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1 Model set-up

Before doing any math, let’s set up the scenarios we intend to study. We consider a continuum of cells
described by a cell density ρ. These cells emit one type of signaling molecule at a rate a when the local
concentration of the signaling molecule is above a certain threshold, Cth. The molecules diffuse in the
extracellular medium with diffusion constant D. The concentration of the signaling molecule is described by
the variable c, which is a function of both space and time: c = c(r, t). In general, then, we have

∂c

∂t
= D∇2c+ aρΘ[c− Cth] (S1)

with Θ[.] the Heaviside step function. We study this model and variants going forward.

2 Asymptotic wave ansatz

We start out by seeking to understand what dynamical properties a system described by (S1) has at large
times. To study these dynamics, we need an inspired guess for what the dynamics will look like. We imagine
that when a small volume of cells starts signaling its neighbors – and those neighbors start signaling their
neighbors – that a reasonable guess for the dynamics of such a signaling relay is an outward propagating
wave with speed v. We define r as the distance from the center of the outward propagating wave. At long
times for a uniform cell density, the shape information wave front will obey radial symmetry and our ansatz
becomes c(r, t) = c(r− vtr̂) with r̂ the unit vector pointing from the origin to the wave front.

With this guess, we can define a new coordinate r̃ = r − vt (we call this x̃ = x − vt for cells in one
dimension) which defines the distance to the wave front. Note that r̃ < 0 means we are inside the wave front
while r̃ > 0 means we are beyond it. With these definitions, ∂c/∂r̃ = ∂c/∂r and ∂c/∂t = −v ∂c/∂r̃. For
cells in 1D, we consider y and z to be dimensions perpendicular to the line of cells with the density described
by ρδ(y)δ(z) with ρ measured in cells per unit length; for cells in 2D, we consider z to be the out-of-plane
dimension and the density to be described by ρδ(z) with ρ measured in cells per unit area; for cells in 3D, ρ
is measured in cells per unit volume. Assuming azimuthal symmetry in 2D and radial symmetry in 3D, we
arrive at

cells in 1D: 0 = D

(
∂2c

∂x̃2
+
∂2c

∂y2
+
∂2c

∂z2

)
+ v

∂c

∂x̃
+ aρ δ(y)δ(z)Θ[c− Cth] (S2a)

cells in 2D: 0 = D

(
∂2c

∂r̃2
+

1

r

∂c

∂r̃
+
∂2c

∂z2

)
+ v

∂c

∂r̃
+ aρ δ(z)Θ[c− Cth] (S2b)

cells in 3D: 0 = D

(
∂2c

∂r̃2
+

2

r

∂c

∂r̃

)
+ v

∂c

∂r̃
+ aρ Θ[c− Cth] (S2c)

These equations can be simplified once more by noting that we are considering asymptotic – i.e., large r –
dynamics. Thus, as long as v � D/r, we can say that v∂c/∂r̃ dominates terms like D (∂c/∂r̃) /r and we can
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ignore the latter [1]. By construction, our ansatz says that c(r̃ = 0) ≡ Cth, meaning that Θ[c−Cth] = Θ[−r̃].
This gives simplified equations according to:

cells in 1D: 0 = D

(
∂2c

∂x̃2
+
∂2c

∂y2
+
∂2c

∂z2

)
+ v

∂c

∂x̃
+ aρ δ(y)δ(z)Θ[−x̃] (S3a)

cells in 2D: 0 = D

(
∂2c

∂r̃2
+
∂2c

∂z2

)
+ v

∂c

∂r̃
+ aρ δ(z)Θ[−r̃] (S3b)

cells in 3D: 0 = D
∂2c

∂r̃2
+ v

∂c

∂r̃
+ aρ Θ[−r̃]. (S3c)

These equations provide both a natural length scale, D/v, and a natural timescale, D/v2. One can see that
these are the relevant time and length scales for our problem by non-dimensionalizing, e.g., (S3c) to get

cells in 3D: 0 =
∂2(cv2/aρD)

∂(vr̃/D)2
+
∂(cv2/aρD)

∂(vr̃/D)
+ Θ[−vr̃/D]. (S4)

