dCas9-VP160-2A-GFP vector. Additional steps of plasmid digestion, gel purification, and Gibson assembly were then applied to the resulting vector. In this way, distinct CRISPR components were sequentially removed to generate the vectors sgRNA-dCas9-2A-GFP and sgRNA-2A-GFP.

A gRNA cloning vector (Addgene plasmid \#41824) was used as the gRNA empty backbone and for cloning the gRNA sequences as previously described. ${ }^{20}$ The vector was linearized, then reverse complement oligonucleotides containing the 19 -nucleotide gRNA target sequence and the gRNA scaffold were annealed and Gibson assembled into the vector to generate individual gRNAs1-6. The gRNA sequences (Supplementary Table 1) were selected as those with the highest scores and shortest distance to the TSS using the CRISPR design tool crispr.mit.edu. Plasmid sequences are provided in Supplementary File 1.

HEK 293T cells were cultured in DMEM medium, supplemented with 10% fetal bovine serum (FBS, Benchmarck), 100 units $/ \mathrm{mL}$ penicillin, and $100 \mu \mathrm{~g} / \mathrm{mL}$ streptomycin (Life Technologies). Cells were cultured in $75 \mathrm{~cm}^{2}$ tissue culture flasks (NUNC, Thermo Scientific) at $37^{\circ} \mathrm{C}$ in a 5% CO_{2} incubator. For each condition, a total of 10^{6} cells $/ 100 \mathrm{~mm}$ dish was cultured in triplicate overnight, then transfected with 1.93 pmol of GFP-expressing vectors and 3.47 pmol of gRNA vectors (Supplementary Table 2). Control cells received transfection reagents only. Transfections were conducted with Lipofectamine 2000 (Invitrogen) according to the manufacturer's instructions. After 24 h following transfection, the medium was replaced and cells were kept under culture for a total time of 48 h after transfection. Subsequently, cells were detached with EDTA, pelleted, washed twice, and resuspended in FACS buffer (Hank's balanced salt solution buffer supplemented with 1% BSA and 0.5 mM EDTA). Cell suspensions were then submitted to cell analysis and sorting in a FACSAria II cytometer (BD Biosciences). FACS data were analyzed using FACSDiva software (Becton Dickinson) with gating of single cells using FSC/W and SSC/W, and gating of GFP+ cells. When subsequent analyses were to be performed, cells were sorted into culture medium, washed twice with PBS, and pelleted.

CD34 FACS analysis

Cells were detached with EDTA, washed twice, and suspended in FACS buffer at 5×10^{5} cells $/ \mathrm{mL}$. For each sample, three aliquots of $100 \mu \mathrm{~L}$ were prepared to be treated with CD34 PE monoclonal antibody (clone 4H11, eBioscience), isotype control PE Mouse IgG1 kappa (clone P3.6.2.8.1), and FACS buffer, respectively. Each aliquot was first treated with $20 \mu \mathrm{~L}$ of Fc receptor binding for 10 min on ice, then with $5 \mu \mathrm{~L}$ of PE antibody or buffer for 20 min on ice. After incubation, cells were washed ($2 \times 1 \mathrm{~mL}$) and suspended in $500 \mu \mathrm{~L}$ of FACS buffer. FACS data were analyzed using FACSDiva (Becton Dickinson) or FloJow v10.5 (FlowJo LLC)
software, with gating of single cells using FSC/W and SSC/W, and gating of GFP+ and CD34 PE+ cells.

Total RNA extraction and quantitative reverse-transcription polymerase chain reaction (qRT-PCR)

Cell pellets were treated with QIAzol lysis reagent (Qiagen) and total RNA was isolated using the miRNAeasy kit (Quiagen) combined with DNAse (Qiagen) treatment according to manufacturer's instructions. Synthesis of cDNA was performed with SuperScript III FirstStrand Synthesis System for RT-PCR (Life technologies) using random hexamers as primers. CD34, DDIT3, RELB, and JUNB levels were measured with specific forward and reverse primers (Supplementary Table 3) with Light Cycler 480 Syber Green Master mix, according to the manufacturer's instructions.

RNA-seq library preparation and analysis

RNA-seq libraries were prepared from 1 ng of total RNA using the SMART-Seq HT Kit (Takara) combined with Nextera XT kit (Illumina), according to manufacturers' instructions. One-step cDNA synthesis and double-stranded cDNA amplification was conducted with 3^{\prime} SMART-Seq CDS Primer II A for priming, and SMART-Seq HT oligonucleotide for template switching at the 5 ' end of the transcript. The cDNA was then purified with the Agencourt AMPure XP kit, tagmented, and PCR amplified with appropriate index primers. Directional RNA-seq libraries were then sequenced 100 bp single-end on the Illumina HiSeq 2500. Reads were trimmed by Trim Galore (http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/; v0.3.7) and then aligned to the hg38 reference genome using STAR v2.6.0c. ${ }^{21}$ Differentially expressed protein-coding genes were determined by applying a threshold of $\log _{2}$-fold change >1, and $\mathrm{FDR}<0.05$, using DESeq2 v1.16.122 on protein-coding gene counts normalized by housekeeping genes ${ }^{23}$ as
input to the RUVg command within RUVseq v1.10.0. ${ }^{24}$ A full description of the analysis can be found on our GitHub server: https://github.com/GreallyLab/Johnston_SimoesPires_et_al_2019.

Analysis of gene ontology enrichment and protein-protein associations

The list of 97 overlapping dysregulated genes was evaluated through functional enrichment analysis with DAVID (Supplementary File 2). ${ }^{25}$ A total of 30 genes from enriched pathways showing a p-value <0.005 were further analyzed for their predicted protein associations in the STRING database. ${ }^{26}$

Analysis of off-target effects

Predicted gRNA off-target sites were obtained from the CRISPOR website (http://crispor.tefor.net/crispor.py?batchld=0xd7m55fmDIcoF8EzTa9\#s343+). ${ }^{27}$ These regions were then intersected by $+/-1 \mathrm{~kb}$ from TSSs of the 97 overlapping dysregulated genes using bedtools2 v2.26.0.

Determination of number of cell divisions

A total of 5×10^{4} cells, either GFP+ (CRISPR CD34) or GFP- (control) were directly sorted into wells of a 24 -well plate in culture medium. Cells were cultured and passaged every 48 h until GFP+ cells turned negative under the microscope. The total number of cells were counted at every passage, and the number of cell divisions was calculated as the population doubling level $(P D L)$ with the formula $n=3.32\left(\log N_{24 h}-\log N_{0}\right)$, where $N_{24 h}$ is the total number of cells after 24 h in culture, and N_{0} is the number of cells seeded in the previous passage.

RESULTS

To investigate the VP16-based CRISPR activation system, we first designed a vector for the human expression of both a scrambled gRNA and the dCas9 fused to ten repeats of VP16 (VP160). In order to discriminate between transfected and non-transfected cells, green fluorescent protein (GFP) was fused to the VP160 open reading frame using a linker encoding the cleavable peptide $2 \mathrm{~A} .{ }^{28}$ We used the system to target the endogenous activation of CD34, a gene which is not expressed in HEK 293 cells (https://www.proteinatlas.org). ${ }^{29}$ CD34 encodes a transmembrane protein, allowing us to discriminate easily by antibody recognition the cells expressing the protein in living cells. In a prior study, VP16 repeats directly fused to dCas9 required a pool of gRNAs for robust activation, ${ }^{8}$ increasing the number of possible mismatches that could lead to off-target activation genome-wide. To test the off-target effects from multiple gRNA sequences, dCas9-VP160-2A-GFP was transfected in combination with six pooled gRNAs targeting the CD34 promoter (Fig. 1A). Performing fluorescence-activated cell sorting (FACS), we demonstrated successfully induced endogenous expression of CD34 in HEK 293T cells (Fig. 1B), with GFP+/CD34+ cells, showing an 80-fold increase in CD34 mRNA levels (Fig. 1C). Interestingly, successfully transfected cells not expressing CD34 on the cell surface (GFP+/CD34-) also had an increase in CD34 mRNA levels (Fig. 1C), suggesting a cell subpopulation with either delayed protein translation or a lack of membrane translocation. While the pooled gRNAs were indeed more effective in inducing CD34 transmembrane expression compared to individual gRNAs, individual gRNA sequences seeding within a short distance (up to 100 nucleotides) from the transcriptional start site (TSS) were also successful, with expression levels increasing with decreasing distances from the TSS (Supplementary Fig. 1).

To evaluate whether the system induced undesirable effects genome-wide, we conducted RNA-seq analyses on the GFP+ cells transfected with the full activation system including the six gRNAs (CRISPR CD34), in comparison to non-transfected cells (Control). In addition to the strong upregulation of CD34, a total of 161 differentially expressed genes were identified (Fig. 2A). We then generated a CRISPR control by sorting GFP+ cells expressing dCas9-

VP160 and a scrambled gRNA (CRISPR). In this control, we detected 125 differentially expressed genes (Fig. 2B), with 97 of them overlapping the genes identified in the CRISPR CD34 sample (Fig. 2C, Supplementary file 2). Predicted gRNA off-target loci were not within 1 kb of the dysregulated genes' TSSs, suggesting that their differential expression was not a result of targeted dCas9-VP160 activation.

Nevertheless, the consistently dysregulated genes observed in the CRISPR control cells raised the question of whether side effects may occur due to the expression of dCas9, VP16 repeats, or gRNAs. We evaluated these 97 genes through functional enrichment analysis and protein associations. The gene ontology analysis was significantly enriched for biological pathways related to apoptosis, response to cytokines, mechanical stimulus, inflammation, and response to endoplasmic reticulum stress and unfolded proteins, represented by a total of 30 genes. Further analysis of protein-protein associations related to those genes featured the pathways of cell defense and regulation of cell death (Fig. 3), from which we selected three node genes (DDIT3, RELB, and JUNB) for further investigation.

