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Abstract5

Optimality analysis has recently been proposed for value-based decision-making, in which6

decision agents are rewarded by the value of the selected option. This contrasts with psy-7

chophysics where decision agents are typically rewarded only if they choose the ‘correct‘8

or best option. The analysis of optimal policies for value-based decisions raises interesting9

and surprising parallels with decision rules proposed for accuracy-based decisions in binary10

and multi-alternative cases, and explains experimentally-observed deviations from ratio-11

nality. However, the analysis assumes that decision agents should treat time as a linear12

cost, and thus optimise their Bayes Risk from decisions. A more naturalistic assumption13

is that future rewards are geometrically discounted, since they are less likely to be realised14

in an uncertain world. Changing the way in which time is costed leads to substantive15

changes in the resulting optimal policies, explains empirical data that previously could not16

be explained, and makes falsifiable predictions for future experiments.17

Introduction18

In understanding the brain, which is a product of evolution, searching for optimal19

algorithms for typical decision problems can provide great insight. This normative ap-20

proach can explain observed behaviours, and predict new behavioural patterns, based on21

evolutionary advantage. Yet the assumptions underlying such model analyses can prove22

crucial. In a recent article Tajima and colleagues ask what optimal decision algorithms23
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look like for multi-alternative value-based choices, in which subjects are rewarded not by24

whether their decision was correct or not, but by the value to them of the selected op-25

tion [Tajima et al., 2019]. The resulting algorithms correspond to earlier simple models26

for perceptual and value-based decision-making. Tajima et al.’s findings, however, rest on27

an assumption that time is a linear cost for subjects. When, as is more appropriate for28

naturalistic decisions, subjects discount rewards more the further into the future they will29

occur, optimal decision algorithms change qualitatively. These changes are consistent with30

recent empirical data that cannot be explained by analysis based solely on a linear cost of31

time.32

In analysing multi-alternative value-based decision-making, Tajima et al. build on their33

earlier work in optimal decision policies for binary value-based choices [Tajima et al., 2016].34

Through sophisticated analysis based on the standard tool for solving such decision prob-35

lems, stochastic dynamic programming [Mangel and Clark, 1988, Houston and McNamara, 1999],36

the authors also seek neurally-plausible decision mechanisms that may implement or ap-37

proximate the optimal decision policies [Tajima et al., 2016, Tajima et al., 2019]. These38

policies turn out at their simplest to be described by rather simple and well-known de-39

cision mechanisms, such as drift-diffusion models with decision thresholds that collapse40

over time for the binary case [Tajima et al., 2016], and nonlinear time-varying thresholds41

that interpolate between best-vs-average and best-vs-next in the multi-alternative case42

[Tajima et al., 2019].43

Results44

The purpose of this commentary is not to criticise the methods used by Tajima and45

colleagues, which are standard, or the analyses, which are elegant. Rather, the pur-46

pose is to question one of their central assumptions and draw attention to the changes47

in conclusions that may result when it is altered. Tajima et al. make an assumption48

that appears widespread in psychology and neuroscience, that decision makers should49
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COMMENT ON ‘OPTIMAL POLICY FOR MULTI-ALTERNATIVE DECISIONS’ 3

optimise their Bayes Risk from such decisions; this is equivalent to maximising the ex-50

pected value of decisions in which there is a linear cost for the time spent deciding51

[Bogacz et al., 2006, Pirrone et al., 2014]. For a lab subject in a pre-defined and known52

experimental design this may appear appropriate, for example because there may be a fixed53

time duration within which a number of decision trials will occur. However, an alternative54

and standard formulation of the Bellman equation, the central equation in constructing a55

dynamic programme, accounts for the cost of time by discounting future rewards geomet-56

rically, so a reward one time step in the future is discounted by rate γ < 1, two time steps57

in the future by γ2, and so on (see Supplementary Data). This is a standard assumption58

in behavioural ecology [Mangel and Clark, 1988, Houston and McNamara, 1999], in which59

discounting the future means that future rewards are not guaranteed but are uncertain, due60

to factors such as interruption, consumption of a food item by a competitor, mortality, and61

so on. Thus discounting the future represents the inherent uncertainty that animals must62

make decisions under in their natural environments, in which their brains evolved. The ap-63

propriate discount is then the probability that future rewards are realised, hence geometric64

discounting is optimal since probabilities multiply. Indeed there is extensive evidence of65

such reward discounting in humans and other animals (e.g. [Sellitto et al., 2010], although66

this frequently suggests hyperbolic rather than geometric discounting, a fact that in itself67

merits an explanation based on optimality theory [McNamara and Houston, 2009]).68