Thus, every length scale in the problem is normalized by D/v; because of our traveling wave ansatz, every
length scale can be converted to a time scale by dividing by v, giving D/v2 as the natural timescale. The
natural length scale is useful, e.g., for understanding what it means for cells to be in ”one dimension” or
for diffusion to be in ”two dimensions”. If the cells are organized in a line (or on a plane) such that their
average deviation from the line (or distance from the plane) is d� D/v, then they are effectively in one (or
two) dimensions and (S3a) (or (S3b)) holds. If cells are constricted to a narrow channel of width h� D/v
(or an extracellular medium of thickness h � D/v), then diffusion is effectively one (or two) dimensional.
For instance, for cells confined in a very narrow one-dimensional channel of width h� D/v, we can simplify
(S3a) because ∂2c/∂y2 = ∂2c/∂z2 = 0 and δ(y)δ(z)→ 1/h2. The resulting equation is the exact same as for
cells in 3D but with a source term proportional to aρ/h2:

cells in 1D, diffusion in 1D: 0 = D
∂2c

∂x̃2
+ v

∂c

∂x̃
+
aρ

h2
Θ[−x̃]. (S5)

For cells in 2D with an extracellular medium of thickness h � D/v, diffusion is effectively two-dimension
and, by the same logic that produced (S5), the asymptotic governing equation is:

cells in 2D, diffusion in 2D: 0 = D
∂2c

∂r̃2
+ v

∂c

∂r̃
+
aρ

h
Θ[−r̃]. (S6)

As (S4), (S5), and (S6) are all the same, the dynamics of cells in 1D with diffusion in 1D are the same as
those of cells in 2D with diffusion in 2D or those in 3D with diffusion in 3D.

One can, however, arrive at a different governing equation by considering cells in 2D (e.g., cells sitting
on a plane) with a thick extracellular medium of thickness h� D/v. In this case, diffusion effectively takes
place in three dimensions and

cells in 2D, diffusion in 3D: 0 = D

(
∂2c

∂r̃2
+
∂2c

∂z2

)
+ v

∂c

∂r̃
+ aρδ(z)Θ[−r̃]. (S7)

which, by the same logic above, is functionally equivalent to the governing equation for cells in 1D with
diffusion in 2D. We can therefore see that it is not the dimensionality of the cell distribution or the diffusive
environment that determines the asymptotic dynamics, but rather the difference in dimension between the
two.

Going forward, we will think of cells in two dimensions, as we have done in the main text. This will
allow us to interpolate between an effectively two-dimensional diffusive environment (the thin extracellular
medium limit) and an effectively three-dimensional environment (the thick extracellular medium limit).
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Cells in 2D, diffusion in 2D: the thin extracellular medium limit

For an extracellular medium of thickness h � D/v, diffusion effectively takes place in two dimensions as
argued in the previous section. The signaling molecule concentration has no z-dependence and concentrations
get normalized by h. Here,

0 = D
∂2c

∂r̃2
+ v

∂c

∂r̃
+
aρ

h
Θ[−r̃] (S8)

is our asymptotic governing equation.
For both r̃ < 0 and r̃ > 0, (S8) reduces to two straightforward-to-solve linear ODEs. With bi as constants

that we will determine momentarily,

r̃ < 0 : 0 = D
∂2c

∂r̃2
+ v

∂c

∂r̃
+ aρ/h =⇒ c(r̃ < 0) = b2e

−vr̃/D + b3 − aρr̃/hv (S9a)

r̃ > 0 : 0 = D
∂2c

∂r̃2
+ v

∂c

∂r̃
=⇒ c(r̃ > 0) = b0e

−vr̃/D + b1. (S9b)

We can solve for the bi by applying boundary conditions. First, we demand c → 0 as r̃ → ∞ and that the
concentration profile only blow up linearly as r̃ → −∞. Physically, these demands are justified as follows:
the concentration as r̃ →∞ has to go to zero because there are no cells emitting in that region and it is far
from the wave front; the concentration as r̃ → −∞ can grow at most linearly because the cells a distance
−r̃ from the wave front have only been emitting for a time −r̃/v. Combining these asymptotic boundary
conditions with the demand that c(r̃) be continuous and have a continuous first derivative at r̃ = 0 allows
us to stitch together the solutions in (S9a) and (S9b) to yield:

c(r̃ < 0) = aρD/hv2 − aρr̃/hv (S10a)

c(r̃ > 0) = aρDe−vr̃/D/hv2. (S10b)

