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Abstract

We consider group-level statistical inference for networks, where outcomes are
multivariate edge variables constrained in an adjacency matrix. The graph notation
is used to represent a network, where nodes are identical biological units (e.g. brain
regions) shared across subjects and edge-variables indicate the strengths of interac-
tive relationships between nodes. Edge-variables vary across subjects and may be
associated with covariates of interest. The statistical inference for multivariate edge-
variables is challenging because both localized inference on individual edges and the
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joint inference of a combinatorial of edges (network-level) are desired. Different from
conventional multivariate variables (e.g. omics data), the inference of a combinato-
rial of edges is closely linked with network topology and graph combinatorics. We
propose a novel objective function with `0 norm regularization to robustly capture
subgraphs/subnetworks from the whole brain connectome and thus reveal the latent
network topology of phenotype-related edges. Our statistical inferential procedure
and theories are constructed based on graph combinatorics. We apply the proposed
approach to a brain connectome study to identify latent brain functional subnetworks
that are associated with schizophrenia and verify the findings using an independent
replicate data set. The results demonstrate that the proposed method achieves supe-
rior performance with remarkably increased replicability.

Keywords: combinatorics, graph theory, network topology, l0 norm regularization, network
statistics
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1 Introduction

Modeling group-level network data has been an active area of research in statistics. For

example, brain connectome research often aims to investigate whether brain functional

and/or structural networks are associated with behavioral and symptomatic phenotypes,

and microbiome network studies focus on whether microbial networks are influenced by

the clinical status (Lukemire et al., 2017; Xia and Li, 2017; Cai et al., 2018; Simpson

et al., 2019; Warnick et al., 2018; Shaddox et al., 2018). In these applications, the data

structure of each subject can be represented by a graph, where a node represents a well-

defined biological unit (e.g. a brain area) and an edge indicates the interactive relationship

between a pair of nodes. We consider all nodes are identical across subjects because brain

regions are shared across all human subjects.

The outcome variables ofgroup-level network data are edge-variables quantifying the

strengths of interactions between nodes, which vary across subjects and can be associated

with external phenotypes (e.g. the clinical diagnosis and treatment response). In that,

edges are (weighted/continuous or binary) multivariate outcomes that are constrained by

a set of nodes in an adjacency matrix. The statistical inferential procedure of multivari-

ate edge-variables is different from conventional high-throughput statistical methods, for

example, the commonly used false positive discovery rate (FDR) and shrinkage method

(Benjamini and Hochberg, 1995; Efron et al., 2004) because edges are intrinsically linked

with network topology and graph combinatorics. Directly applying multivariate edgewise

inference often leads to a high false positive discovery rate and more importantly, low

interpretability, because individual edges can not reveal the systematic influence of the

phenotype at a network level (Xia et al., 2019). On the other hand, comparing graph sum-

mary statistics like ‘small-worldenss’ and betweenness loses the spatial specificity (Crad-
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dock et al., 2013). Therefore, our goal of group-level network inference is to extract each

unknown subnetwork that is a combinatorial set of phenotype-related edges covered by an

organized topological structure, and provide both network and edge level inference. To

address this challenge, group-level network analysis methods have been developed using

advanced statistical techniques (Kim, 2014; Narayan et al., 2015; Ginestet et al., 2017;

Zhang et al., 2017; Durante et al., 2018; Xia and Li, 2018; Kundu et al., 2018; Wang et al.,

2019; Higgins et al., 2018; Cao et al., 2019 among others). These methods have greatly

improved the accuracy of statistical inference and yield numerous meaningful biological

findings.

In this current research, we propose a new statistical framework for group level network

inference (GLEN) consisting of two steps (Figure 1). Firstly, latent subnetwork extraction:

GLEN implements a novel l0 norm shrinkage based optimization algorithm to extract sub-

graphs that cover the maximal number of phenotype-related edges by the minimum size (i.e.

minimizing the number of edges in the subgraphs). We define a subnetwork as an induced

subgraph with an organized topological structure (e.g. community) in the graph/network

space (here ‘subnetwork’ and ‘subgraph’ are exchangeable). Next, we perform statistical in-

ference based on graph combinatorics and network topology to produce results with higher

power and lower false positive discovery rates, and meaningful biological interpretability.

Both network and edge level inference can be obtained. The property of graph combi-

natorics is the foundation for the two-step GLEN method because the l0 norm shrinkage

algorithm can only detect subnetworks with extreme low combinatorial probability in a

random graph model and the graph combinatorial probability is directly used for statisti-

cal inference. In addition, GLEN can also be a complement to the existing methods. For

example, the locations and topological structures of phenotype-related subgraphs detected
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by GLEN can become prior information for existing network analysis models (Xia and Li,

2017; Simpson et al., 2019; Xia et al., 2019).

We apply the proposed method to an example data of brain connectome study for

schizophrenia research with a primary data set and an independent validation data set.

The proposed method along with comparable methods are applied to both data sets sepa-

rately. We find that the subnetwork identified by GLEN in the primary data set is almost

identical to the validation data set, and thus the findings are highly replicable. In contrast,

the comparable methods only detect none or a small proportion of edges that are shared by

both data sets. These findings are further supported by our simulation results that the false

positive and false negative discovery rates are simultaneously reduced by GLEN when phe-

notype related edges consist of dense subgraphs with organized topological structures. The

biological findings using GLEN may also provide novel insights into neurophysiology and

neuropathology. For example, GLEN can detect that the interconnections between three

well-known brain networks (the default mode network, executive network, and salience

network) are associated with a brain disease.

2 Methods

2.1 Background

We consider a group of networks A1
n×n, · · · ,AS

n×n ∼ P , where S is the number of subjects

and all networks share an identical graph representation G = {V,E} with |V | = n nodes

and |E| = n(n− 1)/2 edges. For subject s, the multivariate outcome As = {zsij|eij}i,j=1,...,n

(eij denotes an edge connecting nodes i and j) can be a binary or weighted adjacency matrix

and a vector of covariates xs are also observed (e.g. clinical and demographic variables).
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Figure 1: a) Define brain regions as nodes and connectivity metrics between each pair of

nodes as edges. b c) Calculate the connectivity matrix for each single subject in a study

where each off-diagonal element in the matrix represents the connectivity strength between

two nodes; then identify differential connectivity patterns between clinical groups. d) Plot

the edge-wise statistical inference where each off-diagonal element is a log transformed p-

value (e.g. two sample test p-value per edge between clinical groups and a hotter point in the

heatmap suggests larger group-wise difference). e) Reveal the disease related subnetwork

detected by GLEN. f) Shows the corresponding 3D brain image. Note that e) is obtained

by re-ordering the nodes in d) by listing detected subnetwork first (i.e. these two graphs

are isomorphic).
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We assume that As follows a distribution P with parameters related to xs.

We let zsij (i < j ∈ 1, · · · , n) denote an off-diagonal edge entry in As, and let zsij follow

a conditional distribution of the exponential family (e.g. a Bernoulli distribution for the

binary adjacency matrix As and a Gaussian distribution for the weighted adjacency matrix

As, Bowman, 2005; Derado et al., 2010; Risk et al., 2018):

zsij|zs−(ij) ∼ f(zij;µ
s
ij, φij) = exp

[{
zijµ

s
ij − a (µij) + b (zij)

}
φij
]

(1)

where g(µsij) = xsβij. Recently, advanced statistical methods have been developed to

provide localized (edge-wise) statistical inference while accounting for the dependence be-

tween edges for group-level network inference (Xia and Li, 2017; Xia and Li, 2018; Chen

et al., 2018). These methods often yield improved statistical inferential results (e.g. testing

statistics and p-values) on individual edges by taking into account the covariance structure

between edges. However, the results of these methods still face the issue of multiple testing

for multivariate edges to identify E1 = {eij|βij 6= 0} ⊂ E. If edges in E1 are randomly

distributed in whole brain connectome G, conventional methods for multivariate statistical

inference (e.g. FDR and FWER) are applicable to the n(n− 1)/2 vector because the order

of edges can be randomly shuffled with no impact on the results. However, in practice,

phenotypes rarely influence brain connections (edges) that are randomly distributed in the

brain, instead, most times systematically.

In this paper, we focus on group-level network statistical inference which statistically

assesses the impact of xs on As at the subnetwork level. We consider Gc ⊂ G as a subnet-

work with high density of phenotype-related edges, where
∑
I(βij 6= 0|eij ∈ Gc)/|Ec| >>

|E1|/|E|. Since edges in E1 are not randomly distributed in G, Gc may have an organized

topological structure. We define the lower bound of the subnetwork size (see subsection

2.3). The underlying topological structures of {Gc} are inherently related to the graph the-
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ory and combinatorics which has a significant impact on network level inference. However,

in practice, both E1 and the subnetworks {Gc} are latent and often overwhelmed by false

positive noise.