In the following I show sample optimal policies for single-trial decisions when the change69

is made from linear costing of time, or Bayes Risk, to geometric discounting of future70

reward. In the binary case decision boundaries become non-linear (Fig. 1A to B), and71

‘zip’ together over time (see Supplementary Data). Tajima and colleagues observed simi-72

lar dynamics for the case of non-linear, saturating, utility functions for the decision maker73

([Tajima et al., 2016], Fig. 6d), yet under geometric discounting, non-linear decision thresh-74

olds are inevitable even for linear subjective utility. Note that geometric discounting of75
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future rewards is similar to, but not the same as, non-linear utility. In the multi-alternative76

case, on the other hand, the picture is more nuanced; moving from linear costing of time77

to geometric discounting of future rewards changes complicated time-dependent non-linear78

decision thresholds (Fig. 1C, [Tajima et al., 2019] Fig. 7) into either simple linear ones that79

collapse over time for lower-value option sets (Fig. 1D), or nonlinear boundaries that evolve80

over time similarly to the Bayes Risk-optimising case for higher-value option sets (Supple-81

mentary Data). As Tajima et al. note, the simpler linear decision boundaries implement82

the ‘best-vs-average’ decision strategy, whereas the more complex boundaries interpolate83

between ‘best-vs-average’ and ‘best-vs-next’ decision strategies [Tajima et al., 2019].84

Changing the optimal policy has consequences for optimality explanations of observed85

behaviour. For example, magnitude-sensitive reaction times have been observed in per-86

ceptual decisions by humans [Teodorescu et al., 2016, Pirrone et al., 2018a], and economic87

decisions by monkeys [Pirrone et al., 2018a], a phenomenon that has even been observed88

in single-celled organisms [Dussutour et al., 2019]. Pirrone et al., for example, observed89

magnitude-sensitive reaction times when subjects were faced with pairs of equal options.90

This is incompatible with the ‘optimal’ policy assuming linear utility and Bayes Risk op-91

timisation (Fig. 1A); under Tajima and colleagues’ analysis the explanations for such a92

behavioural pattern are either non-linear subjective utility, or learning about option value93

distributions over repeated trials [Tajima et al., 2016]. The latter can be discounted as94

single trial experiments also exhibit magnitude-sensitivity [Pirrone et al., 2018b], leaving95

saturating utility and discounting of the future as the principal remaining explanations.96

Distinguishing these empirically may be hard since singly or jointly they give rise to qual-97

itatively very similar predictions (see Supplementary Data).98
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Figure 1. Optimal policies for value-based decision-making specifying
when to choose options or continue accumulating evidence. A) For bi-
nary decisions with linear subjective utility, the optimal policy to maximise
expected reward is a drift-diffusion model with time-collapsing boundaries
[Tajima et al., 2016, Tajima et al., 2019]. This policy cannot explain ob-
servations of magnitude-sensitive reaction times, such as decisions between
equal-but-low-value options (circle) being made faster than equal-but-high-
value options (star) [Pirrone et al., 2018a]; this is because the decision-
boundaries of the optimal policy have slope 1 in expected reward space
r = (r̂1, r̂2), and true values for equal alternative decision pairs all lie on
the line with slope 1, hence collapsing decision boundaries will intersect with
both low-value and high-value pairs at the same time on average. B) In con-
trast, for binary linear utility decisions with geometric discounting of future
rewards the optimal policy realises non-linear decision boundaries that ‘zip’
together (see Materials and Methods and Supplementary Data); such a
policy can explain observed reaction time patterns as equal-but-high-value
decision options (star) will be spontaneously chosen between. C) For multi-
alternative decisions with linear utility, the optimal Bayes Risk-optimising
policy exhibits time-dependent decision boundaries in the estimate space
r = (r̂1, r̂2, r̂3); over time these boundaries interpolate between best-versus-
average and best-versus-next decision strategies [Tajima et al., 2019]. D)
In contrast, for multi-alternative decisions with linear utility, the optimal
policy that maximises geometrically-discounted future rewards can exhibit
simple linear decision boundaries that collapse over time for low-value op-
tion sets, corresponding to the best-versus-average decision strategy, or ex-
hibit decision boundary dynamics more similar to the Bayes Risk-optimising
strategy, in the case of high-value option sets (see Supplementary Data).
As in the binary case, unlike the Bayes Risk-optimising strategy, maximisa-
tion of geometrically-discounted rewards predicts differing reaction times for
equal-but-low-value decision option sets (circle), and equal-but-high-value
decision options (star) due to faster collapse of decision boundaries in the
latter case (see Supplementary Data).
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Discussion99