DDIT3 encodes the DNA Damage Inducible Transcript 3 transcription factor activated during endoplasmic reticulum stress. ${ }^{30}$ RELB is a subunit of the pleiotropic transcription factor $N F_{K B}$ that has a central role in cell differentiation, growth, apoptosis, inflammation, and immunity. ${ }^{31-}$ ${ }^{33}$ JUNB, a component of the AP1 transcription factor, has a role in stress response and is associated with the NFKB pathway. ${ }^{34-37}$

Assessing the impact of the various CRISPR activation system components, we quantified the changes in expression of the selected genes in GFP+ cells transfected with distinct CRISPR components (Fig. 4A). Considering that the absolute amounts of foreign DNA introduced into cells may contribute to the degree of the observed stress response, we used equimolar plasmid concentrations across test conditions. First, we confirmed the activation of CD34 in the CRISPR CD34 cells only in the presence of the targeted gRNAs; it was not induced by the expression of gRNAs alone (gRNA control) nor any other isolated component of the system (Fig. 4B). The stress-related genes DDIT3, RELB and JUNB were induced across all samples
containing the CRISPR components. Expression of gRNAs in their untargeted form, either in the absence of dCas9 (gRNA control) or with a scrambled sequence in the presence of dCas9 (CRISPR and dCas9 controls), demonstrated a robust elevation of the stress-related genes' expression (Fig. 4B).

We then investigated whether cells transfected with the CRISPR activation system were able to return to their basal expression levels over multiple cell divisions. To do this, we kept the activated GFP+ cells in culture until cells were negative for GFP fluorescence under the microscope (after 10 cell divisions). At this point, the cells were analyzed by FACS and sorted for GFP- populations to ensure that the CRISPR components had been eliminated from the cells. We demonstrated that the upregulated stress-response genes returned to their basal levels (Fig. 5), indicating the absence of a memory effect for both CD34 and the cellular stress response genes.

DISCUSSION

Taken together, our results point to the activation of stress genes as a side effect upon the expression of CRISPR components, especially untargeted gRNAs, not necessarily related to the presence of VP16 or to gRNA off-target sequences. Indeed, previous findings have shown that dCas9 has a higher residence time at a targeted genomic locus than at off-target loci, ${ }^{38}$ potentially contributing to the high specificity of gRNAs in the dCas9-VP16-based epigenetic activation systems.

The outcome of undesirable transcriptional regulation is of concern when using dCas9 fused to effectors for epigenetic editing. The changes in cellular properties resulting from epigenetic editing might be expected to be heritable, as this is one definition of cellular epigenetic properties. ${ }^{39}$ If side effects affecting gene expression are maintained through cell division, they will be difficult to uncouple from the desired effect of the epigenetic editing. Moreover,
heritable side effects may constitute a pitfall in developing CRISPR technologies for the development of therapeutic applications.

Our findings reveal an acute cellular response to the components of the CRISPR activation system, which dissipates over the course of multiple cell divisions. While this is reassuring for the use of CRISPR-mediated epigenetic editing, we note that the effects observed involve the transient activation of transcription factors. Transient upregulation of transcription factors may induce downstream pathways, which in turn can be irreversible. One example is the role of pioneer transcription factors in somatic cell reprogramming. ${ }^{40}$ Accordingly, the transcription factor DDIT3, predominantly related to the stress response, has been identified as a regulatory node in erythroid lineage cell programming. ${ }^{41}$ Furthermore, we only examined the genomewide expression consequences of a transient CRISPR transfection in one cell line; the potential long-term transcriptional effects of stably transfected CRISPR machinery or differing cellular response by other cell types warrant further investigation.

CONCLUSION

An acute stress response occurs in cells when CRISPR components are used for gene activation. Although transient, the response was mediated through the upregulation of transcription factors that may, in certain cell systems, independently lead to reprogramming effects. Therefore, the impact of CRISPR components on transcription factors should be carefully taken into consideration when designing CRISPR genetic and epigenetic editing tools.

AKNOWLEDGEMENTS

The current project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 750190.

DATA AVAILABILITY

All genome sequencing data are available from the NCBI Gene Expression Omnibus database under accession number GSE11827
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE118277; reviewer token: uijijuqqqzlkjbyt).

CODE AVAILABILITY

The code files for the all analyses are available at https://github.com/GreallyLab/Johnston_Simoes-Pires_et_al_2019.

REFERENCES

1. Adli M. The CRISPR tool kit for genome editing and beyond. Nat Commun. 2018;9:1911. DOI: 10.1038/s41467-018-04252-2
2. Holtzman L, Gersbach CA. Editing the epigenome: reshaping the genomic landscape. Annual Review of Genomics and Human Genetics. 2018;19:43-71. DOI: 10.1146/annurev-genom-083117-021632
3. Johnston AD, Simões-Pires CA, Thompson TV, Suzuki M, Greally JM. Functional genetic variants can mediate their regulatory effects through alteration of transcription factor binding. Nat Commun. 2019;10:3472-3472. DOI: 10.1038/s41467-019-11412-5
4. Wu X, Scott DA, Kriz AJ, Chiu AC, Hsu PD, Dadon DB, Cheng AW, Trevino AE, Konermann S, Chen S, Jaenisch R, Zhang F, Sharp PA. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat Biotechnol. 2014;32:670-676. DOI: 10.1038/nbt. 2889
5. Lee JK, Jeong E, Lee J, Jung M, Shin E, Kim YH, Lee K, Jung I, Kim D, Kim S, Kim JS. Directed evolution of CRISPR-Cas9 to increase its specificity. Nat Commun. 2018;9:3048. DOI: 10.1038/s41467-018-05477-x
6. Chavez A, Tuttle M, Pruitt BW, Ewen-Campen B, Chari R, Ter-Ovanesyan D, Haque SJ, Cecchi RJ, Kowal EJK, Buchthal J, Housden BE, Perrimon N, Collins JJ, Church G. Comparison of Cas9 activators in multiple species. Nat Methods. 2016;13:563-567. DOI: 10.1038/nmeth. 3871
7. Perez-Pinera P, Kocak DD, Vockley CM, Adler AF, Kabadi AM, Polstein LR, Thakore PI, Glass KA, Ousterout DG, Leong KW, Guilak F, Crawford GE, Reddy TE, Gersbach CA. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods. 2013;10:973. DOI: 10.1038/nmeth. 2600 8. Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, Yang L, Church GM. CAS9 transcriptional activators for target specificity screening and paired nickases for
cooperative genome engineering. Nature biotechnology. 2013;31:833-838. DOI:
10.1038/nbt. 2675
8. Wysocka J, Herr W. The herpes simplex virus VP16-induced complex: the makings of a regulatory switch. Trends Biochem Sci. 2003;28:294-304. DOI: 10.1016/S0968-0004(03)00088-4
9. Chakraborty S, Ji H, Kabadi Ami M, Gersbach Charles A, Christoforou N, Leong Kam W. A CRISPR/Cas9-based system for reprogramming cell lineage specification. Stem Cell Rep. 2014;3:940-947. DOI: 10.1016/j.stemcr.2014.09.013
10. Chavez A, Scheiman J, Vora S, Pruitt BW, Tuttle M, E PRI, Lin S, Kiani S, Guzman CD, Wiegand DJ, Ter-Ovanesyan D, Braff JL, Davidsohn N, Housden BE, Perrimon N, Weiss R, Aach J, Collins JJ, Church GM. Highly efficient Cas9-mediated transcriptional programming. Nat Methods. 2015;12:326-328. DOI: 10.1038/nmeth. 3312 12. Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen Y, Whitehead EH, Guimaraes C, Panning B, Ploegh HL, Bassik MC, Qi LS, Kampmann M, Weissman JS. Genome-scale CRISPR-mediated control of gene repression and activation. Cell. 2014;159:647-661. DOI: 10.1016/j.cell.2014.09.029 13. Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, Hsu PD, Habib N, Gootenberg JS, Nishimasu H, Nureki O, Zhang F. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature. 2015;517:583-588. DOI:

10.1038/nature14136

14. Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS, Vale RD. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell. 2014;159:635-646. DOI: 10.1016/j.cell.2014.09.039 15. Zalatan JG, Lee ME, Almeida R, Gilbert LA, Whitehead EH, La Russa M, Tsai JC, Weissman JS, Dueber JE, Qi LS, Lim WA. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell. 2015;160:339-350. DOI:
10.1016/j.cell.2014.11.052
15. Kim S, Koo T, Jee HG, Cho HY, Lee G, Lim DG, Shin HS, Kim JS. CRISPR RNAs trigger innate immune responses in human cells. Genome Res. 2018. DOI:
10.1101/gr. 231936.117
16. Schubert MS, Cedrone E, Neun B, Behlke MA, Dobrovolskaia MA. Chemical Modification of CRISPR gRNAs Eliminate type I Interferon Responses in Human Peripheral Blood Mononuclear Cells. J Cytokine Biol. 2018;3. DOI: 10.4172/2576-3881.1000121 18. Cheng AW, Wang H, Yang H, Shi L, Katz Y, Theunissen TW, Rangarajan S, Shivalila CS, Dadon DB, Jaenisch R. Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res. 2013;23:1163-1171. DOI:
10.1038/cr.2013.122
17. Yu J, Zhang L, Hwang PM, Rago C, Kinzler KW, Vogelstein B. Identification and classification of p53-regulated genes. Proc Natl Acad Sci U S A. 1999;96:14517-14522. 20. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM. RNAguided human genome engineering via Cas9. Science. 2013;339:823-826. DOI:
10.1126/science. 1232033
18. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15-21. DOI: 10.1093/bioinformatics/bts635 22. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. DOI: 10.1186/s13059-014-0550-8 23. Eisenberg E, Levanon EY. Human housekeeping genes, revisited. Trends Genet. 2013;29:569-574. DOI: 10.1016/j.tig.2013.05.010
19. Risso D, Ngai J, Speed TP, Dudoit S. Normalization of RNA-seq data using factor analysis of control genes or samples. Nat Biotechnol. 2014;32:896. DOI: 10.1038/nbt. 2931 25. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44-57. DOI: 10.1038/nprot.2008.211
20. Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A, Bork P, Jensen LJ, von Mering C. The STRING database in 2017: qualitycontrolled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 2017;45:D362-d368. DOI: 10.1093/nar/gkw937
21. Haeussler M, Schönig K, Eckert H, Eschstruth A, Mianné J, Renaud J-B, SchneiderMaunoury S, Shkumatava A, Teboul L, Kent J, Joly J-S, Concordet J-P. Evaluation of offtarget and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biology. 2016;17:148. DOI: 10.1186/s13059-016-1012-2 28. Kim JH, Lee SR, Li LH, Park HJ, Park JH, Lee KY, Kim MK, Shin BA, Choi SY. High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. PLoS One. 2011;6:e18556. DOI: 10.1371/journal.pone. 0018556 29. Uhlen M, Oksvold P, Fagerberg L, Lundberg E, Jonasson K, Forsberg M, Zwahlen M, Kampf C, Wester K, Hober S, Wernerus H, Bjorling L, Ponten F. Towards a knowledgebased Human Protein Atlas. Nat Biotechnol. 2010;28:1248-1250. DOI: 10.1038/nbt12101248
22. Vihervaara A, Duarte FM, Lis JT. Molecular mechanisms driving transcriptional stress responses. Nat Rev Genet. 2018;19:385-397. DOI: 10.1038/s41576-018-0001-6 31. Marienfeld R, May MJ, Berberich I, Serfling E, Ghosh S, Neumann M. ReIB forms transcriptionally inactive complexes with ReIA/p65. J Biol Chem. 2003;278:19852-19860. DOI: 10.1074/jbc.M301945200
23. Yun JJ, Tsao M-S, Der SD. Differential utilization of NF-kappaB RELA and RELB in response to extracellular versus intracellular polyIC stimulation in HT 1080 cells. BMC Immunol. 2011;12:15-15. DOI: 10.1186/1471-2172-12-15
24. Hayden MS, Ghosh S. Signaling to NF-kappaB. Genes Dev. 2004;18:2195-2224. DOI: 10.1101/gad. 1228704 34. Fan F, Bashari MH, Morelli E, Tonon G, Malvestiti S, Vallet S, Jarahian M, Seckinger A, Hose D, Bakiri L, Sun C, Hu Y, Ball CR, Glimm H, Sattler M, Goldschmidt H, Wagner EF, Tassone P, Jaeger D, Podar K. The AP-1 transcription factor JunB is essential for multiple myeloma cell proliferation and drug resistance in the bone marrow microenvironment. Leukemia. 2017;31:1570-1581. DOI: 10.1038/leu.2016.358 35. Hyakusoku H, Sano D, Takahashi H, Hatano T, Isono Y, Shimada S, Ito Y, Myers JN, Oridate N. JunB promotes cell invasion, migration and distant metastasis of head and neck squamous cell carcinoma. J Exp Clin Cancer Res. 2016;35:6. DOI: 10.1186/s13046-016-0284-4
25. Hicks MJ, Hu Q, Macrae E, DeWille J. Mitogen-activated protein kinase signaling controls basal and oncostatin M-mediated JUNB gene expression. Mol Cell Biochem. 2015;403:115-124. DOI: 10.1007/s11010-015-2342-1
26. Hicks M, Hu Q, Macrae E, DeWille J. JUNB promotes the survival of Flavopiridol treated human breast cancer cells. Biochem Biophys Res Commun. 2014;450:19-24. DOI:
10.1016/j.bbrc.2014.05.057
27. Knight SC, Xie L, Deng W, Guglielmi B, Witkowsky LB, Bosanac L, Zhang ET, El Beheiry M, Masson JB, Dahan M, Liu Z, Doudna JA, Tjian R. Dynamics of CRISPR-Cas9 genome interrogation in living cells. Science. 2015;350:823-826. DOI: 10.1126/science.aac6572 39. Riggs AD, Martienssen RA, Russo VEA. Introduction In: Epigenetic mechanisms of gene regulation. Cold Spring Harbor Laboratory Press, North America. 1996.
28. Xu Y, Zhang M, Li W, Zhu X, Bao X, Qin B, Hutchins AP, Esteban MA. Transcriptional control of somatic cell reprogramming. Trends Cell Biol. 2016;26:272-288. DOI:
10.1016/j.tcb.2015.12.003
29. Pina C, Teles J, Fugazza C, May G, Wang D, Guo Y, Soneji S, Brown J, Edén P, Ohlsson M, Peterson C, Enver T. Single-cell network analysis identifies DDIT3 as a nodal lineage regulator in hematopoiesis. Cell Rep. 2015;11:1503-1510. DOI:
10.1016/j.celrep.2015.05.016

Fig. 1. Ectopic gene activation of CD34 with the CRISPR activation system using the sgRNA-dCas9-VP160-2A-GFP vector combined with 6 gRNAs. A) Overview of the CRISPR CD34 activation system: 6 gRNAs targeting the promoter of CD34 within 500 bp from the TSS were co-transfected with a vector expressing dCas9 fused to 10 repeats of the transactivation peptide VP16, released from GFP by a cleavable peptide. B) FACS analysis of HEK 293 cells transfected with the CRISPR CD34 activation system. GFP+/CD34- and GFP+/CD34+ cells were sorted for subsequent analysis. C) The fold changes in expression in sorted cells relative to control measured by qRT-PCR.

Fig. 2. Differentially expressed genes with the CRISPR CD34 activation system and the CRISPR system in the absence of targeted gRNAs. A) RNA-seq MA plot of CRISPR CD34 compared with control. Black solid dots are the differentially expressed genes $\left(\log _{2}\right.$ fold change $>1, \mathrm{FDR}<0.5$). Differentially expressed CD34 is represented by a solid red dot. B) RNA-seq MA plot of CRISPR control compared with control. Black solid dots are the differentially expressed genes $\left(\log _{2}\right.$ fold change >2, $\mathrm{FDR}<0.5 \mathrm{~A}$). CD34 is not differentially expressed. C) Venn diagram representing the 97 differentially expressed genes in common between CRISPR CD34 and CRISPR control.

Fig. 3. Protein-protein associations among genes selected from gene ontology analysis. Analysis from STRING database (https://string-db.org/). The genes DDIT3, JUNB and RELB were selected for further studies as central to the regulation of these defense response and cell death regulatory pathways.

Fig 4. Relative RNA expression of CD34 and stress-related genes across CRISPR conditions. A) s of the expression vectors transfected in each condition. B) Acute fold change in gene expression relative to control at 48 hours after transfection. P-values: * $\leq 0.05 ;{ }^{* * *} \leq$ $0.001 ;{ }^{* * * * \leq 0.0001 \text {. }}$

Fig. 5. Change in gene expression relative to control in transfected cells after 10 cell divisions in comparison to the acute response. The expected induction of gene expression is seen acutely at 48 h , with complete resolution when 10 cell divisions have occurred in these GFP- cells.

[^0]Supplementary Table 1. gRNA sequences.

gRNA	Sequence	PAM	Distance to the
1	GAAAGCTGAACGAGGCATC	TGS*	-19
2	CTCTCCAGAAAGCTGAACG	AGG	-26
3	CCGGCAAGGCTGCCACAAA	GGG	-93
4	CCTTTTGCAAGATTGTTAC	TGG	-197
5	CACTAAATGTGCCACATTG	TGG	-280
6	TGTGTGTGAGTGAAGCGTC	-	-324
Scramble	GGGTCTTCGAGAAGACCT	-	

*TSS = transcriptional start site, defined as the first nucleotide in the gene transcript sequence including the UTR according to the Human Feb. 2009 (GRCh37/hg19) assembly (UCSC browser).

Supplementary Table 2. Amount of transfected vectors per 100 mm dishes across CRISPR conditions.

	Vector (pmol)				$\begin{aligned} & 464 \\ & 465 \end{aligned}$
				$\begin{aligned} & \sum_{\substack{0 \\ 0 \\ 0 \\ 0}}^{0} \end{aligned}$	
CRISPR CD34	1.93	-	-	3.47*	470
CRISPR	1.93	-	-	-	3.4771
dCas9	-	1.93	-	-	3.4772
gRNA	-	-	1.93	3.47 *	-473

* Divided into equal amounts of each vector.

Supplementary Table 3. qRT PCR primers.

Gene	Forward primer	Reverse primer
CD34	AATAGCCAGTGATGCCCAAG	GGTATGCTCCCTGCTCCTT
DDIT3	GGAACCTGAGGAGAGAGTGTTC	TGCCATCTCTGCAGTTGGAT
RELB	CAGTGTGTGAGGAAGAAGGAG	CCGCAGCTCTGATGTGTTTGT
JUNB	CCACCTCCCGTTTACACCAA	GAGGTAGCTGATGGTGGTCG