We show this concentration profile in the left panel of Fig. 1A. From the above, we infer that

Cth = c(0) = aρD/hv2 =⇒ v =
√
aρD/hCth. (S11)

Thus, we have an explicit formula relating wave speed, emission rate, cell density, diffusion constant, ex-
tracellular medium thickness, and threshold concentration. We can also see that the concentration profile
beyond the wave front is exponential, not Gaussian as for simple diffusion. The concentration inside the
wave front grows linearly as the distance from the wave front.

Cells in 2D, diffusion in 3D: the thick extracellular medium limit

Next, we consider (S3b) in the limit that the extracellular medium h � D/v. In this limit, we effectively
have cells in 2D with diffusion in 3D. With cells sitting on a substrate, signaling molecules can only diffusive
in the upper half of the plane, and we have a semi-infinite environment which accounts for an extra factor
of 2 in the emission term, yielding:

0 = D

(
∂2c

∂r̃2
+
∂2c

∂z2

)
+ v

∂c

∂r̃
+ 2aρ δ(z)Θ[−r̃]. (S12)

Instead of working directly with δ(z), we consider the cells to be of a thickness H such that 2δ(z) →
1
H

√
2
π exp(−z2/2H2) and

0 = D

(
∂2c

∂r̃2
+
∂2c

∂z2

)
+ v

∂c

∂r̃
+
aρ

H

√
2

π
e−z

2/2H2

Θ[−r̃] (S13)
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Next, we take a partial Fourier transform of (S12) with k and C(r̃, k) the Fourier partners of z and c(r̃, z),
respectively1. This gives:

0 = D

(
∂2C

∂r̃2
− k2C

)
+ v

∂C

∂r̃
+

√
2

π
e−H

2k2/2aρ Θ[−r̃] (S14)

which is another pair of piecewise, straightforward-to-solve, linear ODEs. Solving with the same boundary
conditions that yielded (S10a) and (S10b), we arrive at

C(r̃ < 0, k) =
aρe−H

2k2/2

Dk2
√

2π

2−

(
1 +

√
4D2k2/v2 + 1

)
exp

(
vr̃
2D

(√
4D2k2/v2 + 1− 1

))
√

4D2k2/v2 + 1

 (S15a)

C(r̃ > 0, k) =
aρe−H

2k2/2

Dk2
√

2π

√
4D2k2/v2 + 1− 1√

4D2k2/v2 + 1
exp

(
− vr̃

2D

(√
4D2k2/v2 + 1 + 1

))
. (S15b)

To find the concentrations at the cells, we can take the inverse partial Fourier transform of these expressions
at z = 0. But first, we note that the right sides of (S15a) and (S15b) have no support when k � v/D.

Thus, if Hv/D � 1, the term e−H
2k2/2 is irrelevant for calculating the real-space concentrations and can be

replaced with 1. This is equivalent to having chosen δ(z) to describe the out-of-plane cell density.

Proceeding with e−H
2k2/2 → 1, one can take the inverse partial Fourier transform and arrive at

Cth = 2aρ/πv. (S16)

Similarly, in the limit |r̃| � D/v,

c(r̃ � −D/v, z) ≈ 2aρ

v

√
−r̃v
πD

(
evz

2/4Dr̃ −
√
−πvz

2

4Dr̃
erfc

√
− vz2

4Dr̃

)
(S17a)

c(r̃ � D/v, z) ≈ aρ
√

D

πr̃v3
e−vr̃/De−vz

2/4Dr̃. (S17b)

The former has the same functional dependence on z as the concentration a distance z away from a contin-
uously emitting point source with diffusion in 1D after a time r̃/v (see Section 6). Using the above, we can
find the concentration in the plane of the cells (z = 0):

c(r̃ � D/v, z = 0) ≈ 2aρ

v

√
−r̃v
πD

(S18a)

c(r̃ � D/v, z = 0) ≈ aρ
√

D

πr̃v3
e−vr̃/D. (S18b)

We show this concentration profile in the left panel of Fig. 1B.