Behavioural Predictions. The re-consideration of behavioural predictions for binary100

decisions highlights the need to re-evaluate predictions made by Tajima et al. for multi-101

alternative decisions, when Bayes Risk is replaced with discounting of future rewards;102

the Bayes Risk optimal policy is approximated by a neural model that is consistent with103

observations of economic irrationality [Tajima et al., 2019], hence it will be important to104

see if a revised neural model based on the revised optimal policy still shows such agreement.105

For example, while in the binary case magnitude-sensitive reaction times can be explained106

both by nonlinear subjective utility functions, and by geometric discounting rather than107

Bayes Risk, in the multi-alternative case preliminary exploration suggests that the same108

phenomenon is explained only by geometric discounting of future rewards (Fig. 1D) and not109

by nonlinear utility, at least for plausible nonlinear functions examined (see Supplementary110

Data). If generally true, magnitude-sensitive reaction times could thus falsify the Bayes111

Risk-optimisation account of behaviour, and further theoretical and empirical investigation112

into this would seem merited; if the analysis of [Tajima et al., 2019] showing magnitude-113

insensitive boundaries for linear utility and Bayes Risk-optimisation could be extended to114

determine conditions for utility functions to lead to magnitude-insensitivity, for example,115

this would be of great interest.116

Optimal Policies. The Drift-Diffusion Model optimises speed-accuracy trade-offs [Bogacz et al., 2006]117

yet has been criticised as being not generally applicable to value-based decisions [Pirrone et al., 2014].118

Thus it is surprising when the optimal policy for value-based decisions is realised by a119

drift-diffusion process with collapsing thresholds [Tajima et al., 2016]. Here we have seen120

that with geometric discounting of future rewards the drift-diffusion model with collapsing121

bounds is not the optimal policy.122

Optimality Criteria. Practitioners of behavioural ecology have established principles123

to deal with empirically-observed deviations from the predictions of optimality theory124
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[Parker and Smith, 1990]; two of the most useful are to consider that the optimisation125

criterion has been misidentified, or the behaviour in question is not really adaptive. Tajima126

and colleagues employ an exemplary approach, attempting to combine the best of the127

approaches of normative and mechanistic modelling [McNamara and Houston, 2009]; yet128

it bears remembering that subjects may not be trying optimally to solve the simple decision129

problem they are presented in the lab, but rather making use of mechanisms that evolved130

to solve the problem of living in their natural environment [Fawcett et al., 2014].131

Materials and Methods132

Optimisation codes for the results presented here can be downloaded from133

https://github.com/DiODeProject/Optimal-policy-for-value-based-decision-making134

and135

https://github.com/DiODeProject/MultiAlternativeDecisions136

An illustration of the optimal policy over time for binary decisions is given in Supple-137

mentary Data, as are illustrations of the effects claimed in the main text of option value138

on decision policies under geometric reward discounting with linear and nonlinear utility139

functions, and Bayes Risk optimisation with nonlinear utility functions.140
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SUPPLEMENTARY DATA FOR “COMMENT ON ‘OPTIMAL POLICY

FOR MULTI-ALTERNATIVE DECISIONS’ ”

JAMES A. R. MARSHALL, UNIVERSITY OF SHEFFIELD, DEPARTMENT OF COMPUTER
SCIENCE

1. Bellman Equation for Maximisation of Geometrically-Discounted
Reward

The revised Bellman equations (cf. Eq. 1, [Tajima et al., 2019]) used in the dynamic
programme (implemented in the code found in the GitHub repositories cited in the main
text) follow the general pattern
(1)
V (t, r̂1(t), . . . , r̂n(t)) := max{Vd(t, r̂1(t), . . . , r̂n(t)), γ〈V (t+ δt, r̂1(t+ δt), . . . , r̂n(t+ δt))〉,

where V is the expected value at time t given estimator states r̂1(t), . . . , r̂n(t), Vd(t, r̂1(t), . . . , r̂n(t))
is the expected value of making a decision at time t given estimator states r̂1(t), . . . , r̂n(t)
(defined as the value of the largest estimator), γ is a discount factor between 0 and 1, and
〈. . .〉 computes expectation marginalised over future estimator state probabilities.