Supplementary file 1

Sequence of plasmid sgRNA-dCas9-VP160-2A-GFP

U6 promoter

gRNA scaffold with scrambled target sequence
dCas9

VP160

2A peptide

GFP

GAGGGCCTATTTCCCATGATTCCTTCATATTTGCATATACGATACAAGGCTGTTAGAGAGATAATTGGAATTAAT TTGACTGTAAACACAAAGATATTAGTACAAAATACGTGACGTAGAAAGTAATAATTTCTTGGGTAGTTTGCAGTT TTAAAATTATGTTTTAAAATGGACTATCATATGCTTACCGTAACTTGAAAGTATTTCGATTTCTTGGCTTTATAT ATCTTGTGGAAAGGACGAAACACCGGGTCTTCGAGAAGACCTGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAG GCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTTTGTTTTAGAGCTAGAAATAGCAAGTTA AAATAAGGCTAGTCCGTTTTTAGCGCGTGCGCCAATTCTGCAGACAAATGGCTCTAGAGGTACCCGTTACATAAC TTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGCCCATTGACGTCAATAGTAACGCCAATAGGGA СTTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCATATGC CAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTGTGCCCAGTACATGACCTTATGGG ACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTCGAGGTGAGCCCCACGTTCTGCT TСАСТСТССССАТСТССССССССТССССАСССССААТТTTGTATTTATTTATTTTTTAATTATTTTGTGCAGCGA TGGGGGCGGGGGGGGGGGGGGGGCGCGCGCCAGGCGGGGCGGGGCGGGGCGAGGGGCGGGGCGGGGCGAGGCGGA GAGGTGCGGCGGCAGCCAATCAGAGCGGCGCGCTCCGAAAGTTTCCTTTTATGGCGAGGCGGCGGCGGCGGCGGC CCTATAAAAAGCGAAGCGCGCGGCGGGCGGGAGTCGCTGCGACGCTGCCTTCGCCCCGTGCCCCGCTCCGCCGCC GCCTCGCGCCGCCCGCCCCGGCTCTGACTGACCGCGTTACTCCCACAGGTGAGCGGGCGGGACGGCCCTTCTCCT CCGGGCTGTAATTAGCTGAGCAAGAGGTAAGGGTTTAAGGGATGGTTGGTTGGTGGGGTATTAATGTTTAATTAC CTGGAGCACCTGCCTGAAATCACTTTTTTTCAGGTTGGACCGGTGCCACCATGTACCCATACGATGTTCCAGATT ACGCTTCGCCGAAGAAAAAGCGCAAGGTCGAAGCGTCCGACAAGAAGTACAGCATCGGCCTGGCCATCGGCACCA ACTCTGTGGGCTGGGCCGTGATCACCGACGAGTACAAGGTGCCCAGCAAGAAATTCAAGGTGCTGGGCAACACCG ACCGGCACAGCATCAAGAAGAACCTGATCGGAGCCCTGCTGTTCGACAGCGGCGAAACAGCCGAGGCCACCCGGC TGAAGAGAACCGCCAGAAGAAGATACACCAGACGGAAGAACCGGATCTGCTATCTGCAAGAGATCTTCAGCAACG
bioRxiv preprint doi: https://doi.org/10.1101/2019.12.23.887224; this version posted December 23, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

AGATGGCCAAGGTGGACGACAGCTTCTTCCACAGACTGGAAGAGTCCTTCCTGGTGGAAGAGGATAAGAAGCACG AGCGGCACCCCATCTTCGGCAACATCGTGGACGAGGTGGCCTACCACGAGAAGTACCCCACCATCTACCACCTGA GAAAGAAACTGGTGGACAGCACCGACAAGGCCGACCTGCGGCTGATCTATCTGGCCCTGGCCCACATGATCAAGT TCCGGGGCCACTTCCTGATCGAGGGCGACCTGAACCCCGACAACAGCGACGTGGACAAGCTGTTCATCCAGCTGG TGCAGACCTACAACCAGCTGTTCGAGGAAAACCCCATCAACGCCAGCGGCGTGGACGCCAAGGCCATCCTGTCTG CCAGACTGAGCAAGAGCAGACGGCTGGAAAATCTGATCGCCCAGCTGCCCGGCGAGAAGAAGAATGGCCTGTTCG GСААССТGATTGCCCTGAGCCTGGGCCTGACCCCCAACTTCAAGAGCAACTTCGACCTGGCCGAGGATGCCAAAC TGCAGCTGAGCAAGGACACCTACGACGACGACCTGGACAACCTGCTGGCCCAGATCGGCGACCAGTACGCCGACC TGTTTCTGGCCGCCAAGAACCTGTCCGACGCCATCCTGCTGAGCGACATCCTGAGAGTGAACACCGAGATCACCA AGGCCCCCCTGAGCGCCTCTATGATCAAGAGATACGACGAGCACCACCAGGACCTGACCCTGCTGAAAGCTCTCG TGCGGCAGCAGCTGCCTGAGAAGTACAAAGAGATTTTCTTCGACCAGAGCAAGAACGGCTACGCCGGCTACATTG ACGGCGGAGCCAGCCAGGAAGAGTTCTACAAGTTCATCAAGCCCATCCTGGAAAAGATGGACGGCACCGAGGAAC TGCTCGTGAAGCTGAACAGAGAGGACCTGCTGCGGAAGCAGCGGACCTTCGACAACGGCAGCATCCCCCACCAGA TCСACCTGGGAGAGCTGCACGCCATTCTGCGGCGGCAGGAAGATTTTTACCCATTCCTGAAGGACAACCGGGAAA AGATCGAGAAGATCCTGACCTTCCGCATCCCCTACTACGTGGGCCCTCTGGCCAGGGGAAACAGCAGATTCGCCT GGATGACCAGAAAGAGCGAGGAAACCATCACCCCCTGGAACTTCGAGGAAGTGGTGGACAAGGGCGCTTCCGCCC AGAGCTTCATCGAGCGGATGACCAACTTCGATAAGAACCTGCCCAACGAGAAGGTGCTGCCCAAGCACAGCCTGC TGTACGAGTACTTCACCGTGTATAACGAGCTGACCAAAGTGAAATACGTGACCGAGGGAATGAGAAAGCCCGCCT TCCTGAGCGGCGAGCAGAAAAAGGCCATCGTGGACCTGCTGTTCAAGACCAACCGGAAAGTGACCGTGAAGCAGC TGAAAGAGGACTACTTCAAGAAAATCGAGTGCTTCGACTCCGTGGAAATCTCCGGCGTGGAAGATCGGTTCAACG ССТСССТGGGСАСАТACCACGATCTGCTGAAAATTATCAAGGACAAGGACTTCCTGGACAATGAGGAAAACGAGG ACATTCTGGAAGATATCGTGCTGACCCTGACACTGTTTGAGGACAGAGAGATGATCGAGGAACGGCTGAAAACCT ATGCCCACCTGTTCGACGACAAAGTGATGAAGCAGCTGAAGCGGCGGAGATACACCGGCTGGGGCAGGCTGAGCC GGAAGCTGATCAACGGCATCCGGGACAAGCAGTCCGGCAAGACAATCCTGGATTTCCTGAAGTCCGACGGCTTCG ССААСАGAAACTTCATGCAGCTGATCCACGACGACAGCCTGACCTTTAAAGAGGACATCCAGAAAGCCCAGGTGT CCGGCCAGGGCGATAGCCTGCACGAGCACATTGCCAATCTGGCCGGCAGCCCCGCCATTAAGAAGGGCATCCTGC AGACAGTGAAGGTGGTGGACGAGCTCGTGAAAGTGATGGGCCGGCACAAGCCCGAGAACATCGTGATCGAAATGG CCAGAGAGAACCAGACCACCCAGAAGGGACAGAAGAACAGCCGCGAGAGAATGAAGCGGATCGAAGAGGGCATCA AAGAGCTGGGCAGCCAGATCCTGAAAGAACACCCCGTGGAAAACACCCAGCTGCAGAACGAGAAGCTGTACCTGT AСТАССTGCAGAATGGGCGGGATATGTACGTGGACCAGGAACTGGACATCAACCGGCTGTCCGACTACGATGTGG ACGCCATCGTGCCTCAGAGCTTTCTGAAGGACGACTCCATCGACAACAAGGTGCTGACCAGAAGCGACAAGAACC GGGGCAAGAGCGACAACGTGCCCTCCGAAGAGGTCGTGAAGAAGATGAAGAACTACTGGCGGCAGCTGCTGAACG

ССАAGCTGATTACCCAGAGAAAGTTCGACAATCTGACCAAGGCCGAGAGAGGCGGCCTGAGCGAACTGGATAAGG CCGGCTTCATCAAGAGACAGCTGGTGGAAACCCGGCAGATCACAAAGCACGTGGCACAGATCCTGGACTCCCGGA TGAACACTAAGTACGACGAGAATGACAAGCTGATCCGGGAAGTGAAAGTGATCACCCTGAAGTCCAAGCTGGTGT CCGATTTCCGGAAGGATTTCCAGTTTTACAAAGTGCGCGAGATCAACAACTACCACCACGCCCACGACGCCTACC TGAACGCCGTCGTGGGAACCGCCCTGATCAAAAAGTACCCTAAGCTGGAAAGCGAGTTCGTGTACGGCGACTACA AGGTGTACGACGTGCGGAAGATGATCGCCAAGAGCGAGCAGGAAATCGGCAAGGCTACCGCCAAGTACTTCTTCT AСAGCAACATCATGAACTTTTTCAAGACCGAGATTACCCTGGCCAACGGCGAGATCCGGAAGCGGCCTCTGATCG AGACAAACGGCGAAACCGGGGAGATCGTGTGGGATAAGGGCCGGGATTTTGCCACCGTGCGGAAAGTGCTGAGCA TGCCCCAAGTGAATATCGTGAAAAAGACCGAGGTGCAGACAGGCGGCTTCAGCAAAGAGTCTATCCTGCCCAAGA GGAACAGCGATAAGCTGATCGCCAGAAAGAAGGACTGGGACCCTAAGAAGTACGGCGGCTTCGACAGCCCCACCG TGGССТATTCTGTGCTGGTGGTGGCCAAAGTGGAAAAGGGCAAGTCCAAGAAACTGAAGAGTGTGAAAGAGCTGC TGGGGATCACCATCATGGAAAGAAGCAGCTTCGAGAAGAATCCCATCGACTTTCTGGAAGCCAAGGGCTACAAAG AAGTGAAAAAGGACCTGATCATCAAGCTGCCTAAGTACTCCCTGTTCGAGCTGGAAAACGGCCGGAAGAGAATGC TGGCCTCTGCCGGCGAACTGCAGAAGGGAAACGAACTGGCCCTGCCCTCCAAATATGTGAACTTCCTGTACCTGG CСAGCCACTATGAGAAGCTGAAGGGCTCCCCCGAGGATAATGAGCAGAAACAGCTGTTTGTGGAACAGCACAAGC АСТАССТGGACGAGATCATCGAGCAGATCAGCGAGTTCTCCAAGAGAGTGATCCTGGCCGACGCTAATCTGGACA AAGTGCTGTCCGCCTACAACAAGCACCGGGATAAGCCCATCAGAGAGCAGGCCGAGAATATCATCCACCTGTTTA СССТGAССААТСТGGGAGCCССТGCCGCCTTCAAGTACTTTGACACCACCATCGACCGGAAGAGGTACACCAGCA CCAAAGAGGTGCTGGACGCCACCCTGATCCACCAGAGCATCACCGGCCTGTACGAGACACGGATCGACCTGTCTC AGCTGGGAGGCGACAGCCCCAAGAAGAAGAGAAAGGTGGAGGCCAGCGGGCCGGCCGGATCCGGGCGCGCCGACG CGCTGGACGATTTCGATCTCGACATGCTGGGTTCTGATGCCCTCGATGACTTTGACCTGGATATGTTGGGAAGCG ACGCATTGGATGACTTTGATCTGGACATGCTCGGCTCCGATGCTCTGGACGATTTCGATCTCGATATGTTAGGGT CAGACGCACTGGATGATTTCGACCTTGATATGTTGGGAAGCGATGCCCTTGATGATTTCGACCTGGACATGCTCG GCAGCGACGCCCTGGACGATTTCGATCTGGACATGCTGGGGTCCGATGCCTTGGATGATTTTGACTTGGATATGC TGGGGAGTGATGCCCTGGACGACTTTGACCTGGACATGCTGGGCTCCGATGCGCTCGATGACTTCGATTTGGATA TGTTGTATATCGATGGAAGCGGAGCTACTAACTTCAGCCTGCTGAAGCAGGCTGGAGACGTGGAGGAGAACCCTG GACCTGGGCCCATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCG ACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGT TСАТСТGСAССАССGGСAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCCTGACCTACGGCGTGCAGTGCT TCAGCCGCTACCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGC GСАССАТСТТСТТСАAGGACGACGGСAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTGGAGTACAACTACA

ACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAACGGCATCAAGGTGAACTTCAAGATCCGCCACAACA TCGAGGACGGCAGCGTGCAGCTCGCCGACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGC CCGACAACCACTACCTGAGCACCCAGTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGC TGGAGTTCGTGACCGCCGCCGGGATCACTCTCGGCATGGACGAGCTGTACAAGTGACGATTGATTAATTAAGAAT TCCTAGAGCTCGCTGATCAGCCTCGACTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCC TTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAG TAGGTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAGGGGGAGGATTGGGAAGAGAATAGCAGGCA TGCTGGGGAGCGGCCGCAGGAACCCCTAGTGATGGAGTTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGA GGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTCAGTGAGCGAGCGAGCGCGCAGCTG CCTGCAGGGGCGCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCATACGTCAAAGCAA CCATAGTACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTT GCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTСССTTССТTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAA GСТСТАAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTTG GGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTT AATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGGCTATTCTTTTGATTTATAAGGGATT TTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTTTAACAAAATATTA ACGTTTACAATTTTATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGCCCCGACACCCG CCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCC GGGAGCTGCATGTGTCAGAGGTTTTCACCGTCATCACCGAAACGCGCGAGACGAAAGGGCCTCGTGATACGCCTA TTTTTATAGGTTAATGTCATGATAATAATGGTTTCTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGA ACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTT CAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTT TGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTG GGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATG AGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGC ATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTA AGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGA CCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTG AATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTA ACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCA СтTСTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGAAGCCGCGGT ATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACT

ATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTT ТАСТСАТАТАТАСТТТАGАТТGАТТТААААСТТСАТТТТТААТТTAAAAGGATCTAGGTGAAGATCCTTTTTGAT AATСТСАТGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGA TСТТСТTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTT TGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACT GTССТTСTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTA ATCСTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCG GATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAA CTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTA AGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTC GGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCC AGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGT

Sequence of plasmid sgRNA-dCas9-2A-GFP

U6 promoter
gRNA scaffold with scrambled target sequence
dCas9

2A peptide
GFP

GAGGGCCTATTTCCCATGATTCCTTCATATTTGCATATACGATACAAGGCTGTTAGAGAGATAATTGGAATTAAT TTGACTGTAAACACAAAGATATTAG) TACAAAATACGTGACGTAGAAAGTAATAATTTCTTGGGTAGTTTGCAGT TTTAAAATTATGTTTTAAAATGGACTATCATATGCTTACCGTAACTTGAAAGTATTTCGATTTCTTGGCTTTATA TATCTTGTGGAAAGGACGAAACACCGGGTCTTCGAGAAGACCTGTTTTAGAGCTAGAAATAGCAAGTTAAAATAA GGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTTTGTTTTAGAGCTAGAAATAGCAAGTT AAAATAAGGCTAGTCCGTTTTTAGCGCGTGCGCCAATTCTGCAGACAAATGGCTCTAGAGGTACCCGTTACATAA СTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGCCCATTGACGTCAATAGTAACGCCAATAGGG ACTTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCATATG CCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTGTGCCCAGTACATGACCTTATGG GACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTCGAGGTGAGCCCCACGTTCTGC TTСАСТСТССССАТСТССССССССТССССАСССССААТТТTGTATTTATTTATTTTTTAATTATTTTGTGCAGCG ATGGGGGCGGGGGGGGGGGGGGGGCGCGCGCCAGGCGGGGCGGGGCGGGGCGAGGGGCGGGGCGGGGCGAGGCGG AGAGGTGCGGCGGCAGCCAATCAGAGCGGCGCGCTCCGAAAGTTTCCTTTTATGGCGAGGCGGCGGCGGCGGCGG СССТАТАAAAAGCGAAGCGCGCGGCGGGCGGGAGTCGCTGCGACGCTGCCTTCGCCCCGTGCCCCGCTCCGCCGC CGCCTCGCGCCGCCCGCCCCGGCTCTGACTGACCGCGTTACTCCCACAGGTGAGCGGGCGGGACGGCCCTTCTCC TCCGGGCTGTAATTAGCTGAGCAAGAGGTAAGGGTTTAAGGGATGGTTGGTTGGTGGGGTATTAATGTTTAATTA CCTGGAGCACCTGCCTGAAATCACTTTTTTTCAGGTTGGACCGGTGCCACCATGTACCCATACGATGTTCCAGAT TACGCTTCGCCGAAGAAAAAGCGCAAGGTCGAAGCGTCCGACAAGAAGTACAGCATCGGCCTGGCCATCGGCACC AACTCTGTGGGCTGGGCCGTGATCACCGACGAGTACAAGGTGCCCAGCAAGAAATTCAAGGTGCTGGGCAACACC GACCGGCACAGCATCAAGAAGAACCTGATCGGAGCCCTGCTGTTCGACAGCGGCGAAACAGCCGAGGCCACCCGG CTGAAGAGAACCGCCAGAAGAAGATACACCAGACGGAAGAACCGGATCTGCTATCTGCAAGAGATCTTCAGCAAC GAGATGGCCAAGGTGGACGACAGCTTCTTCCACAGACTGGAAGAGTCCTTCCTGGTGGAAGAGGATAAGAAGCAC
bioRxiv preprint doi: https://doi.org/10.1101/2019.12.23.887224; this version posted December 23, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