Cells in 1D, diffusion in 3D: an artificial case

Finally, we consider a line of cells in one dimension with diffusion taking place in three dimensions. This
corresponds to a somewhat artificial test case of cells in a line with mean distance from the line d� D/v and
diffusion in an environment of size h� D/v in the dimensions perpendicular to this line of cells. Nonetheless,
it is interesting because we have to include the finite size of the cells in order to get a traveling wave solution.
Here,

0 = D

(
∂2c

∂x̃2
+
∂2c

∂y2
+
∂2c

∂z2

)
+ v

∂c

∂x̃
+

aρ

πH2
e−(y2+z2)/2H2

Θ[−r̃] (S19)

1Here, we choose C(r̃, k) ≡ 1√
2π

∫∞
−∞ eikzc(r̃, z)
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with v the wave speed; x̃ the distance to the wave front; y and z the extra diffusive dimensions; and H the
size of the cells.

Taking partial Fourier transforms across both y and z gives with the Fourier transform conventions and
notation used above gives

0 = D

(
∂2C

∂x̃2
− k2

yC − k2
zC

)
+ v

∂C

∂x̃
+
aρ

π
e−(k2y+k2z)H

2/2Θ[−x̃] (S20)

which reduces to (S14) with k2 → k2
y + k2

z . One can then find the concentration profiles and self-consistency
relationship for Cth by inverse Fourier transforming the analogs of (S18a) and (S18b). The value of Cth =
c(x̃ = 0, y = z = 0) diverges as H → 0.

3 Pulsed emission and decay

In this section, we consider pulsed emission and decay of the signaling molecule. These scenarios are relevant
for signaling pathways in, e.g., Dictyostelium [2–4] and E. Coli [5], in which intracellular dynamics produce a
pulse-like release of signaling molecules into the extracellular medium. Kessler and Levine [4] have previously
used this machinery to construct a signaling model for Dictyostelium, including pulsed emission and signaling
molecule decay. Here, we consider the effects of each independently.

We explicitly discuss only the asymptotics of cells in 2D with diffusion in 2D (equivalent to cells in 1D
with diffusion in 1D or cells in 3D with diffusion in 3D, as shown previously), though we quote the results for
cells in 2D with diffusion in 3D (equivalent to cells in 1D with diffusion in 2D) which are obtained using the
Fourier transform machinery in Section 2. Here again, the asymptotic dynamics depend on the difference in
dimensionality between the cellular and the diffusive environment.

Pulsed emission with cells in 2D and diffusion in 2D

Here, we consider a square pulse of length τ emitted once a cell exceeds the threshold concentration Cth. In
the moving frame, this pulse has length vτ – for notational simplicity here, we dispense with dimensional
subscripts on the wave speed – giving rise to the pulsed emission analog of (S8):

0 = D
∂2c

∂r̃2
+ v

∂c

∂r̃
+
aρ

h
Θ[−r̃]Θ[r̃ + vτ ] (S21)

which is nothing more than three piecewise linear equations, which we stitch together as before. The source
term is zero when r̃ < −vτ (Region I) or r̃ > 0 (Region III) and aρ0 for −vτ < r̃ < 0 (Region II). We thus
recover the following:

Region I: c(r̃ < −vτ) = b1 + b2e
−vr̃/D (S22a)

Region II: c(−vτ < r̃ < 0) = b3 + b4e
−vr̃/D − aρr̃/hv (S22b)

Region III: c(x > 0) = b5 + b6e
−vr̃/D (S22c)

Applying the same boundary conditions as with continuous emission, we arrive at

Region I: c(r̃ < −vτ) = aρτ/h (S23a)

Region II: c(−vτ < r̃ < 0) = aρD/hv2 − aρD

hv2
e−v

2τ/De−vr̃/D − aρr̃/hv (S23b)

Region III: c(r̃ > 0) =
aρD

hv2
(1− e−v

2τ/D)e−vr̃/D (S23c)

which tells us a few things of interest. First – as seen in the right panel of Fig. 1 A (here, τ = 2D/v2 =
2Cth/aρ) – the concentration profile for r̃ < −vτ is flat. (As with continuous emission, pulsed emission gives
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the familiar exponential profile beyond the wave front.) Second, the wave speed, pulse width, cell density,
emission rate, extracellular medium thickness, and threshold concentration are related through the equation