2. Binary Decisions: Decision-Boundaries ‘Zip’ Together for Binary
Decisions Under Geometric Discounting

The optimal time-dependent policy for geometric discounting is illustrated in the video
https://github.com/DiODeProject/Optimal-policy-for-value-based-decision-making/

blob/master/geometric.m4v.

3. Multi-Alternative Decisions: Optimal Policies are Magnitude-Sensitive
Under Geometric Discounting

While it is proven that for Bayes Risk-optimisation decision boundaries are parallel to
the diagonal passing through (0, 0, 0) and (1, 1, 1) [Tajima et al., 2019], for geometrically
discounted rewards increasing the value of a set of equal options (which moves the relevant
decision triangle along that diagonal as shown in Fig. 1) magnitude-sensitive reaction times
manifest (in Fig. 2 decision boundaries collapse faster hence equal-alternative options in
the centre of the triangle will be hit sooner by a decision boundary as their values increase).

1
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Figure 1. Geometric discounting of reward in trinary decisions - sample
optimal policy with linear utility, discount rate γ = 0.8, value scale ∆v =
0.5.

Figure 2. Geometric discounting of reward in trinary decisions - optimal
policy with linear utility, discount rate γ = 0.8, value scales ∆v as indicated.
Magnitude-sensitive reaction times are a feature of the optimal policy. For
full explanation see Fig. 1 in the main text.

4. Multi-Alternative Decisions: Optimal Policies Appear
Magnitude-Insensitive for Selected Nonlinear Utility Under Bayes

Risk-Optimisation

Under Bayes Risk-optimisation in trinary decisions it is known that optimal policies are
magnitude-insensitive when subjective utility is linear [Tajima et al., 2019], whereas for
binary decisions Bayes Risk-optimisation leads to magnitude-sensitivity when subjective
utility is nonlinear [Tajima et al., 2016]. Under reasonable nonlinear subjective utility
functions, however, optimal policies for Bayes Risk-optimisation over three options appear
magnitude-insensitive (Fig. 3).

As can be seen from Fig. 3, the magnitude-insensitive strategy with utility defined ac-
cording to a hyperbolic tangent function is simple ‘max’ with no accumulation of evidence.
As can be also be seen from Fig. 3, the magnitude-insensitive strategy with utility defined
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Figure 3. Bayes Risk in trinary decisions - optimal policy with nonlinear
utilities sign(v)

√
abs(v) and tanh(v), value scales ∆v as indicated. Utility

functions indicated do not give rise to magnitude-sensitive reaction-times.
For full explanation see Fig. 1 in the main text.

according to a square root function is closer to the ‘max-vs-next’ strategy observed in
[Tajima et al., 2019].

5. Multi-Alternative Decisions: Optimal Policies Become
Magnitude-Sensitive Again for Nonlinear Utility Under Geometric

Discounting

While section 4 showed that selected nonlinear utility functions, unlike the binary de-
cision case, do not lead to magnitude-sensitivity in multi-alternative decisions with Bayes
Risk-optimisation, here we show that simply switching from Bayes Risk to geometric dis-
counting of future rewards reintroduces magnitude-sensitivity to the optimal policies for
those same utility functions; this is illustrated in Fig. 4. For both nonlinear utility func-
tions considered, geometric discounting of rewards results in optimal policies very similar
to those for Bayes Risk-optimisation (Fig. 2).
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Figure 4. Geometric discounting of reward in trinary decisions - opti-
mal policy with nonlinear utilities sign(v)

√
abs(v) and tanh(v), value scales

∆v as indicated. Unlike the Bayes Risk case, optimal policies give rise to
magnitude-sensitive reaction times. For full explanation see Fig. 1 in the
main text.
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