GAGCGGCACCCCATCTTCGGCAACATCGTGGACGAGGTGGCCTACCACGAGAAGTACCCCACCATCTACCACCTG AGAAAGAAACTGGTGGACAGCACCGACAAGGCCGACCTGCGGCTGATCTATCTGGCCCTGGCCCACATGATCAAG TTCCGGGGCCACTTCCTGATCGAGGGCGACCTGAACCCCGACAACAGCGACGTGGACAAGCTGTTCATCCAGCTG GTGCAGACCTACAACCAGCTGTTCGAGGAAAACCCCATCAACGCCAGCGGCGTGGACGCCAAGGCCATCCTGTCT GCCAGACTGAGCAAGAGCAGACGGCTGGAAAATCTGATCGCCCAGCTGCCCGGCGAGAAGAAGAATGGCCTGTTC GGCAACCTGATTGCCCTGAGCCTGGGCCTGACCCCCAACTTCAAGAGCAACTTCGACCTGGCCGAGGATGCCAAA CTGCAGCTGAGCAAGGACACCTACGACGACGACCTGGACAACCTGCTGGCCCAGATCGGCGACCAGTACGCCGAC CTGTTTCTGGCCGCCAAGAACCTGTCCGACGCCATCCTGCTGAGCGACATCCTGAGAGTGAACACCGAGATCACC AAGGCCCCCCTGAGCGCCTCTATGATCAAGAGATACGACGAGCACCACCAGGACCTGACCCTGCTGAAAGCTCTC GTGCGGCAGCAGCTGCCTGAGAAGTACAAAGAGATTTTCTTCGACCAGAGCAAGAACGGCTACGCCGGCTACATT GACGGCGGAGCCAGCCAGGAAGAGTTCTACAAGTTCATCAAGCCCATCCTGGAAAAGATGGACGGCACCGAGGAA CTGCTCGTGAAGCTGAACAGAGAGGACCTGCTGCGGAAGCAGCGGACCTTCGACAACGGCAGCATCCCCCACCAG ATCСАССТGGGAGAGCTGCACGCCATTCTGCGGCGGCAGGAAGATTTTTACCCATTCCTGAAGGACAACCGGGAA AAGATCGAGAAGATCCTGACCTTCCGCATCCCCTACTACGTGGGCCCTCTGGCCAGGGGAAACAGCAGATTCGCC TGGATGACCAGAAAGAGCGAGGAAACCATCACCCCCTGGAACTTCGAGGAAGTGGTGGACAAGGGCGCTTCCGCC CAGAGCTTCATCGAGCGGATGACCAACTTCGATAAGAACCTGCCCAACGAGAAGGTGCTGCCCAAGCACAGCCTG CTGTACGAGTACTTCACCGTGTATAACGAGCTGACCAAAGTGAAATACGTGACCGAGGGAATGAGAAAGCCCGCC TTCСTGAGCGGCGAGCAGAAAAAGGCCATCGTGGACCTGCTGTTCAAGACCAACCGGAAAGTGACCGTGAAGCAG CTGAAAGAGGACTACTTCAAGAAAATCGAGTGCTTCGACTCCGTGGAAATCTCCGGCGTGGAAGATCGGTTCAAC GССТСССТGGGCACATACCACGATCTGCTGAAAATTATCAAGGACAAGGACTTCCTGGACAATGAGGAAAACGAG GACATTCTGGAAGATATCGTGCTGACCCTGACACTGTTTGAGGACAGAGAGATGATCGAGGAACGGCTGAAAACC TATGCCCACCTGTTCGACGACAAAGTGATGAAGCAGCTGAAGCGGCGGAGATACACCGGCTGGGGCAGGCTGAGC CGGAAGCTGATCAACGGCATCCGGGACAAGCAGTCCGGCAAGACAATCCTGGATTTCCTGAAGTCCGACGGCTTC GCCAACAGAAACTTCATGCAGCTGATCCACGACGACAGCCTGACCTTTAAAGAGGACATCCAGAAAGCCCAGGTG TCCGGCCAGGGCGATAGCCTGCACGAGCACATTGCCAATCTGGCCGGCAGCCCCGCCATTAAGAAGGGCATCCTG CAGACAGTGAAGGTGGTGGACGAGCTCGTGAAAGTGATGGGCCGGCACAAGCCCGAGAACATCGTGATCGAAATG GCCAGAGAGAACCAGACCACCCAGAAGGGACAGAAGAACAGCCGCGAGAGAATGAAGCGGATCGAAGAGGGCATC AAAGAGCTGGGCAGCCAGATCCTGAAAGAACACCCCGTGGAAAACACCCAGCTGCAGAACGAGAAGCTGTACCTG TACTACCTGCAGAATGGGCGGGATATGTACGTGGACCAGGAACTGGACATCAACCGGCTGTCCGACTACGATGTG GACGCCATCGTGCCTCAGAGCTTTCTGAAGGACGACTCCATCGACAACAAGGTGCTGACCAGAAGCGACAAGAAC CGGGGCAAGAGCGACAACGTGCCCTCCGAAGAGGTCGTGAAGAAGATGAAGAACTACTGGCGGCAGCTGCTGAAC GCCAAGCTGATTACCCAGAGAAAGTTCGACAATCTGACCAAGGCCGAGAGAGGCGGCCTGAGCGAACTGGATAAG

Abstract

GCCGGCTTCATCAAGAGACAGCTGGTGGAAACCCGGCAGATCACAAAGCACGTGGCACAGATCCTGGACTCCCGG ATGAACACTAAGTACGACGAGAATGACAAGCTGATCCGGGAAGTGAAAGTGATCACCCTGAAGTCCAAGCTGGTG TCCGATTTCCGGAAGGATTTCCAGTTTTACAAAGTGCGCGAGATCAACAACTACCACCACGCCCACGACGCCTAC CTGAACGCCGTCGTGGGAACCGCCCTGATCAAAAAGTACCCTAAGCTGGAAAGCGAGTTCGTGTACGGCGACTAC AAGGTGTACGACGTGCGGAAGATGATCGCCAAGAGCGAGCAGGAAATCGGCAAGGCTACCGCCAAGTACTTCTTC TACAGCAACATCATGAACTTTTTCAAGACCGAGATTACCCTGGCCAACGGCGAGATCCGGAAGCGGCCTCTGATC GAGACAAACGGCGAAACCGGGGAGATCGTGTGGGATAAGGGCCGGGATTTTGCCACCGTGCGGAAAGTGCTGAGC ATGCCCCAAGTGAATATCGTGAAAAAGACCGAGGTGCAGACAGGCGGCTTCAGCAAAGAGTCTATCCTGCCCAAG AGGAACAGCGATAAGCTGATCGCCAGAAAGAAGGACTGGGACCCTAAGAAGTACGGCGGCTTCGACAGCCCCACC GTGGCCTATTCTGTGCTGGTGGTGGCCAAAGTGGAAAAGGGCAAGTCCAAGAAACTGAAGAGTGTGAAAGAGCTG CTGGGGATCACCATCATGGAAAGAAGCAGCTTCGAGAAGAATCCCATCGACTTTCTGGAAGCCAAGGGCTACAAA GAAGTGAAAAAGGACCTGATCATCAAGCTGCCTAAGTACTCCCTGTTCGAGCTGGAAAACGGCCGGAAGAGAATG CTGGCCTCTGCCGGCGAACTGCAGAAGGGAAACGAACTGGCCCTGCCCTCCAAATATGTGAACTTCCTGTACCTG GCCAGCCACTATGAGAAGCTGAAGGGCTCCCCCGAGGATAATGAGCAGAAACAGCTGTTTGTGGAACAGCACAAG CACTACCTGGACGAGATCATCGAGCAGATCAGCGAGTTCTCCAAGAGAGTGATCCTGGCCGACGCTAATCTGGAC AAAGTGCTGTCCGCCTACAACAAGCACCGGGATAAGCCCATCAGAGAGCAGGCCGAGAATATCATCCACCTGTTT ACCCTGACCAATCTGGGAGCCCCTGCCGCCTTCAAGTACTTTGACACCACCATCGACCGGAAGAGGTACACCAGC ACCAAAGAGGTGCTGGACGCCACCCTGATCCACCAGAGCATCACCGGCCTGTACGAGACACGGATCGACCTGTCT CAGCTGGGAGGCGACAGCCCCAAGAAGAAGAGAAAGGTGGAGGCCAGCGGGCCGGCCGGATCCGGGCGCGCCGAC TATATCGATGGAAGCGGAGCTACTAACTTCAGCCTGCTGAAGCAGGCTGGAGACGTGGAGGAGAACCCTGGACCT GGGCCCATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTA AACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATC TGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCCTGACCTACGGCGTGCAGTGCTTCAGC CGCTACCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACC ATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGC ATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTGGAGTACAACTACAACAGC CACAACGTCTATATCATGGCCGACAAGCAGAAGAACGGCATCAAGGTGAACTTCAAGATCCGCCACAACATCGAG GACGGCAGCGTGCAGCTCGCCGACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGAC AACCACTACCTGAGCACCCAGTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAG TTCGTGACCGCCGCCGGGATCACTCTCGGCATGGACGAGCTGTACAAGTGACGATTGATTAATTAAGAATTCCTA GAGCTCGCTGATCAGCCTCGACTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCT TGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGT

GTСATTCTATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAGGGGGAGGATTGGGAAGAGAATAGCAGGCATGCTG GGGAGCGGCCGCAGGAACCCCTAGTGATGGAGTTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCG GGCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTCAGTGAGCGAGCGAGCGCGCAGCTGCCTGC AGGGGCGCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCATACGTCAAAGCAACCATA GTACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAG CGСССТAGCGCCCGСТССТТТСGСТТТСТTСССТТССТТTСТСGССACGTTCGCCGGCTTTCCCCGTCAAGCTCT AAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTTGGGTGA TGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAG TGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGGCTATTCTTTTGATTTATAAGGGATTTTGCC GATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTTTAACAAAATATTAACGTT TAСAATTTTATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGCCCCGACACCCGCCAAC ACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAG CTGCATGTGTCAGAGGTTTTCACCGTCATCACCGAAACGCGCGAGACGAAAGGGCCTCGTGATACGCCTATTTTT ATAGGTTAATGTCATGATAATAATGGTTTCTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCC TATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATA ATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCT TССТGТТTTTGСТСАСССАGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTA САТСGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCAC ТТТТАAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACA СТАТТСТСАGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGA ATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAA GGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGA AGCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGG СGAAСТАСТТАСТСТАGСТТСССGGСАAСAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCT GCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGAAGCCGCGGTATCAT TGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGA TGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTC ATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCT CATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTC TTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTT GCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCT TСTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCT

GTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAA

 GGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAG ATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGG CAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTT TCGCCACCTCTGACTTGAGCGTCGATTTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAA CGCGGCCTTTTTTACGGTTCСТGGCCTTTTGCTGGCCTTTTGCTCACATGT
Sequence of plasmid sgRNA-2A-GFP