Cth = aρD(1− e−v
2τ/D)/hv2. (S24)

For τ � D/v2, we recover the usual relationship of Cth = aρD/hv2. In region 2, the profile will grow linearly

as before until −vr̃/D becomes comparable to v2τ/D, at which point e−v
2τ/D−vr̃/D becomes of order unity

and the profile levels off.
To understand how the wave speed with pulsed emission, v, compares to the wave speed with continuous

emission, (aρD/hCth)1/2, we have plotted v/(aρD/hCth)1/2 as a function of 1/τ in Fig. 2A. We have
normalized τ by a characteristic time τc = hCth/aρ, which is equal to D/v2 for continuous emission. When
τ < τc, the wave speed goes to zero. There is no wave-like solution for shorter pulses.

We note that a timed pulsed emission considered here is formally equivalent to cells signaling until
the local concentration exceeds c(r̃ = −vτ) = aρτ/h. This is relevant in, e.g., quorum sensing models in
which the local presence of a signaling molecule can both upregulate (at relatively low concentrations) and
downregulate (at relatively high concentrations) release of the same signaling molecule [5].

Continuous emission plus decay with cells in 2D and diffusion in 2D

At last, we characterize the effect of signaling molecule decay at rate γ by adding a term of −γc to (S3b).
In the thin extracellular medium limit,

0 = D
∂2c

∂r̃2
+ v

∂c

∂r̃
+
aρ

h
Θ[−r̃]− γc. (S25)

This is another piecewise set of linear differential equations, which we can solve as without decay to yield:

c(r̃ < 0) =
aρ

hγ
− aρ

2hγ

[
1 + (1 + 4Dγ/v2)−1/2

]
e
r̃v
2D

(√
4Dγ/v2+1−1

)
(S26a)

c(r̃ > 0) =
aρ

2hγ

[
1− (1 + 4Dγ/v2)−1/2

]
e
− r̃v

2D

(√
4Dγ/v2+1+1

)
(S26b)

as the concentration profiles and

Cth =
aρ

2hγ

[
1− (1 + 4Dγ/v2)−1/2

]
=⇒ v = 4Dγ

[(
1− 2hγCth

aρ

)−2

− 1

]−1

(S27)

as our wave speed relationship. The concentration profile is flatter than its decay-free counterpart (Fig. 1A).
For γ � v2/D, (S27) gives the decay-free relationship. And – as with pulsed emission – the wave speed goes
to zero, this time when γ → 1/2τc where τc = hCth/aρ (Fig. 2B).

Pulsed emission with cells in 2D and diffusion in 3D

Here,

0 = D

(
∂2C

∂r̃2
− k2C

)
+ v

∂C

∂r̃
+
√

2/π aρ Θ[−r̃]Θ[vτ + r̃] (S28)

which we can solve to yield:

Region I: C(r̃ < −vτ, k) = B1(k)e
r̃v
2D

(
−1+
√

1+4D2k2/v2
)

(S29a)

Region II: C(−vτ < r̃ < 0, k) =

√
2

π

aρ0

Dk2
+B2(k)e

− r̃v
2D

(
1+
√

1+4D2k2/v2
)

+B3(k)e
r̃v
2D

(
−1+
√

1+4D2k2/v2
)

(S29b)
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Region III: C(r̃ > 0, k) = B4(k)e
− r̃v

2D

(
1+
√

1+4D2k2/v2
)

(S29c)

with Bi(k) chosen such that C and its first derivative are continuous:

B1(k) =
aρ

D
√

2π

(
v +
√

4D2k2 + v2
)(

e
v2τ
2D

(√
4D2k2/v2+1−1

)
− 1

)
k2
√

4D2k2 + v2
(S30a)

B2(k) =
aρ

D
√

2π

(
v −
√

4D2k2 + v2
)
e
− v2τ2D

(√
4D2k2/v2+1+1

)
k2
√

4D2k2 + v2
(S30b)

B3(k) = − aρ

D
√

2π

v +
√

4D2k2 + v2

k2
√

4D2k2 + v2
(S30c)