Input Data of GLEN. We denote the resulting edge-wise statistical inference matrix as

W0, where w0
ij is an entry in W0 (e.g. test statistics tij and p values − log(pij)). We first

perform Sure Independence Screening (SIS) on W0 (Fan and Lv, 2008). We denote screened

matrix W, where the off-diagonal entry wij = w0
ij if |w0

ij| > r0 and wij = 0 if |w0
ij| ≤ r0,

where r0 is the cutoff. W can effectively exclude most non-informative false positive edges

while maintaining a high proportion of true positive edges (Fan and Lv, 2008; Li et al.,

2012). We consider W and the graph notation G = {V,E,W} as the input data of our

method. The goal of our analysis is to accurately identify the true phenotype related latent

subnetworks that are maximally composed of edge set E1.

2.2 Detecting subgraphs via `0 norm regularization

If G = {V,E,W} is a non-random graph, then there exist subgraphs ∪Cc=1Gc ⊂ G and

Gc = {Vc, Ec} with higher density of phenotype-related edges than the rest of G. In other

words, edges in Gc are more likely to be non-null: P(βij 6= 0|eij ∈ Gc) > P(βij 6= 0|eij /∈ Gc),

which can be reflected by E(wij|eij ∈ Gc) > E(wij|eij /∈ Gc) from the input data W. We

provide details of statistically testing whether G = {V,E,W} is a (weighted) random graph

in the supplementary materials.

Our goal is to extract subnetworks {Gc} that E(wij|eij ∈ Gc) � E(wij|eij /∈ Gc) and∑C
c

∑
i<j I(wij > θ0|eij ∈ Gc) �

∑
i<j I(wij > θ0|eij /∈ Gc,∀c) where θ0 is a reasonable

threshold. The estimand subgraphs {Gc} can be linked with input data W by a subgraph

based matrix Un×n = W(∪Cc=1Gc). The block diagonal matrix U = Diag({Uc}Cc=1) or
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U = ∪Cc=1Uc is determined by the subgraphs G = ∪Cc=1Gc, where an entry uij = wij if the

corresponding edge eij ∈ Gc, ∀c and uij = 0 if eij /∈ Gc. Gc can be a singleton that Vc=1

and |Ec| = 0. Thus, a diagonal submatrix Uc bijectively corresponds to a subgraph Gc and

W. Since Gc often shows an organized topological structure, we further denote the latent

organized topological pattern of Gc by T (Gc). Our goal is to identify phenotype related

subnetworks/subgraphs ∪Cc=1Gc ⊂ G from W, and to learn T (Gc).

W is often less dense (e.g. 5 ∼ 20% edges are non-zero entries after screening). The

existing algorithms for subgraph/subnetwork detection (e.g. community detection) can be

substantially impacted due to the less dense network structure and false positive edges

(Newman and Girvan, 2004 and Rohe et al., 2011). This could be more challenging for a

weighted matrix W. To achieve our goal above, we propose a novel `0 norm regulariza-

tion based objective function that minimizes the sizes of the phenotype-related topological

structures (subgraphs)
∑C

c=1 |Ec| and thus suppresses the impact of random false positive

noise and better reveal the latent subnetworks.

arg max
Û=∪Cc=1Ûc,C

log ||Û||1 − λ0 log ||Û||0 (2)

where 1 ≤ C ≤ n, and in U = Diag({Uc}Cc=1) each Ûc corresponds to a subgraph Gc =

{Vc, Ec} that ∪Cc=1Vc = n, ∪Cc=1Ec ⊂ E, and Vc ∩ Vc′ = ∅.

We maximize the first term ||Û||1 =
∑

c

∑
i<j(wij|eij ∈ Gc) to cover more high-weight

edges in W by the set of subgraphs G = ∪Cc=1Gc (Gc is clique by default). Maximizing the

first term can reduce the chance to miss the true positive edges. The second term is defined

by ||Û||0 =
∑C

c=1 |Ec|, which is a penalty term. Generally, the first term increases when

the size ||Û||0 is larger because a greater ||Û||0 can cover more edges. However, a larger

size of ||Û||0 tends to include more false positive edges. The objective function aims to
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maximize true positive findings while penalizing the `0 norm of Û (false positive findings).

Tuning parameter : λ0 is a tuning parameter and can be selected using a likelihood based

method (see Supplementary Materials). When default λ0 = 0.5, the proposed objective

function is equivalent to the well-known problem of dense subgraph discovery in the field

of graph theory and computer science and thus can be conveniently computed by linear

programming and greedy algorithms ( Tsourakakis et al., 2013; Miyauchi and Kakimura,

2018). The density of Gc is defined by
∑

eij∈Gc
(wij|eij ∈ Gc)/|Vc| and the density in Gc is

higher than all other possible induced subgraphs (Gionis and Tsourakakis, 2015). However,

the group level network inference for our applications may involve more complex scenarios

because a set of subgraphs with unknown sizes and topological structures, and thus the

existing dense subgraph discovery algorithms may not be directly applicable. Therefore,

we resort it to the `0 norm regularization for subgraph extraction.

`0 norm regularization : The `0 norm regularization has been attracting interest in

the field of statistics (Shen et al., 2012; Li et al., 2018; Hazimeh and Mazumder, 2018).

Our optimization is distinct from these methods because we focus on edge-variables in an

adjacency matrix. Interestingly, we note that the penalty term ||Û||0 is related to the num-

ber of subgraphs C, which links the network/graph detection with `0 norm regularization.

This property is unique for edge-variables in a graph space and becomes the foundation

for computationally efficient heuristic of `0 norm regularization for edge variables. The

increase of C generally leads to smaller sizes of organized topological structures, and thus

reduced `0 norm but larger loss of ||Û||1. If C = n then ||Û||0 = 0, and C = 1 then

||Û||0 = n× (n− 1)/2.

To illustrate this point, the objective function can also be re-written as (similar to the

counterpart of expression for LASSO):
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arg max
Û=∪Cc=1Ûc,C

log ||Û||1 = log
∑
i<j

(wij|eij ∈ Gc)

with subject to

log ||Û||0 = log
∑
i<j

I(eij ∈ Gc,∀c) ≤ t.

We note that C can provide an upper bound for ||Û||0.

Lemma 1. For a given value of C, we have the upper bound sup ||Û||0 = (n−C + 1)(n−

C))/2.

Proof. For C = 2,

2 sup ||Û||0 = sup{n1(n1 − 1) + n2(n2 − 1) : n1 + n2 = n, n1, n2 ∈ Z+}

= −n+ sup{n2
1 + n2

2 : n1 + n2 = n, n1, n2 ∈ Z+}

= −n+ (n− 1)2 + 1

where n1 = |V1|, n2 = |V2| are number of vertices for the two communities. Hence,

2 sup ||Û||0 = (n− C + 1)(n− C) for C=2.

Inductively, assume it’s true for C = k−1, such that 2 sup ||Û||0 = (n−k+2)(n−k+1).

Then, for C = k,

2 sup ||Û||0 =− n+ sup{n2
1 + ...+ n2

k :
k∑
i=1

ni = n, n1, ..., nk ∈ Z+}

= −n+ sup{(n− nk − k + 2)2 + (k − 2) + n2
k : nk ∈ {1, 2, ..., n− k + 1}}

= −(n− k + 2) + sup{n2
1 + n2

2 : n1 + n2 = n− k + 2, n1 + n2 ∈ Z+}

= −(n− k + 2) + (n− k + 2− 1)2 + 1

= (n− C + 1)(n− C) (3)
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Therefore, the result is true for C = k. Hence, the claim is proved.

Lemma 1 shows that increasing C can effectively shrink the size of ||Û||0. We implement

the path to shrink ||Û||0 by increasing C. Specifically, the algorithm first optimizes the

objective function (2) with a given C and the corresponding upper bound of ||Û||0 =

(n−C+1)(n−C) to identify subgraphs covering maximal edge-weights. Then, we exhaust

C from 2 to n − 2 and perform grid search to estimate Ĉ. The combination of Ĉ and Û

that optimize (2) become the final estimates.

The `0 norm regularization is critical to suppress false positive noise. Let wij 6= 0|βij = 0

be an false positive edge that i ∈ Gc and j /∈ Gc,∀c. Adding eij to Gc will increase ||Û||0
by |Vc|. However, the increase of ||Û||1 is small because there is only a small proportion of

wi′j > 0, i′ ∈ Gc and i′ 6= i. In another scenario, wij 6= 0|βij = 0 be an false positive edge

that i ∈ Gc and j ∈ Gc′ ,∀c 6= c′. The inclusion of a false positive edge eij can connect two

subgraphs false positively and increase ||Û||0 by |Vc| × |Vc′ |. In both cases, the inclusion

of false positive edges leads to a high cost for the pentalty term. Therefore, the `0 norm

regularization is particularly useful to extract informative subgraphs from a noisy and less

dense matrix W.