U6 promoter
gRNA scaffold with scrambled target sequence

2A peptide

GFP

GAGGGCCTATTTCCCATGATTCCTTCATATTTGCATATACGATACAAGGCTGTTAGAGAGATAATTGGAATTAAT TTGACTGTAAACACAAAGATATTAG) TACAAAATACGTGACGTAGAAAGTAATAATTTCTTGGGTAGTTTGCAGT TTTAAAATTATGTTTTAAAATGGACTATCATATGCTTACCGTAACTTGAAAGTATTTCGATTTCTTGGCTTTATA TATCTTGTGGAAAGGACGAAACACCGGGTCTTCGAGAAGACCTGTTTTAGAGCTAGAAATAGCAAGTTAAAATAA GGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTTTGTTTTAGAGCTAGAAATAGCAAGTT AAAATAAGGCTAGTCCGTTTTTAGCGCGTGCGCCAATTCTGCAGACAAATGGCTCTAGAGGTACCCGTTACATAA СTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGCCCATTGACGTCAATAGTAACGCCAATAGGG AСТТТССАТTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCATATG ССАAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTGTGCCCAGTACATGACCTTATGG GAСТТТССТАСТТGGСAGTACATCTACGTATTAGTCATCGCTATTACCATGGTCGAGGTGAGCCCCACGTTCTGC TТСАСТСТССССАТСТССССССССТССССАСССССААТТTTGTATTTATTTATTTTTTAATTATTTTGTGCAGCG ATGGGGGCGGGGGGGGGGGGGGGGCGCGCGCCAGGCGGGGCGGGGCGGGGCGAGGGGCGGGGCGGGGCGAGGCGG AGAGGTGCGGCGGCAGCCAATCAGAGCGGCGCGCTCCGAAAGTTTCCTTTTATGGCGAGGCGGCGGCGGCGGCGG СССТАТАAAAAGCGAAGCGCGCGGCGGGCGGGAGTCGCTGCGACGCTGCCTTCGCCCCGTGCCCCGCTCCGCCGC CGССTCGCGCCGCCCGCCCCGGCTCTGACTGACCGCGTTACTCCCACAGGTGAGCGGGCGGGACGGCCCTTCTCC TCCGGGCTGTAATTAGCTGAGCAAGAGGTAAGGGTTTAAGGGATGGTTGGTTGGTGGGGTATTAATGTTTAATTA CCTGGAGCACCTGCCTGAAATCACTTTTTTTCAGGTTGGACCGGTGCCACCATGTATATCGATGGAAGCGGAGCT AСTAACTTCAGCCTGCTGAAGCAGGCTGGAGACGTGGAGGAGAACCCTGGACCTGGGCCCATGGTGAGCAAGGGC GAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGTG TCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCC GTGCCCTGGCCCACCCTCGTGACCACCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATGAAG CAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCAAGGACGACGGC AАСТАСАAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGAC TTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTGGAGTACAACTACAACAGCCACAACGTCTATATCATGGCC GACAAGCAGAAGAACGGCATCAAGGTGAACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTCGCC

GACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTACCTGAGCACCCAG TCCGCCCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGATC ACTCTCGGCATGGACGAGCTGTACAAGTGACGATTGATTAATTAAGAATTCCTAGAGCTCGCTGATCAGCCTCGA CTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTC CCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTG GGGTGGGGCAGGACAGCAAGGGGGAGGATTGGGAAGAGAATAGCAGGCATGCTGGGGAGCGGCCGCAGGAACCCC TAGTGATGGAGTTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCGAC GCCCGGGCTTTGCCCGGGCGGCCTCAGTGAGCGAGCGAGCGCGCAGCTGCCTGCAGGGGCGCCTGATGCGGTATT TTCTССТTACGCATCTGTGCGGTATTTCACACCGCATACGTCAAAGCAACCATAGTACGCGCCCTGTAGCGGCGC ATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTT СGСТТТСТТСССТТССТTTСTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGG GTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTTGGGTGATGGTTCACGTAGTGGGCCATC GCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGG AACAACACTCAACCCTATCTCGGGCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAA AAATGAGCTGATTTAACAAAAATTTAACGCGAATTTTAACAAAATATTAACGTTTACAATTTTATGGTGCACTCT CAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGCCCCGACACCCGCCAACACCCGCTGACGCGCCCTGACG GGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTC ACCGTCATCACCGAAACGCGCGAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAAT AATGGTTTCTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAAT ACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTAT GAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGA AACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAG CGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGG CGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGT TGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAAC CATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCA CAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCG TGACACCACGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTC CCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGG CTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGAAGCCGCGGTATCATTGCAGCACTGGGGCCAGATGG TAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGC TGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTT

AAAACTTСАТTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACG TGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCG CGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAAC TCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGG ССАССАСТТСАAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAG TGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAAC GGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCTATG AGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCG CACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCG TCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCT GGCCTTTTGCTGGCCTTTTGCTCACATGT
bioRxiv preprint doi: https://doi.org/10.1101/2019.12.23.887224; this version posted December 23, 2019. The copyright holder for this

820 Supplementary file 2 (Excel file)

821 DAVID enrichment analysis

Category Term	Count	\%	Pvalue	Genes	tal	Hits	Total	Fold Enric	onferroni	Benjamini	FDR
GOTERM_BF GO:0043065 \sim positive regulation of apoptotic process		99.27835052	1.27E-04	2	85	300	16792	5.92658824	0.08500249	0.88500249	5
GOTERM_BF GO:0034097~response to cytokine		5.15463918	1.31E-04	ENSG00000160712, ENSG000001048	85	52	16792	18.99547	0.0877474	488	0.1979032
GOTERM_BF GO:0070059 - intrinsic apoptotic signaling pathway in response to endoplasmic reticu		44.12371134	5.91 E	ENSG00000128965, ENSG0000017519	85	33	16792	23.9458111	0.33857494	0.12871504	0.88766902
GOTERM_BF GO:0006954 ${ }^{\text {inflammatory response }}$		99.27835052	6.12E-04	ENSG00000005499, ENSG0000004924	85	379	16792	4.6912307	0.34806153	0.101430	854935
GOTERM_BF GO:0036499~PERK-mediated unfolded protein response		33.09278351	0.00157973	ENSG00000175197, ENSG000001694	85	12	16792	49.3882353	0.66882322	0.19829983	2.3555677
GOTERM_BF GO:0009612~response to mechanical stimulus		4.12371134	0.00320824	ENSG00000265972, ENSG0000017559	85	59	16792	13.3934197	0.89419566	0.31227114	109
GOTERM_BF GO:0042981 1 regulation of apoptotic process		66.18556701	0.00429817	ENSG00000049249, ENSG0000018044	85	213	16792	5.56487158	0.95075233	0.3495739	6.28821791
GOTERM_BF GO:0034976 response to endoplasmic reticulum stress		44.12371134	0.006293	ENSG00000175197, ENSG000001012	-85	75	16792	10.5361569	0.9878783	0.42396952	9.07953593
GOTERM_BF GO:0032496 response to lipopolysaccharide		5.15463918	0.00923991	ENSG00000049249, ENSG0000000612	-85	164	16792	6.02295552	0.99847951	0.51371916	3.0610902
GOTERM_BF GO:0000122~negative regulation of transcription from RNA polymerase II promoter		1010.3092784	0.00974536	ENSG00000148677, ENSG6000013709	85	720	16792	2.74379085	0.99893568	0.49567869	13.7274392
GOTERM_BF GO:0036101~eukotriene B4 catabolic process		22.06185567	0.01986165	ENSG00000186529, ENSG0000018611	85	4	16792	98.7764706	0.99999919	0.72051864	26.1018585
GOTERM_BF GO:0032870~cellular response to hormone stimulus		33.09278351	0.02130019	ENSG00000145147, ENSG0000017122	85	45	92	13.1701961	0.99999971	0.71467904	27.7203981
GOTERM_BF GO:0006357regulation of transcription from RNA polymerase Il promoter		77.21649485	0.02311405	ENSG00000176046, ENSG6000010485	85	441	16792	3.13576097	0.99999992	0.71561133	29.7140548
GOTERM_BF GO:0050900~leukocyte migration		44.12371134	0.02328278	ENSG00000168003, ENSG6000011541	85	122	16792	6.47714561	0.99999993	0.69155838	29.8968753
GOTERM_BF GO:0045944~positive regulation of transcription from RNA polymerase II promoter		1111.3402062	0.02425333	ENSG00000148677, ENSG0000013709	-85	81	92	2.21517059	0.99999996	0.68150112	30.9398756
GOTERM_BF GO:0071504~cellular response to heparin		22.06185567	0.02476584	ENSG00000145147, ENSG00000012073	85		16792	79.0211765	0.99999998	0.66565466	31.8847901
GOTERM_BF GO:0035914 ${ }^{\text {skeletal }}$ muscle cell differentiation		3.09278351	0.02497951	ENSG00000148677, ENSG0000017604	-85	49	16792	12.095078	0.99999998	0.64659648	31.7107822
GOTERM_BF GO:0001525`angiogenesis		5.15	0.02560005	ENSG00000087245, ENSG0000000632	-85	223	167	4.42943814	0.99999999	166	1604
GOTERM_BF GO:0007155 \%cll adhesion		77.21649485	0.02742974	ENSG00000008517, ENSG6000011541	85	459	16792	3.01278995		0.64056577	34.2530101
GOTERM_BF GO:0007050 ${ }^{\circ}$ cell cycle arrest		44.12371134	0.03372607	ENSG00000175197, ENSG0000018044	-85	141	16792	5.60433876		0.69852304	40.3863454
GOTERM_BF G0:0001955~blood vessel maturation		22.06185567	0.03933341	ENSG00000087245, ENSG0000017519	85	8	16792	49.3882353		0.737022	45.3945927
GOTERM_BF GO:0006690~icosanoid metabolic process		22.06185567	0.03933341	ENSG00000186529, ENSG0000018611	-85	8	16792	49.3882353		0.737022	45.3945927
GOTERM_BF GO:0060337 ${ }^{\text {ctype }}$ I interferon signaling pathway		33.09278351	0.04081791	ENSG00000119922, ENSG0000018760	85	64	16792	9.26029412		0.73395973	46.5531134
GOTERM_BF GO:0071347~cellular response to interleukin-1		33.09278351	0.04920556	ENSG00000148677, ENSG0000012425	- 85	- 71	16792	8.34730737		0.78421352	53.2699592
GOTERM_BFGO:0007568~aging		44.12371134	0.04983591	ENSG00000149131, ENSG0000007715	85	165	1679	4.7891622		0.77437635	53.7349041
GOTERM_BF GO:0035556~intracellular signal transduction		66.18556701	0.05144493	ENSG60000005499, ENSG0000013709	85	403	16792	2.94123486		0.77161432	54.9022078
GOTERM_BF GO:0010955 negative regulation of protein processing		22.06185567	0.05368593	ENSG00000128965, ENSG0000018044	- 85	11	16792	35.9187166		0.77316077	56.4822284
GOTERM_BF GO:2000001~ ${ }^{\text {positive regulation of protein localization to cell surface }}$		22.06185567	0.05842286	ENSG00000144452, ENSG0000016690	-85	12	16792	32.925490		0.78954538	59.6534515
GOTERM_BF GO:0001878 ${ }^{\text {response }}$ to yeast		22.06185567	0.06313636	ENSG00000006128, ENSG0000016366	85	13	16792	30.3927602		0.80369959	62.5937505
GOTERM_BF GO:0045087~inate immune response		66.18556701	0.06433245	ENSG00000006128, ENSG0000010485	-85	430	16792	2.75655267		0.79865993	63.3073757
GOTERM_BF GO:0009636~response to toxic substance		33.09278351	0.06762261	ENSG00000176046, ENSG0000015101	-85	85	16792	6.97245675		0.80434661	65.2053613
GOTERM_BF GO:0014912~negative regulation of smooth muscle cell migration		22.06185567	0.06782654	ENSG00000145147, ENSG0000011546	85	14	16792	28.2218487		0.79478903	65.3199289
GOTERM_BF GO:0006691Neukotriene metabolic process		22.06185567	0.07249352	ENSG00000186529, ENSG0000018611	85	15	16792	26.3403922		0.8067677	67.8475679
GOTERM_BF GO:0050930~induction of positive chemotaxis		22.06185567	0.07249352	ENSG60000171951, ENSG0000016942	85	15	16792	26.3403922		0.8067677	67.8475679
GOTERM_BF GO:0030198\%extracellular matrix organization		44.12371134	0.07519545	ENSG00000187955, ENSG6000011541	85	196	16792	4.03169268		0.80906902	69.2312109
GOTERM_BF GO:0010466~negative regulation of peptidase activity		22.06185567	0.08175832	ENSG60000019758, ENSG0000014725	85	17	16792	23.2415225		0.8268432	72.3639712
GOTERM_BF GO:0071456~cellular response to hypoxia		33.09278351	0.08343126	ENSG00000148677, ENSG0000007823	85	96	16792	6.17352941		0.82445767	73.1134738
GOTERM_BF GO:0042267 natural killer cell mediated cytotoxicity		22.06185567	0.08635637	ENSG00000153879, ENSG000001198	85	18	16792	21.9503268	1	0.82685228	74.3785565
GOTERM_BF GO:0045926 ${ }^{\text {n }}$ - ${ }^{\text {ative regulation of growth }}$		22.06185567	0.09093167	ENSG00000147257, ENSG0000011546	85	19	16792	20.7950464		0.83487604	76.2463919
GOTERM_BF GO:0002576~platelet degranulation		33.09278351	0.09402062	ENSG000000104112, ENSG0000011541	85	103	16792	5.75396916		0.83736925	77.4346813
GOTERM_BFGO:0006541"glutamine metabolic process		22.06185567	0.09548433	ENSG000000135423, ENSG0000007066	85	20	16792	19.7552941	1	0.8344831	77.9781594
GOTERM_BF GO:0001649~osteoblast differentiation		33.09278351	0.09556404	ENSG600000136235, ENSG0000017122	85	104	16792	5.69864253	1	0.82713684	78.0074014
GOTERM_BF GO:0051091~positive regulation of sequence-specific DNA binding transcription fac		3.09278351	0.09711478	ENSG00000175592, ENSG0000013316				5.64436975		0.82477787	78.5691492