B4(k) =
aρ

D
√

2π

(
v −
√

4D2k2 + v2
)(

1− e−
v2τ
2D

(√
4D2k2/v2+1−1

))
k2
√

4D2k2 + v2
(S30d)

Inverse Fourier transforming at z = 0 gives the real-space concentration and the following self-consistency
relationship for the wave speed:

Cth =
1√
2π

∫ ∞
−∞

dk B4(k), (S31)

which simplifies to Cth = 2aρ/πv for τ � D/v2.
We can compare τ to the characteristic time τc = D(πCth/2aρ)2, which is equal to D/v2 in the limit of

continuous emission. Numerical solution of (S31) reveals that there is no self-consistent solution to (S31)
until about τ ≈ 1.53τc, at which point v ≈ 0.6× 2aρ/πCth; τ ≈ 1.53τc is larger than the minimum initiation
time of tmin,3D = 4τc/π (Fig. 2 C, Section 7). Thus, an initial pulse of length 4τc/π < τ < 1.53τc from cells
within an initial signaling radius ri can cause neighboring cells to exceed Cth, but cannot trigger a wave-like
solution asymptotically.

Continuous emission plus decay with cells in 2D and diffusion in 3D

We can add signaling molecule decay to the embedded system dynamics by adding a term of −γC(r̃, k) to
(S14) with γ the signaling molecule decay rate. Going through the same exercise yields:

C(r̃ < 0, k) =

√
2

π

aρ

γ + k2D
− aρ√

2π

√
4D2k2/v2 + 4Dγ/v2 + 1 + 1

(Dk2 + γ)
√

4D2k2/v2 + 4Dγ/v2 + 1
e
r̃v
2D

(
−1+
√

4D2k2/v2+4Dγ/v2+1
)

(S32a)

C(r̃ > 0, k) =
aρ√
2π

√
4D2k2/v2 + 4Dγ/v2 + 1− 1

(Dk2 + γ)
√

4D2k2/v2 + 4Dγ/v2 + 1
e
− r̃v

2D

(
1+
√

4D2k2/v2+4Dγ/v2+1
)

(S32b)

with

Cth =
aρ

π
√
Dγ

arcsin
[(

1 + v2/4Dγ
)−1/2

]
(S33)

as the parameter relationship obtained after an inverse Fourier transform at z = 0 and x = 0. This gives a
profile that propagates as a pulse (Fig. 1B).

In the limit γ � v2/D, we recover the familiar expression Cth = 2aρ/πv. Again, as when we accounted
for signaling molecule decay with cells in 2D and diffusion in 2D, the wave speed approaches zero, but with
γ = (π/4)2/τc where τc = D(πCth/2aρ)2 (Fig. 2 D).
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4 Finite extracellular medium

We consider now what happens when one does not lie in the extreme cases of an extracellular medium of
thickness h � D/v or h � D/v. To examine the case of arbitrary thickness h, we turn to the method of
images (Fig. 3A).

Our boundary conditions for the extracellular medium require the concentration to obey ∂c/∂z = 0
at z = 0, h – signaling molecules cannot diffuse downward or upward once they reach the boundaries. By
invoking the uniqueness theorem, we know that if we can find an arrangement of ”image cells” – each emitting
diffusible signaling molecule at rate a – that satisfies these boundary conditions, then this arrangement of
cells gives the unique solution for the concentration profile inside the extracellular medium. In our case, to
satisfy the boundary condition above, we have image cells at z = ±2jh for j = 1, 2, . . . .

This means that we can find the concentration profiles simply by adding up the contributions from many
discrete sources. Given this knowledge, we seek a relationship like (S11) or (S16) but for arbitrary h. To do
so, we use Green’s function integration and the fact that we can analyze the asymptotic dynamics of cells in
1D to deduce the asymptotic dynamics of cells in 2D, as previously shown.