The details of the algorithm, the derivation, and the software package for the objective

function are provided in the Supplementary Materials.

Consistency for subgraph detection: In the following Lemma 2 and Theorem 1, we

establish that for given true number of subgraphs C?, the proposed objective function can

provide a consistent estimate for the community topological structure (the collection of

node-induced subgraphs) in the sense that the error of assignments for nodes is negligiable

in large graphs. Furthermore, considering that C is optimized by grid search, the estimated

community structure based on the optimal number of subgraphs selected by objective
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function (2) also yields a consistent estimator.

To formalize the theoretical results, in a graph representation of input W, we assume

there exists a set of subgraphs {Gc = {Vc, Ec} : c = 1, ..., C,∪Cc=1Gc ⊂ G} for phenotype-

related edges, such that wij|eij ∈ ∪Cc=1Gc
i.i.d∼ f1 and wij|eij /∈ ∪Cc=1Gc

i.i.d∼ f0 where f1 and

f0 are continuous densities in [0, 1] with mean and variance (µ1, σ
2
1) and (µ0, σ

2
0), µ1 > µ0,

respectively. Then the expectation matrix P = E(W) can be expressed as P = ΘBΘT ,

where Θ ∈ Rn×C is a membership matrix indicating the community index of each node,

and B ∈ RC×C equals µ1 in diagonal and µ0 for others.

For convenience, we use notation

JC = max
Û=∪Cc=1Ûc

log ||Û||1 − λ0 log ||Û||0

which is the maximized objective function with C subgraphs. Then the objectivie function

(2) yields a solution Θ̂ = arg maxC=1,...,|V | JC . Let Θ∗ be the true matrix of membership.

Lemma 2 (Consistency with known C?). Assume P of rank C has smallest absolute

nonzero eigenvalue ξ and (µ1 ∨ σ2
1 ∨ σ2

0) ≤ d for d ≥ c0 log n and c0 > 0. Then, if

(2 + ε)Cnd
ξ2

< τ for some τ, ε > 0, the output Θ̂C? = arg max JC? is consistent up to a

permutation. Equivalently, if Ŝc is the estimated nodes set for subgraph Gc, c = 1, ..., C?.

Then Ŝc ∩ Vc is the set in Vc that the assignment of nodes can be guaranteed, and with

probability at least 1− n−1, up to a permutation, we have

C∑
c=1

1−

∣∣∣Ŝc ∩ Vc∣∣∣
nc

 ≤ τ−1(2 + ε)
Cnd

ξ2
.

with nc = |Vc|, c = 1, ..., C?.
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Theorem 1 (Consistency for grid searched C). Let the sizes of subgraphs nc, c = 1, ..., C?

be generated from a multinomial distribution with probabilities π = (π1, ..., πC?). Assume

∃δ > 0, such that

µ1 > µ0
1 + δ

1− δ

(
1 +

√
1 +

π2
min

π2
1 + ...+ π2

C?

)
,

then under conditions in Lemma 2 and λ0 = 1/2, the number of mis-assigned nodes satisfy

ne = op(nmin) as n→∞ where nmin is the size of the smallest subgraph.

Proof. The proofs of Lemma 2 and Theorem 1 are included in the supplemental mate-

rials. Note that the theorem is also true for a general setting of weighted stochastic block

model with (maxij Bij ∨maxij σ
2
ij) ≤ d.

Extracting complex topological structures T (Gc) by the objective function (2): we con-

sider the community/clique structure as the default topological structure, although the

objective function (2) can be further optimized if the phenotype related edges can be cov-

ered more subgraphs with more sophisticated topological structures. For example, there are

two potential subgraphs, one is a clique Gc and the other is a bipartite subgraph Gc′with

the same number of nodes Vc = Vc′ . The number of edges of the clique is greater than

the bipartite subgraph Ec > Ec′ . If the edges with βij 6= 0 are equivalently covered by

Gc and Gc′ , the bipartite subgraph is preferred by (2). The detailed algorithms for more

sophisticated topological structures (e.g. k-partite structure, rich-club, and interconnected

subgraphs) and model selection procedure are described by Chen et al. (2019) . Therefore,

the complex topological structures are favored by the `0 norm regularization if the objective

function is further optimized.
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2.3 Graph combinatorics for network-level test

The optimization of objective function (2) reveal the underlying network topology of

phenotype-related edges, which has naturally provoked graph combinatorics. The group-

level network statistical inference examines whether a combinatorial set of edges (rather

than individual edges) in an organized subnetwork is significantly related to the pheno-

type. In contrast to conventional multivariate inference on individual edges (e.g. FDR),

the subnetwork based statistical inference is inherently linked with graph combinatorics as

{eij|βij 6= 0} Graph combinatorics−−−−−−−−−−−→ Gc.

We first specify the null and alternative hypotheses of the subnetwork test. Let ρ =∑
i<j I(βij 6= 0)/|E| and G be a graph with n nodes and the connection probability of ρ.

The null can be categorized into two cases: the stronger case (Hs
0) that no edge is related to

the phenotype (ρ = 0); and the weaker case that a small proportion (ρ ≥ 0) of phenotype-

related edges are randomly distributed in G. Clearly, the weaker case is more general and

commonly used and the stronger case is a special case of the weaker case (Benjamini and

Hochberg, 1995), and additional tests could be conducted to distinguish the two nulls as

follows. Thus, we focus on the weaker case of the null. The null and alternative hypotheses

are:

H0 : G(n, ρ) is a random graph.

Ha : ∃Gc ⊂ G, that ρc =
∑
eij∈Gc

I(βij 6= 0)/|Ec| > kρ, with constant k > 1.
(4)

If we fail to reject the null (weaker case) that G is a random graph, then the conventional

multi-testing methods (e.g. FDR and FWER) can be applied to identify individual edges

that are related to the phenotypes. The stronger case of null can be rejected if at least one

edge passed the cut-off of the multiple testing methods.
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In the follows, we show that from the perspective of graph combinatorics, testing a

combinatorial set of multivariate edges constrained in a subnetwork (subnetwork level in-

ference) can lead to low false positive and false negative error rates.

We consider the permutation test for the network level inference because the asymptotic

distribution of graph combinatorics based test statistic under the null is difficult (Zalesky

et al., 2010; Chen et al., 2015; Chen et al., 2019). Briefly, the permutation tests generate

multiple simulations (e.g. 104 times) of data under the null by shuffling the labels, and cal-

culate test statistic Tmc for each extracted subnetwork Gc and record the maximum statistic

Tmmax for each simulation. The percentile of observed test statistic among the maximum

test statistics of all simulations becomes the p-value. The issues of multiple testing and

selection bias can be both addressed by this procedure (Zalesky et al., 2010). We include

the detailed permutation test procedure in the supplementary materials. Specifically, we

assume that each simulation of the permutation test generates a matrix Wm under the

null and the false positive edges are randomly distributed in G (G is a random graph),

where m = 1, · · · ,M . The test statistic in the permutation test statistic is a function

of w̄c = E(wij|eij ∈ Gc) and we assume w̄c = w̄c′ . Then, the test statistic is related to

the size of the subnetwork and P(|Tc| < |Tmmax|) = P(|Gc| < |Gm
max|) since w̄c = w̄c′ . We

demonstrate the impact of graph combinatorics on network-level inference in terms of Type

I and Type II errors.

2.3.1 Type I error of network-level inference

Type I error rate is the probability to false positively identify a significant subgraph when

the null is true. For subnetwork level inference, the subgraph can be false positive only

if it is detected. We first consider the probability of a (latent) dense induced subgraph
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existing in G under the null. We assume a random graph GR = {V R
c , E

R
c } is generated

with probability p. ∀eij ∈ GR, we have δij ∼ Bern(p). We further let wij|δij = 1 ∼ f1 and

wij|δij = 0 ∼ f0 as entries of Wm. Therefore, the weighted adjacency matrix is generated

from a random graph G(n, p) with E(wij|δij = 1) = µ1 > µ0 = E(wij|δij = 0). We prove

that under the null the probability of the existence of a detectable subgraph with a density

> µ0 from a random graph (null) converges to zero.

Theorem 2. For a random graph GR generated as above. Let GR
c be a detectable community

structure under the null, i.e. log ‖ÛR
c ‖1 − λ0 log ‖ÛR

c ‖0 > log ‖ÛR‖1 − λ0 log ‖ÛR‖0, where

ÛR
c and ÛR are the correspondingly subgraph-based matrix for GR

c and GR, respectively.