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.23.887224; this version posted December 23, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

824 Enriched pathways

GO:0043065 ${ }^{\text {p positive regulation of apoptotic process }}$	
ENSG00000175592	FOS like 1, AP-1 transcription factor subunit(FOSL1)
ENSG00000006327	TNF receptor superfamily member 12A(TNFRSF12A)
ENSG00000148677	ankyrin repeat domain 1(ANKRD1)
ENSG00000099860	growth arrest and DNA damage inducible beta(GADD45B)
ENSG00000119922	interferon induced protein with tetratricopeptide repeats 2(IFIT2)
ENSG00000176046	nuclear protein 1, transcriptional regulator(NUPR1)
ENSG00000161011	sequestosome 1(SQSTM1)
ENSG00000145147	slit guidance ligand 2(SLIT2)
ENSG00000265972	thioredoxin interacting protein(TXNIP)
	GO:0034097~response to cytokine
ENSG00000175592	FOS like 1, AP-1 transcription factor subunit(FOSL1)
ENSG00000171223	JunB proto-oncogene, AP-1 transcription factor subunit(JUNB)
ENSG00000104856	RELB proto-oncogene, NF-kB subunit(RELB)
ENSG00000160712	interleukin 6 receptor(IL6R)
ENSG00000077150	nuclear factor kappa B subunit 2(NFKB2)
GO:0070059~intrinsic apoptotic signaling pathway in response to endoplasmic reticulum stress	
ENSG00000128965	ChaC glutathione specific gamma-glutamylcyclotransferase 1(CHAC1)
ENSG00000175197	DNA damage inducible transcript 3(DDIT3)
ENSG00000087074	protein phosphatase 1 regulatory subunit 15A(PPP1R15A)
ENSG00000101255	tribbles pseudokinase 3(TRIB3)
GO:0006954~inflammatory response	
ENSG00000169429	C-X-C motif chemokine ligand 8(CXCL8)
ENSG00000104856	RELB proto-oncogene, NF-kB subunit(RELB)
ENSG00000049249	TNF receptor superfamily member 9(TNFRSF9)
ENSG00000077150	nuclear factor kappa B subunit 2(NFKB2)
ENSG00000163661	pentraxin 3(PTX3)
ENSG00000105499	phospholipase A2 group IVC(PLA2G4C)
ENSG00000171951	secretogranin II(SCG2)
ENSG00000159307	signal peptide, CUB domain and EGF like domain containing 1(SCUBE1)
ENSG00000006128	tachykinin precursor 1(TAC1)
GO:0036499~PERK-mediated unfolded protein response	
ENSG00000169429	C-X-C motif chemokine ligand 8(CXCL8)
ENSG00000175197	DNA damage inducible transcript 3(DDIT3)
ENSG00000070669	asparagine synthetase (glutamine-hydrolyzing)(ASNS)
GO:0009612~response to mechanical stimulus	
ENSG00000175592	FOS like 1, AP-1 transcription factor subunit(FOSL1)
ENSG00000171223	JunB proto-oncogene, AP-1 transcription factor subunit(JUNB)
ENSG00000070669	asparagine synthetase (glutamine-hydrolyzing)(ASNS)
ENSG00000265972	thioredoxin interacting protein(TXNIP)
GO:0042981~regulation of apoptotic process	
ENSG00000049249	TNF receptor superfamily member 9(TNFRSF9)
ENSG00000120738	early growth response 1(EGR1)
ENSG00000135423	glutaminase 2(GLS2)
ENSG00000180447	growth arrest specific 1(GAS1)
ENSG00000130513	growth differentiation factor 15(GDF15)
ENSG00000115129	tumor protein p53 inducible protein 3(TP5313)

827 David total 30 genes

	ENSG00000175592	FOS like 1, AP-1 transcription factor subunit(FOSL1)	FOSL1
	ENSG00000006327	TNF receptor superfamily member 12A(TNFRSF12A)	TNFRSF12A
	ENSG00000148677	ankyrin repeat domain 1(ANKRD1)	NKRD1
	ENSG00000099860	growth arrest and DNA damage inducible beta(GADD45B)	GADD45B
	ENSG00000119922	interferon induced protein with tetratricopeptide repeats 2(IFIT2)	IFIT2
	ENSG00000176046	nuclear protein 1, transcriptional regulator(NUPR1)	NUPR1
	ENSG00000161011	sequestosome 1(SQSTM1)	SQSTM1
	ENSG00000145147	slit guidance ligand 2(SLIT2)	SLIT2
	ENSG00000265972	thioredoxin interacting protein(TXNIP)	TXNIP
	ENSG00000171223	JunB proto-oncogene, AP-1 transcription factor subunit(JUNB)	JUNB
	ENSG00000104856	RELB proto-oncogene, NF -kB subunit(RELB)	RELB
	ENSG00000160712	interleukin 6 receptor(IL6R)	IL6R
	ENSG00000077150	nuclear factor kappa B subunit 2(NFKB2)	NFKB2
	ENSG00000128965	ChaC glutathione specific gamma-glutamylcyclotransferase 1(CHAC1)	CHAC1
	ENSG00000175197	DNA damage inducible transcript 3(DDIT3)	DDIT3
	ENSG00000087074	protein phosphatase 1 regulatory subunit 15A(PPP1R15A)	PPP1R15A
	ENSG00000101255	tribbles pseudokinase 3(TRIB3)	TRIB3
	ENSG00000169429	C-X-C motif chemokine ligand 8(CXCL8)	CXCL8
	ENSG00000049249	TNF receptor superfamily member 9(TNFRSF9)	TNFRSF9
	ENSG00000163661	pentraxin 3(PTX3)	PTX3
	ENSG00000105499	phospholipase A2 group IVC(PLA2G4C)	PLA2G4C
	ENSG00000171951	secretogranin II(SCG2)	SCG2
	ENSG00000159307	signal peptide, CUB domain and EGF like domain containing 1(SCUBE1)	SCUBE1
	ENSG00000006128	tachykinin precursor 1(TAC1)	TAC1
	ENSG00000070669	asparagine synthetase (glutamine-hydrolyzing)(ASNS)	ASNS
	ENSG00000120738	early growth response 1(EGR1)	EGR1
	ENSG00000135423	glutaminase 2(GLS2)	GLS2
	ENSG00000180447	growth arrest specific 1(GAS1)	GAS1
	ENSG00000130513	growth differentiation factor 15(GDF15)	GDF15
828	ENSG00000115129	tumor protein p53 inducible protein 3(TP5313)	TP5313

[^0]: A

 CD34 $\quad 500$ bases from the TSS

 B

 C

 Supplementary Fig. 1. The efficiency of gRNA sequences in the activation of CD34 using the VP16-based CRISPR activation system. A) The position of gRNAs 1-6 relative to the CD34 transcriptional start site (TSS). B) FACS histograms depicting CD34 expression in cells transfected with the CRISPR activation system, followed by C) a bar graph depicting their median CD34-PE fluorescence.