The concentration – as measured at (r, z = 0, t) – of a burst-like emission by a single point-like source at
(R, 2jh, T ) is given by the Green’s function:

G(r, z = 0, t;R, 2jh, T ) =
e−

(r−R)2+(2jh)2

4D(t−T )

2πD(t− T )
, (S34)

so the Green’s function of a single point-like source in a finite-thickness extracellular medium is (Fig. 3A):

Gh(r, z = 0, t;R, T ) =

∞∑
j=−∞

G(r, z = 0, t;R, 2jh, T ) =
e−

(r−R)2

4D(t−T )

2πD(t− T )

1 + 2

∞∑
j=1

e
−(jh)2

D(t−T )

 . (S35)

We assume a traveling wave solution at speed v meaning that the concentration Cth = c(r = vt, z = 0, t→∞)
is, for a density of cells ρ emitting with rate a, given by:

Cth = c(vt, 0, t→∞) = aρ lim
t→∞

∫ vt

0

dR

∫ t

R/v

dT Gh(vt, 0, t;R, T ) =

aρ

2πD

∫ 0

−∞
dR̃

∫ −R̃/v
0

dt̃

t̃
e−

R̃2

4Dt̃

1 + 2

∞∑
j=1

e−
(jh)2

Dt̃

 (S36)

with the substitutions t̃ = t− T and R̃ = R− vt. This yields:

Cth =
2aρ

πv

1 + 2

∞∑
j=1

∫ −∞
0

dx Ei

[
1

x

(
jhv

2D

)2

+ x

] =
2aρ

πv

∞∑
j=−∞

∫ −∞
0

dx Ei

[
1

x

(
jhv

2D

)2

+ x

]
(S37)

for x = vR̃/4D and Ei[.] the exponential integral function. For h � D/v, (S37) reduces to (S16) because
the term

∑∞
j=1 · · · ≈ 0. Meanwhile, for h� D/v, the sum over j can be turned into an integral, giving the

familiar thin extracellular medium relationship, (S11).
We emphasize that (S37) provides a universal relationship between threshold concentration, wave speed,

cell density, and signaling molecule emission rate for any extracellular medium thickness. By dividing both
sides of (S37) by aρh/πD, we arrive at a relationship between a non-dimensionalized threshold concentration,
πCthD/aρh, and a non-dimensionalized wave speed, vh/2D:

πCthD

aρh
=

2D

vh

∞∑
j=−∞

∫ −∞
0

dx Ei

[
1

x

(
jhv

2D

)2

+ x

]
. (S38)

We plot this relationship in Fig. 3B and see that (S38) is an interpolation between the thin (h� D/v) and
thick (h� D/v) extracellular medium limits.
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5 Asymptotic wave dynamics with Hill function activation

Numerical solutions show traveling waves

As shown in the main text, making the change from a Heaviside function source term to an order-n Hill
function (Θ[c − Cth] → cn/(cn + Cnth)) in (S1) preserves the scaling relationships (S11) and (S16) with a
constant factor as long as the new source terms give traveling wave solutions. We have found numerically
that n ≥ 1 Hill functions indeed give traveling wave solutions, with n = 1, 2, 3 shown for thin and thick
extracellular media in Fig. 4.

To find these solutions, we numerically solved (S1) with a Hill function source term for cells in 1D
with diffusion in one or two dimensions. We used D = 10−10 m2/s and vΘ = 2 µm/s with the threshold
concentration determined by (S16) and (S11) with v → vΘ. In this way, we could compare vn – the wave
speed given by the order-n Hill function – to the Heaviside wave speed vΘ. For our numerics, we imposed a
maximum size step of D/10vΘ for the spatial dimension where the cells live, a maximum step size of D/30vΘ

for the added spatial dimension (when modeling diffusion in 2D), and a maximum time step of D/10v2
Θ.

These step sizes give convergence of the information wave fronts, which we define as the curves rc(t) such
that c(rc(t), t) = Cth. We simulated times tmax ≤ 25D/v2

Θ using Mathematica’s ”NDSolveValue” function
and, when modeling diffusion in 2D, replaced the delta function in (S1) with a Gaussian of width D/10vΘ.
This substitution gives a wave speed (according to an inverse Fourier transform of (S15b) at r̃, z = 0) of
v/vΘ ≈ 0.95. The initiating colony is of size ri = 2D/vΘ, and we assume all cells in the initiating colony
signal at the maximal rate a.

To find the wave speeds noted in (4), we found the location of the wave front, rc(t), and fit a line to
the region of 24D/v2

Θ ≤ t ≤ 25D/v2
Θ. As shown in 4, for n ≥ 2, the wave speeds are very close to vΘ

with significant deviation only for n = 1. Even the concentration profiles are in good agreement with the
Heaviside solution for n ≥ 2.