Then, the existence of GR
c has probability 0 asymptotically, if the number of subgraphs in

GR
c is at most O(ln(n)), n = |V R

c |, i.e.

P(∃GR
c , log ‖ÛR

c ‖1 − λ0 log ‖ÛR
c ‖0 > log ‖ÛR‖1 − λ0 log ‖ÛR‖0)→ 0

as n→∞.

Proof. For any random graph GS = (S,ES), let GS = (S,ES) = ({S, {uv|u, v ∈ S, u 6=

v, and uv /∈ ES}) be the complement of graphGS. Assume |ES|/(|ES|+ES) = |ES|/
(|VS |

2

)
→

q, and WS is the associated weighted adjacency matrix generated from the random graph

with E(wij|δij = 1) = µ1 > µ0 = E(wij|δij = 0). Then, from law of large numbers, the

average weights for WS will have in probability∑
i<j wij(|VS |
2

) =

∑
(i,j)∈ES

wij +
∑

(i,j)∈ES
wij(|VS |

2

)
→ qµ1 + (1− q)µ0

as |S| → ∞.
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Hence, if the average weight is no less than γ, i.e.
∑

i<j[wij|eij ∈ GS]/
(|VS |

2

)
> γ, we

will have asymptotically

|ES|/
(
|VS|

2

)
≥ γ̃ with γ̃ =

γ − µ0

µ1 − µ0

.

Otherwise, for any 0 < ε < 1, if |ES|/
(|VS |

2

)
→ γ̃ − ε, from law of large numbers,

P(
∑

i<j wij

(|VS |2 )
< γ − ε/2)→ 1 which contradicts the assumption.

Therefore, the community structure GR
c is generated from γ̃-dense communities in ran-

dom graph in the sense that |ER
c |/
(|V R

c |
2

)
> γ̃. From Lemma 3 in the supplementary material

A5, if GR
c is constructed by lnn communities, |GR

c | will be bounded by 1
2
η2(lnn)3 almost

surely. In other words,

P(|GR
c | ≥

1

2
η2(lnn)3)→ 0,

where

η = η(γ̃) = 2

{
ln

[(
γ̃

p

)γ̃ (
1− γ̃
1− p

)1−γ̃
]}−1

.

On the other hand, GR
c needs to be detectable community structure with respect to our

objective function (2). It has been true

log ‖ÛR
c ‖1 − λ0 log ‖ÛR

c ‖0 > log ‖ÛR‖1 − λ0 log ‖ÛR‖0.

However, with probability 1− exp(−c/n) for some c = c(δ) > 0 and δ > 0,

‖ÛR
c ‖1

‖ÛR
c ‖

λ0
0

≤ (1 + δ)µ1‖ÛR
c ‖

1−λ0
0 ≤ (1 + δ)µ1

[
1

2
η2(lnn)3

]1−λ0
(5)

Also, with probability 1− exp(−c′/n) for some c′ = c′(δ) > 0 and δ > 0,

‖ÛR‖1
‖ÛR‖λ00

≥ (1− δ) (qµ1 + (1− q)µ0) ‖ÛR‖0 = (1− δ) (qµ1 + (1− q)µ0)

[
n(n− 1)

2

]1−λ0
(6)
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The right hand side in (5) is smaller than (6) as n→∞ for γ ∈ (µ0, µ1) and λ0 ∈ (0, 1).

Hence, our claim is true.

A potential phenotype-related subnetwork couldn’t have larger value of objective func-

tion than the whole random graph under suitable conditions. Therefore, the probability of

false positive edges comprising a detectable dense subgraph is approximately zero with a

threshold level r0 under the null. The non-detectable subgraph leads to no false positive

report of phenotype-related subnetwork and no Type I error for network-level inference

when H0 is true.

2.3.2 Type II error of network level inference

We next consider the power for network-level inference, which is the probability to reject

null given that the alternative hypothesis is true and Gc ∈ G is significantly associated with

the phenotype. The power is determined by the values of test statistics from all simulations

of the null of the permutation test. In each simulation of the permutation test, we assume

a random graph GR is generated as above. Suppose Gc is a detectable subgraph from the

data when the alternative hypothesis is true. The probability to reject the null converges

to 1 when the each simulation in the permutation test yields a maximum subgraph Gm
max

that P(|Gm
max| ≥ |Gc|)→ 0 and thus P(Tmmax > Tc)→ 0.

Theorem 3. Assume that for mth simulation in the permutation test, the weighted adja-

cency can be regarded as a generation from random graph GR(n, p) with E(wij|δij = 1) =

µ1 > µ0 = E(wij|δij = 0). Let Gm
max be the maximum detectable community structure from

m simulated graphs, then we will have

P(|Gm
max| ≥ |Gc|)→ 0,
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as n→∞.

Proof. The claim is automatically true from Theorem 2.

The above theorem shows that the Type II error of network-level inference is low when

phenotype related subnetworks present. Graph combinatorics plays an important role in

group-level network statistical inference because it is rare for an organized subnetwork

being associated with a phenotype by chance. Given the `0 norm regularization based

algorithm can capture the dense subgraphs with a density γ � µ0, the following network-

level statistical tests can simultaneously reduce false positive and false negative discovery

rates. Besides network-level inference, we can also draw statistical inference on individual

edges inside and outside Gc adaptively based on an empirical Bayes framework (Chen et al.,

2018). Since this topic is beyond the scope of this article, we include brief descriptions in the

supplementary materials. We also prove that the edge-wise false positive and false negative

error rates given {Gc} are also simultaneously improved compared with the conventional

methods that apply a universal cut-off like in FDR, local fdr, and FWER.

In summary, GLEN provides multiscale inference (both edge-level and network-level)

without prior knowledge of informative subnetworks. The `0 norm regularization can re-

liably extract latent subnetworks (topological structures) consisting of phenotype-related

edges. The detected network topology is naturally linked with our graph combinatorics

based inference which is novel, powerful, and unique to group-level network analysis.

3 Data example

The primary data set D1 includes 70 individuals with schizophrenia (age = 40.80 ± 13.63

years) and 70 control subjects (age = 41.79± 13.44 years) frequency-matched on age (t =
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0.62, p = 0.54) and sex ratio (χ2 = 0, p = 1). In the validation data set D2, another

30 individuals with schizophrenia (age = 39.73 ± 13.79 years) and 30 control subjects

were recruited (age = 39.73 ± 14.16 years) matched on age (t = 0.27, p = 0.78) and sex

ratio (χ2 = 0.09, p = 0.77), following the initial sample. The recruitment procedures,

inclusion and exclusion criteria, and imaging acquisition and preprocessing procedure were

kept the same. The details of subject recruitment, imaging acquisition, and preprocessing

procedures are described in Supplementary Materials. The nodes of the connectome graph

G are defined based on the commonly used automated anatomical labeling (AAL) regions.

Time courses of all voxels within a 10 mm sphere around the centroid of each region

are pre-processed as region-wise signals, followed by calculating 4005 Pearson correlation

coefficients between the time courses of the 90 AAL regions. Fishers Z transformation and

normalization are then applied to obtain connectivity matrices. We apply GLEN to both

data sets separately and then compare D1 and D2 results. We also compare the results

by GLEN with the traditional edge-wise and the commonly used network based statistic

(NBS) methods.

3.1 Network-level results of D1

We first apply GLEN to D1. Let symmetric matrix W1 be the whole brain graph edge-

wise testing result matrix (Fig 3a), where the element is wij = − log(pij) where i and j are

two distinct brain regions and pij is the corresponding test p-value for the edge between

i and j. The graph combinatorics based testing results show that one subnetwork in D1

is significant (p < 0.001). The significant subnetwork (R1 denotes the subnetwork from

D1) includes 22 nodes, 231 altered edges, and a well-organized topological structure. The

detected topology is a community structure with 22 nodes including the left medial frontal
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Figure 2: Applying GLEN to clinical data D1 (a-c) and replication data D2 (d-f). a) A

heatmap of log(p) of the first data set (D1). A hotter pixel indicates more differential edge

between cases and controls. There is no apparent topological pattern of these hot edges.

b) We then perform GLEN in D1 and find a significant subnetwork (red square, which is

magnified in c). c) The enlarged disease-relevant subnetwork in D1 with region names.

d) A heatmap of log(p) of the second data set (D2). e) The detected disease-relevant

subnetwork by using D2 alone. f) The enlarged network in D2 with region names.
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cortex, bilateral insula, bilateral anterior and middle cingulate cortices, bilateral Heschl

gyrus and superior temporal cortices, bilateral paracentral and postcentral cortices, right

precentral cortex, and the precueous (Fig 3a to 3c) (full list of region names in Table 1 of

supplementary materials).

3.2 Network-level results of D2

One subnetwork is significant in D2 (p < 0.001). R2 (subnetwork from D2) includes 21

nodes, 210 edges in a clique/community topological structure. The majority of the nodes of

R2 are similar to R1 with some minor differences, and include left medial superior frontal

gyrus, bilateral insula, bilateral anterior and middle cingulate cortices, bilateral Heschl

gyrus, Rolandic operculums, supplementary motor areas, paracentral lobules, postcentral

lobules, and left precuneus (Fig 3d to 3e) (Table 2 in supplementary materials). Similar to

R1 , most (206 of the 210) edges showed reduced connectivity in patients with schizophrenia

in R2.

3.3 Comparing subnetworks in D1 and D2

Remarkably, we note that R2 ⊂ R1: GLEN reports the altered subnetwork in D1 that can

be rediscovered when analyzing D2 independently with only one node in difference. Based

on the combinatorics, P(R2 ⊂ R1) < 2×10−16 given 21 nodes are included in R2. Although

the sample size of D2 is smaller and the testing p-values are larger, the subnetwork detection

in D2 is not affected by the sample size and other sources of noise. While the statistical

inference on individual edges is subject to numerous variations and false positive-negative

findings, we found that the latent network topological patterns of differentially expressed

edges are stable across independent samples. The new network size regularization term
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is critical to recognize the organized patterns from the noisy background. The organized

(latent) subnetwork topological structure can reduce the false positive and false negative

findings simultaneously. As a result, the subnetwork level findings are reproducible and

verified by D2.

3.4 Comparisons with existing methods

For comparison purpose, we also perform edge-wise multiple testing analysis and NBS.

Wilcoxon rank sum tests are then used to assess patient-control differences in the normal-

ized correlation coefficients for all edges. In D1, 430 of 4005 edges are p < 0.005. p = 0.005

is commonly used for uncorrected threshold in neuroimaging literature (Derado biometrics

2010). After FDR correction for multiple comparison, none of 4005 edges is found signif-

icant by using the threshold q = 0.05. In D2, 22 of 4005 edges are p < 0.005, and none

of edges are found significant after applying FDR correction with the threshold q = 0.05.

Two edges among the 430 edges in D1 and 22 edges in D2 overlap, which indicates a very

low replicability between the two data sets. In addition, the conventional network method

NBS shows no differentially expressed subnetwork in D1 and D2 by using various thresholds

(tuning threshold values from 2 to 6). This is likely due to the loss of power by the impact

of false positive edges (without `0 norm shrinkage).

Finally, the positive agreement is used to compare the reproducibility of features be-

tween D1 and D2 using GLEN vs. individual edge based statistics. The network approach

is significantly better than the individual edge based method. In summary, by utilizing

an independent replication data set collected posteriorly we can conclude that the findings

identified by the GLEN are more reproducible.
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Figure 3: The edges in the subnetwork using 3D demonstration for data set 1 (a)-(c) and

data set 2 (d)-(f). The width of length is proportional to the effect size. The disease-

relevant network involves with the salience network, part of default mode network, and

part of executive network, and more importantly the interconnections between these three

networks are revealed. (e)-(f) show 3D brain subnetwork for data set 2, which shows a

highly replicable brain subnetwork as seen in data set 1 with one brain region (precentral

R) less.
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3.5 Biological interpretation of the brain subnetwork

The brain region constellation of the detected subnetwork consists of many well-known

brain regions involved with the schizophrenic disorder, which included inferior frontal, su-

perior temporal, insula, cingulate, and paracentral areas (Fig 3). This altered subnetwork

is composed of approximately the salience network (SN), part of default mode network

(DMN), and part of central executive network (CEN), which have been frequently associ-

ated with abnormalities in schizophrenia during attention, working memory, and executive

control, and resting functional imaging studies. Interestingly, the detected subnetwork re-

veals not only that the SN, DMN, and CEN are altered but also that the interconnections

between these three networks are disrupted. Of the 231 differentially expressed edges,

all edges show decreased or equivalent connections in patients with schizophrenia. This

aligns with findings suggesting that schizophrenia is a ‘dysconnectivity’ disorder with pri-

marily reduced functional connectivity across brain regions (Lynall et al., 2010), although

medication effects cannot be completely ruled out.

4 Simulations

In the simulation analysis, we investigate whether graph combinatorics based statistical

inference can reduce false positive and false negative error rates for multivariate edge analy-

sis. We simulate group-level connectome data setsA = {A1, ...,AS} and the corresponding

graph whole brain connectome G, we define a community subnetwork Gc ⊂ G where edges

are differentially expressed between controls and cases. We let |V | = 100, |Vc| = 20, and

Gc to be a clique (and |Ec| = 190). The transformed (e.g. Fishers Z) connectivity metric

of each edge is set to marginally follow a normal distribution with µ0 and σ2
0 (for controls)
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and µ1 and σ2
1 (for cases). For differentially expressed edges (i.e. ei,j ∈ Ec), µ0 = µ1+θ and

otherwise µ0 = µ1. Also, we let σ2
0 = σ2

1 = σ2. θ = 0.5 is used with varying values of σ2 for

different signal-to-noise ratios (SNRs)/standardized effect sizes. By shuffling the order of

nodes in G, the altered connectivity subnetwork becomes latent in the sample data. Two

sample sizes (60 and 120) are used to represent the commonly observed sample size from a

single study. Each setting is simulated with different θ, σ and the number of subjects for

each group for 100 times.

The subnetwork detection algorithm and graph combinatorics based tests of GLEN are

applied to each simulated data set. The permutation tests are performed by shuffling the

group labels and edge orders to simulate the null, denoted by GLEN1 and GLEN2 (see

details in the supplementary materials). The false positive discovery rates (FP) and false

negative discovery rates (FN) are evaluated at both subnetwork and edge level rates. Note

that edge-wise power can be further calculated as 1− FN . Our method is compared with

other multiple testing methods including BenjaminiHochberg FDR and local false discovery

rate control (fdr). The false positive findings (number of FP edges in mean and standard

deviation across 100 repetitions) and false negative (FN) edges are shown in Table 1.

GLEN shows improved performance on network level and edge level inference by iden-

tifying the latent and differentially expressed subnetwork with 0 FP and FN rates. Next,

GLEN (based on the selected subnetwork) is compared to FDR and local fdr at individ-

ual edge inference using q = 0.2 as the cut-off for both FDR and fdr. The results show

that generally FDR has higher FP but lower FN rates compared with fdr (i.e. fdr is more

conservative). Importantly, GLEN outperforms FDR and fdr when jointly considering FP

1FDR: Benjamini-Hochberg false discovery rate control (FDR)
2fdr : local false discovery rate control.
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Number of Subjects: 30 vs 30

σ 0.5 1 2

GLEN1

FP 10.7(28.53) 11.8(30.36) 9.25(18.38)

FN 4.95(22.13) 3.75(16.77) 0(0)

Network FP 0(0) 0(0) 0(0)

Network FN 0(0) 0(0) 0(0)

GLEN2

FP 7.15(15.25) 8.25(18.31) 16(36.13)

FN 0(0) 2.7(12.07) 11.3(42)

Network FP 0(0) 0(0) 0(0)

Network FN 0(0) 0(0) 0(0)

FDR1
FP 45.98(9.07) 43.37(9.57) 31.11(8.01)

FN 8.23(3.02) 24.99(5.37) 70.67(8.12)

fdr 2
FP 1.01(1.05) 0.74(1.05) 0.11(0.4)

FN 57.26(12.56) 101.58(16.11) 175.95(14.52)

Number of Subjects: 60 vs 60

σ 0.5 1 2

GLEN1

FP 2(6.16) 2.05(9.17) 8.1(13.86)

FN 0(0) 0(0) 0(0)

Network FP 0(0) 0(0) 0(0)

Network FN 0(0) 0(0) 0(0)

GLEN2

FP 3.05(9.99) 2.05(9.17) 11.8(30.13)

FN 0(0) 0(0) 0(0)

Network FP 0(0) 0(0) 0(0)

Network FN 0(0) 0(0) 0(0)

FDR1
FP 54.55(8.35) 51.6(11.77) 47.85(7.53)

FN 0(0) 0.25(0.44) 5.85(2.39)

fdr 2
FP 0.1(0.31) 0.5(0.61) 0.8(1.32)

FN 5.6(2.54) 17.55(5.4) 56.8(7.63)

28

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 26, 2019. ; https://doi.org/10.1101/758490doi: bioRxiv preprint 

https://doi.org/10.1101/758490


and FN rates, see Table 1. Finally, we apply NBS method to the simulated data, but no

subnetwork is detected by NBS thus the power is 0 when tuning the cutoff parameter from

3 to 6 for all settings (not shown in Table 1). One possible reason is that the breadth

first algorithm in NBS can include many false positive edges and thus lose power in the

permutation test.

On Type I error rate, we count the number of false positive significant subnetworks for

the data sets with no differentially expressed connectome networks (e.g. θ = 0). Based on

simulation of 1000 iterations, the network level false positive rate of GLEN1 is 1.2% and

GLEN2 is 2.9%. Therefore, the network level Type I error is well controlled and below the

subnetwork claimed level of 5%.

5 Discussion

In this article, we present a graph combinatorics based approach for group-level network

inference which is motivated by brain connectome research. The importance of multiple

testing problem in neuroimaging data cannot be overstated, due to the urgent need to im-

prove the reliability and reproducibility of findings in neuroscience research (Lazar, 2008;

Lindquist, 2008; Eklund et al., 2016). GLEN capitalizes on latent organized network topol-

ogy of multivariate edge variables and performs graph combinatorics based tests yielding

network and edge level inference results with increased power and reduced false positive

discovery rates.

We develop a new objective function to extract latent subnetworks via `0 norm shrinkage

that is specifically tailored for a noisy and less dense input matrix W. `0 norm shrinkage

for edge variables in a graph space is fundamentally different from the conventional settings

29

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 26, 2019. ; https://doi.org/10.1101/758490doi: bioRxiv preprint 

https://doi.org/10.1101/758490


of high-dimensional data analysis (e.g. LASSO), which reflects the difference between the

`0 norm of a vector and a subgraph. We further report that our `0 norm regularization can

be implemented efficiently. The `0 norm regularization ensures that detected subnetworks

are dense subgraphs where informative edges are highly concentrated in organized topo-

logical structures. The combinatorial probability of an organized topological structure in a

random graph model is essentially zero. Thus, the graph combinatorics based tests can be

utilized to examine the hypothesis whether networks are systematically influenced by the

phenotype. The graph combinatorics based method is particularly useful for group-level

network inference because it produces both edge and network level inference and reveals

biologically meaningful network topology.

GLEN may also provide a solution to improve the reproducibility and replicability

of findings across studies in neuroscience research (Eklund et al., 2016). One potential

reason for the low replicability is the universal threshold of multiple testing correction

methods (e.g. the primary thresholding and FDR/FWER methods). When noise and

heterogeneity present, the universal threshold can either have a low false discovery rate or

high power/sensitivity, but not both. Therefore, the results for each study either include

a small proportion of true signals being discovered (low sensitivity) or a small proportion

of discoveries that are true positive signals (a low true discovery rate), and the chance for

the true discoveries overlap with each other across studies is very rare i.e. low replicability.

Our results demonstrate that findings by GLEN are highly replicable because both false

positive and false negative findings are simultaneously reduced via graph combinatorics

based statistical inference. The `0 shrinkage algorithm is designed to detect topological

structures of true positive signals with very small graph combinatorial probability. The

detected topological structures, in turn, can be explicitly used in graph combinatorics based
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statistical inference. In that, edge variables do not only borrow strength from each other

but also they consolidate into a unified topological structure to achieve much improved

inferential accuracy. In summary, we develop a graph-combinatorics based group-level

network analysis method GLEN which can yield accurate multivariate inference and provide

novel insights of network topology.
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SUPPLEMENTARY MATERIALS

A1. Testing the nonrandom patterns of differentially expressed edges

Let r0 be a threshold for multiple testing correction, and E1(r0) = {ei,j| |wij| > r0}

and the corresponding edge-induced subgraph G1(r0) ⊂ G. di =
∑

j 6=i I(|wij| > r0)

represents the degree of node i in G1. We examine H0 : G1 is a random graph vs.

H1 : G1 is not random. However, the set of edges with {βij 6= 0} is unknown and

thus needs to be estimated. Under H0, the multiple correction based thresholding

is valid because hij = hi′j′ |wij = wi′j′and the inference is irrelevant to the shuffling

order of edges.

Under H0 that G1 is a random graph, di follows a Poisson distribution (Newman

2002). Thus, we reject H0 if the distribution di statistical significantly deviate from

the Poisson distribution. We perform permutation test to assess the significance of

the deviation. Since the true r0 is unknown, we assume it follows a distribution f(r0).

P (di) denotes the empirical sample distribution of di and Q(di) = Poisson(di) with

parameter estimated by the random graph model. The Kullback-Leibler divergence

based statistic
∫
DKL(P (G1)||Q(G1))h(r0)dr0 =

∫ ∑
P (di) log(P (di)

Q(di)
)h(r0)dr0 is used

to measure the deviation. h(r0) is the prior distribution of the cutoff. In each per-

mutation, G1(r0) is randomized by shuffling the order of edge is shuffled (Hanhijarvi

2009). We reject the null if the the observed testing statistic is among the top 5

percentile of statistics from permutations. If we fail to reject H0, the conventional

methods like FDR can be used. If H0 is rejected, our next goal is to identify the and

test latent topological structure of G1

A2. Derivation of the algorithm for objective function (1)
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The optimization of objective function (1) is implemented by exhaustive search for

C and estimating Û at each C. With a given C,

arg max
Û=∪Cc=1Ûc

log ||Û||1 − λ0 log ||Û||0

= arg max
Û=∪Cc=1Ûc

log
( ||Û||1
||Û||λ00

)
.
= arg max

Û=∪Cc=1Ûc

f(Û)

(7)

By default λ0 = 0.5 reflects balanced covering quality and quantity of true posi-

tive edges, and the objective function arg max
Û=∪Cc=1Ûc

f(Û) then becomes the well-known

problem of k dense subgraph discovery, where f(·) is the density function. The prob-

lem has been solved in polynomial time by Goldberg’s min-cut algorithm (Goldberg,

1984) and a greedy algorithm with 1/2 approximation by Charikar (2000). In addi-

tion, the default topological community structure can be considered as quasi-cliques

and the problem can be solved by additive approximation algorithms and local-search

heuristics (Tsourakakis et al., 2013). Alternatively, with the mild spatially-invariant

assumptions that
E(wij |eij)∈Gc

|Ec| = ρ1,∀c, 0 ≤ c ≤ C, and
E(wij |i∈Vc,j∈Vc′ )

|Vc||Vc′ |
= ρ0,∀c, 0 ≤

c ≤ C the primary objective function is equivalent to

arg min
Û=∪Cc=1Ûc

log

∑C
c=1

∑
i<j(wij|eij /∈ Gc)

[
∑C

c=1

∑
i<j I(eij /∈ Gc)]

.
= arg min

Û=∪Cc=1Ûc

log
C∑
c=1

∑
i<j(wij|eij /∈ Gc)

|Vc|
,with spatially invariant ρ0

(8)

Although the objective function (8) is not convex, the issue of local optima in the

discrete optimization can be solved by restarting the algorithm for several times with

different initializations and/or through orthonormal transforms (Stella and Shi, 2003
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and Bolla, 2013). The proposed algorithm may better extract multiple weighted dense

subgraphs (with an unknown number and unknown sizes of dense subgraphs) than

the existing algorithms of dense subgraph discovery (Chen et al., 2018). We then

choose the optimal C∗ by grid searching that maximizes the following criteria:

arg max
C∗

(∑C∗

c=1

∑
i<j(wi,j|ei,j ∈ Gc)∑C∗

c=1 |Ec|

)λ0 ( C∗∑
c=1

∑
i<j

(wi,j|ei,j ∈ Gc)

)1−λ0

. (9)

The criteria (9) can be directly derived from the our primary objective function

that log(
∑C∗

c=1

∑
i<j(wi,j|ei,j ∈ Gc)) − λ0 log ||U||0. The first term in (9) indicates

the ‘qaultiy’ (the area density) of the extracted subgraphs, while the second term

represents the ‘quantity’ of edges covered by the subgraphs. C∗ is selected with

optimal quality and quantity in terms of covering informative edges. λ0 can be tuned

to either extract subgrahs with higher area density (i.e. low false positive rates)

or covering more high-weight edges using subgraphs with larger sizes (i.e. low false

negative rates). In general, C∗ selection is robust for λ0 in the range of 0.4 to 0.7.

In summary, the above procedure can extract latent organized topological struc-

tures containing most high-weight edges while controlling the sizes of the topological

structures by `0 norm regularization. Furthermore, we have recently developed more

flexible algorithms to extract subgraphs beyond the default community structure, for

example, k-partite/rich club and interconnected induced subugrahs can be further

detected based on detected quasi-cliques (Chen et al., 2019 and Wu 2019). These

more sophisticated topological structures can further improve the objective function

by preserving the high-weight edges inside of more parsimonioulsy-sized subgraphs.

The sample codes can be found at https://github.com/shuochenstats/Network_

program/tree/master/GLEN_package.

40

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 26, 2019. ; https://doi.org/10.1101/758490doi: bioRxiv preprint 

https://github.com/shuochenstats/Network_program/tree/master/GLEN_package
https://github.com/shuochenstats/Network_program/tree/master/GLEN_package
https://doi.org/10.1101/758490


A3. Proof of Lemma 2: Based on the derivation of algorithm in Appendix A2, it suffices

to show the consistency results are guaranteed for spectral clustering in our setting

of a continuous stochastic block model. The proof of theorem 3.1 in Lei et al. (2015)

can be easily extended to a weighted case using continuous versions of Bernstein

inequality and Chernoff bounds.

To bound light pairs, uij = xiyj1(|xiyj| ≤
√
d/n) + xjyi1(|xjyi| ≤

√
d/n), then

|uij| ≤ 2
√
d/n, and xTW ′y can be written as∑

1≤i<j≤n

w′ijuij.

Then, for zero-mean independent random variables, apply Bernstein inequality,

P

[∣∣∣∣∣∑
i<j

w′ijuij

∣∣∣∣∣ ≥ c0
√
d

]
≤ 2 exp

(
−

1
2
c20d∑

i<j σ
2
iju

2
ij + 1

3
2
√
d

n
c0
√
d)

)

≤ 2 exp

(
−

1
2
c20d

σ2
max

∑
i<j u

2
ij + 2c0

3
d
n

)

≤ 2 exp

(
− c20

4 + 4c0
3

n

)
.

In bounding heavy pairs, let e(I, J) be the summation of edge weights in node sets I

and J: e(I, J) =
∑

(i,j)∈s(I,J)wij. Define µ(I, J) = Ee(I, J), µ(I, J) = pmax|I||J |. We

could obtain continuous versions of Lemma 4.1 and 4.2 in supplementary material of

Lei et al. (2015).

Using Bernstein inequality:

P

(
n∑
j=1

wij ≥ c1d

)
≤ P

(
n∑
j=1

w′ij ≥ (c1 − 1)d

)
≤ exp

[
−

1
2
(c1 − 1)2d2∑n

j=1 σ
2
ij + 1

3
(c1 − 1)d

]

≤ exp

[
−

1
2
(c1 − 1)2d2

nσ2
max + 1

3
(c1 − 1)d

]
≤ exp

[
−

1
2
(c1 − 1)2d

1 + 1
3
(c1 − 1)

]
≤ n

− 3c0(c1−1)2

2c1+4
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We have for c0 > 0, there exists constant c1 = c1(c0) such that with probability at

least 1− n−c0 ,
∑n

j=1wij ≤ c1d.

From Chernoff Bound:

P[e(I, J) ≥ kµ(I, J)] = P

 ∑
(i,j)∈s(I,J)

wij ≥ kµ̄(I, J)


≤ exp(−µ̄(I, J)(k ln k − (k − 1)))

≤ exp

[
−1

2
(k ln k)µ̄

]
the lemma 4.2 is true from exacly the same calculations.

Hence, our claim is true with stated assumptions from theorem 3.1 of Lei et al.

(2015).

A4. Proof of Theorem 1: Part 1 We first consider the case C = C? − 1. Then, intu-

itively, the estimated labels Θ̂C should be obtained by merging two smallest com-

munities under Θ∗. Without loss of generality, we assume it merges the last two

communities with label C? − 1 and C?. The associated subgraph-based matrices

changed from Û ? to ÛC . Denote Xi ∼ f1, and Yi ∼ f0 denote random variables for

phenotype-related and unrelated edges. Therefore, from lemma 1,

JC − JC? = log
‖ÛC‖1
‖Û ?‖1

− λ0 log
‖ÛC‖0
‖Û ?‖0

∼ log


∑‖Û?‖0

i=1 Xi +
∑nC?−1nC?

i=1 Yi∑‖Û?‖0
i=1 Xi

×

[
‖Û ?‖0

‖Û ?‖0 + nC?−1nC?

]λ0
Then, from chernoff bounds, for any δ > 0

P

‖Û?‖0∑
i=1

Xi > (1− δ)‖Û ?‖0µ1

 ≥ 1− exp(−δ2‖Û ?‖0µ2
1)
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and

P

(nC?−1nC?∑
i=1

Yi < (1 + δ)µ0

)
≥ 1− exp(−2δ2nC?−1nC?µ2

0).

Hence, ∑‖Û?‖0
i=1 Xi +

∑nC?−1nC?

i=1 Yi∑‖Û?‖0
i=1 Xi

≤ 1 +
(1 + δ)nC?−1nC?µ0

(1− δ)‖Û ?‖0µ1

with probability greater than

p(n) =
[
1− exp(−δ2‖Û ?‖0µ2

1)
]
×
[
1− exp(−2δ2nC?−1nC?µ2

0)
]
.

Thus, with probability p(n),

JC − JC? ≤ log


[

1 +
(1 + δ)n2

minµ0

(1− δ)‖Û ?‖0µ1

]
×

[
‖Û ?‖0

‖Û ?‖0 + n2
min

]λ0 < 0

as n→∞, with λ0 = 1/2 and

µ1 > µ0
1 + δ

1− δ

(
1 +

√
1 +

π2
min

π2
1 + ...+ π2

C?

)
.

Inductively, we could conclude for C < C?, P(JC < JC?)→ 1.

Part 2 For cases C > C?, assume for each subgraph Vc, c = 1, ..., C?, Ŝc is the

corresponding estimated nodes set with smallest assignment error:

C∑
c=1

1−

∣∣∣Ŝc ∩ Vc∣∣∣
nc

 < 1

2

among all permutations. Then, the least favorable case (the case with highest JC)

happens when all mis-assignment nodes should belong to the smallest community
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(nmin). Thus, let ne denote the number of mis-assigned nodes for the smallest com-

munity, we have

JC − JC? = log
‖ÛC‖1
‖Û ?‖1

− λ0 log
‖ÛC‖0
‖Û ?‖0

∼ log


∑‖Û?‖0

i=1 Xi −
∑ne(nmin−ne)

i=1 Xi∑‖Û?‖0
i=1 Xi

×

[
‖Û ?‖0

‖Û ?‖0 − ne(nmin − ne)

]λ0
∼ log


∑‖Û?‖0−ne(nmin−ne)

i=1 Xi∑‖Û?‖0
i=1 Xi

×

[
‖Û ?‖0

‖Û ?‖0 − ne(nmin − ne)

]λ0
When ne = Op(nmin), from multinomial distribution of subgraph sizes, we have

ne(nmin−ne) = Op(‖Û ?‖20), and P(JC < JC?)→ 1 as n→∞. Hence, for grid searched

Θ̂, the mis-assignment nodes (up to a permutation) should satisfy ne = op(nmin). The

case with
C∑
c=1

1−

∣∣∣Ŝc ∩ Vc∣∣∣
nc

 ≥ 1

2

has equivalent least favorable case considering permutations.

A5. Lemma 3 For a graphG(V,E), a subgraph indexed by S ⊆ V is said to be a γ−quasi-

clique, if the subgraph has at least γ

 |S|
2

 edges, where γ ∈ [0, 1] is a parameter.

For a random graph G(n, p) and 1 > γ > p > 0, let Aγn(k) be the maximum number of

edges that can be included in at most k γ−quasi-clique. Then, the maximum number

of edges that can be included in at most lnn γ−quasi-clique is O((lnn)3), in other

words,

Aγn(lnn) ≤ 1

2
η2(lnn)3 a.s. with η = η(γ) =

2

ln

[(
γ
p

)γ (
1−γ
1−p

)1−γ] .
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Proof. If the number of edges included in at most k γ−quasi-clique is Aγn(k), there

must be at least one γ−quasi-clique which include edges no less than bAγn(k)/kc.

From theorem 1 in Veremyev et al. (2012),

Mγ
n ≤

2

ln

[(
γ
p

)γ (
1−γ
1−p

)1−γ] lnn a.s.

where Mγ
n is the maximum number of vertices in a γ−quasi-clique. Hence,

Aγn(1) ≤ 1

2
η2(lnn)2 a.s. with η =

2

ln

[(
γ
p

)γ (
1−γ
1−p

)1−γ]
Therefore, Aγn(k) ≤ kη2(lnn)2/2 almost surely.

A6. Edge-level inference by GLEN

GLEN provides network level inference by reporting phenotype related subnetwork Gc

instead of eij ∈ Gc. We argue that the detected subnetworks can also assist edge-level

inference by applying an empirical Bayes based adaptive thresholding strategy. The

details of method is introduced in section 2.2 Chen et al. (2018). When phenotype

related edges consist of organized topological structures, the false positive and false

negative discovery rates for individual edges are lower than conventional universal

threshold multiple testing methods.

Theorem 4 Let F0(x) = P (wij ≤ x|δij = 0) and F1(x) = P (wij ≤ x|δij 6= 0). Under

the conditions,

F0 (z0)− F0 (z0, out )

F0 (z0,in)− F0 (z0)
>
E(
∑

i<j I(δij = 0|eij ∈ Gc))

E(
∑

i<j I(δij = 0|eij ∈ Gc))
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and
F1 (z0)− F1 (z0, out )

F1 (z0,in)− F1 (z1)
>
E(
∑

i<j I(δij 6= 0|eij ∈ Gc))

E(
∑

i<j I(δij 6= 0|eij ∈ Gc))
,

where z0 is a universal threshold value and z0,in, z0,out are threshold values inside and

outside the community structure, we have

(1) the expected false positively thresholded edges by using the network level inference

(GLEN) are less than the universal thresholding method

E

(∑
i<j

I
(
δ̂GLENij = 1|δij = 0

))
) ≤ E

(∑
i<j

I
(
δ̂Univij = 1|δij = 0

))
;

(2) the expected false negatively thresholded edges by using GLEN are less than the

universal thresholding method

E

(∑
i<j

I
(
δ̂GLENij = 0|δij = 1

))
≤ E

(∑
i<jt

I
(
δ̂Univij = 0|δij = 1

))

Proof. See the proof of theorem 1 in Chen et al. (2018).

A7. Permutation test

Graph edge permutation vs. graph node permutation

There are two sets of elements in a graph: the set of vertices and the set of edges as

in G = {V,E}. Correspondingly, there are two options of permutation: permuting

nodes or edges. First, we consider the permutation of nodes as a reordering processπ,

which is an ‘edge-preserving bijection. If two nodes a and b are connected in graphG,

then in the node-permuted graphH = π(G) = {π(V ), F}, then π(a) and π(b) are

connected:Eab = 1 ⇔ Fπ(a)π(b) = 1. G and H are isomorphic graphs G ' H (see

Figs 1d and 1e). The GLEN subnetwork detection algorithms reorder and group the
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nodes to uncover these latent topological patterns. In contrast, the edge permutation

is different because it permutes the order of edges and is not ‘edge-preserving bijection.

For example, two nodes a and b are connected in a graphG; the edge-permuted graph

L(e.g. by permutationµ) that L = µ(G) = {V, F = µ(E)} and in L,a and b are only

connected with probability ofpG, where pG is number of connected edges in G divided

byn× n/2. Therefore, the above two events are independent: {Eab = 1}⊥{Fab = 1}.

Hence, though there is an organized pattern inG, the edge permuted graph L = µ(G)

becomes a random graph without any organized patterns. The connectivity testing

p-value matrix after edge permutation represents a random graph where each edge

has the identical probability such thatpi,j < p0. Therefore, the edge permutation

can be used to test the organized topological pattern. The GLEN1 permutation test

simulates the null by shuffling the group labels (i.e. the order of the covariate of

interest) while GLEN2 permute the order of edge to simulate a random graph.

Network level test statistic. We propose a new test statistic in the permutation tests,

which is specifically tailored for the network as an object. Our goal is to select

disease-related subnetwork that is both informative (including the largest number of

informative edges that is possible) and efficient (most edges in each subnetwork are

significant). Generally, these two factors are conflicting: including more informative

edges (resulting in larger networks) can reduce the average significance of edges in

the subnetwork whereas restricting only very significant edges in the subnetwork can

shrink the network size and overall include less informative edges in G. We develop a

new test statistic to integrate these two aspects of the network object. The new test

statistic

Tmmax = max
k∈Km

{|Em
k |(x̄mk − 1− log(x̄mk ))}
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x̄mk = −2
∑

i,j∈Gm
k

logpi,j/2|Em
k |

is derived based on Fishers combination test and Chernoff bound of χ2 the cumulative

distribution function. The test statistic is negative (and generally the network is not

significant) when it includes a small proportion of informative edges. Therefore, the

test statistic jointly evaluates the effect size of edges in the subnetwork and the size

of each selected subnetwork which together are an index of the information of a

subnetwork.

A8. fMRI data acquisition and pre-processing

All participants provided written informed consent that had been approved by the

University of Maryland Internal Review Board. All participants were evaluated using

the Structured Clinical Interview for the DSM-IV diagnoses. We recruited medicated

patients with an Axis I diagnosis of schizophrenia through the Maryland Psychi-

atric Research Center and neighboring mental-health clinics. We recruited control

subjects, who did not have an Axis I psychiatric diagnosis, through media adver-

tisements. Exclusion criteria included hypertension, hyperlipidemia, type 2 diabetes,

heart disorders, and major neurological events, such as stroke or transient ischemic

attack. Illicit substance and alcohol abuse and dependence were exclusion criteria.

Data were acquired using a 3-T Siemens Trio scanner equipped with a 32 channel

head coil at the University of Maryland Center for Brain Imaging Research. A T1-

weighted structural image (MP-RAGE: 1 mm isotropic voxels, 256 x 256 mm FOV,

TR/TE/TI = 1900/3.45/900ms) was acquired for anatomical reference. Fifteen min-

utes of rfMRI was collected on each subject. During the resting scans, subjects were

given a simple instruction to rest and keep their eyes closed. Head motion was mini-
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mized using foam padding, foam molding, and tapes. RfMRI were acquired over 39

axial, interleaving slices using a gradient-echo EPI sequence (450 volumes, TE/TR =

27/2000 ms; flip angle = 90o; FOV = 220x220 mm; image matrix = 128x128; in-plane

resolution 1.72x1.72mm. Following the previously published procedures, data were

preprocessed in AFNI and MATLAB (MathWorks, Inc., Natick, MA). Volumes were

slice-timing aligned and motion corrected to the base volume that minimally devi-

ated from other volumes using an AFNI built-in algorithm. After linear detrending

of the time course of each voxel, volumes were spatially normalized and resampled

to Talairach space at 3x3x3 mm3, spatially smoothed (FWHM 6 mm), and tempo-

rally low-pass filtered (fcutoff = 0.1 Hz). For functional connectivity analyses, the

six rigid head-motion parameter time courses and the average time course in white

matter were treated as nuisance covariates. A white matter mask was generated by

segmenting the high-resolution anatomical images and down-gridding the obtained

white matter masks to the same resolution as the functional data. These nuisance

covariates regress out fluctuations unlikely to be relevant to neuronal activity.

A9. Tables of brain regions In the following tables, we list the region names and coor-

dinates of subnetworks from D1 and D2.
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Table 1: Region names and coordinates in the subnetwork of D1

Region Name x y z

Precentral R -39 -6 51

Rolandic Oper L -47 -8 14

Rolandic Oper R 53 -6 15

Supp Motor Area L -5 5 61

Supp Motor Area R 9 0 62

Frontal Sup Medial L -5 49 31

Insula L -35 10 3

Insula R 39 6 2

Cingulum Ant L -4 35 14

Cingulum Ant R 8 37 16

Cingulum Mid L -5 -15 42

Cingulum Mid R 8 -9 40

Postcentral L -42 -23 49

Postcentral R 41 -25 53

Precuneus L -7 -56 48

Paracentral Lobule L -8 -25 70

Paracentral Lobule R 7 -32 68

Heschl L -42 -19 10

Heschl R 46 -17 10

Temporal Sup L -53 -21 7

Temporal Sup R 58 -22 7

Temporal Pole Sup R 48 15 -17
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Table 2: Region names and coordinates in the subnetwork of D2

Region Name x y z

Rolandic Oper L -47 -8 14

Rolandic Oper R 53 -6 15

Supp Motor Area L -5 5 61

Supp Motor Area R 9 0 62

Frontal Sup Medial L -5 49 31

Insula L -35 10 3

Insula R 39 6 2

Cingulum Ant L -4 35 14

Cingulum Ant R 8 37 16

Cingulum Mid L -5 -15 42

Cingulum Mid R 8 -9 40

Postcentral L -42 -23 49

Postcentral R 41 -25 53

Precuneus L -7 -56 48

Paracentral Lobule L -8 -25 70

Paracentral Lobule R 7 -32 68

Heschl L -42 -19 10

Heschl R 46 -17 10

Temporal Sup L -53 -21 7

Temporal Sup R 58 -22 7

Temporal Pole Sup R 48 15 -17
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