Connection to Fisher Waves

When the dimensionality of the cell distribution matches the diffusive dimensionality and cell activation is
described by the n = 1 Hill function, one can find the wave speed by using a modified version of the analysis
pioneered by Fisher and Kolmogorov et al. [6, 7]. To see this, we first consider a modified version of (S3c)
with order-n Hill function activation:

0 = D
∂2c

∂r̃2
+ v

∂c

∂r̃
+ aρ

cn

cn + Cnth
. (S39)

The new activation term is mathematically obnoxious as it no longer has a simple spatial interpretation;
with a Heaviside function, for example, one can turn a term like Θ[c − Cth] into a simple function of r̃:
Θ[c − Cth] = Θ[−r̃]. This has an important consequence: instead of solving two differential equations with
constant source terms and matching boundary conditions (as we did for the Heaviside emission), we must
now solve a single differential equation with a difficult non-linear source term. We note that (S39) is, in the
limit n→∞, equivalent to a relay with Heaviside activation.

However, there is a distinct advantage to the new source term: it is one-to-one in c. Thus, we may make

the substitution f = cn

cn+Cnth
=⇒ c = Cth

(
f

1−f

)1/n

, then plug this into eq. (S39) to yield (after some

rearrangement):

0 = v
∂f

∂r̃
+D

[
∂2f

∂r̃2
+

1 + (2f − 1)n

nf(1− f)

(
∂f

∂r̃

)2
]

+
naρ

Cth
f2−1/n(1− f)1+1/n. (S40)

(S40) looks a lot like the traditional Fisher equation,

0 = v
∂f

∂r̃
+D

∂2f

∂r̃2
+
naρ

Cth
f(1− f) (S41)

in that it has a source term that goes to zero at f → {0, 1}, a term D ∂2f
∂2r̃ , and a term v ∂f∂r̃ . We therefore

take Fisher’s approach [6] and think of gradients of f as functions of f rather than x. As such, we define
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F (f) = ∂f
∂x , which allows us to make the substitution ∂2f

∂x2 = ∂F
∂x = ∂f

∂x
∂F
∂f = F ∂F

∂f . This is valid under the
assumption that the concentration profiles are monotone decreasing, which is seen to be the case in Fig. 4.
Under all of the above, we get:

0 = vF +D

[
F
∂F

∂f
+

1 + (2f − 1)n

nf(1− f)
F 2

]
+
naρ

Cth
f2−1/n(1− f)1+1/n (S42)

which gives us a non-linear ODE for F . Of particular note are the boundary conditions for F . Namely,
F (0) = F (1) = 0, which is to say that cells well inside of the wave front are all emitting at their maximal
rate since c� Cth and that cells well beyond the wave front are not emitting at all. Thus, there is no spatial
dependence on the cellular activation, f = cn/ (cn + Cnth), in these regions.

Next, we turn to the traditional method of examining the f → 0 limit. As F → 0, (S42) becomes, to
lowest order in f and assuming F ≈ −λfβ ,

0 = −λv +D

[
λ2βfβ−1 +

1− n
n

λ2fβ−1

]
+
naρ

Cth
f2−1/n−β . (S43)

where λ > 0. One can only obtain a self-consistency relationship between v and Cth/aρ if β = 2 − 1/n.
Otherwise, f2−1/n−β diverges or goes to zero. With this choice, (S43) becomes:

n = 1: 0 = −λv +Dλ2/n+
aρ

Cth
=⇒ λ =

1

2D

(
v ±

√
v2 − 4aρD

Cth

)
(S44a)

n > 1: 0 = −λv +
naρ0

Cth
+O(f1−1/n) =⇒ λ =

naρ

vCth
(S44b)

where in (S44b) we have taken the f → 0 limit. To get a wave speed, v, out of (S44a), we demand that
the quantity under the square root be non-negative, which ensures that λ > 0 is a real number as assumed.
This means v ≥ 2

√
aρD/Cth = 2vΘ – a bound that is very similar to conventional Fisher waves. In the case

of Fisher waves, the minimum wave speed is selected for [6, 7]; the same is true here, as the minimum wave
speed v = 2

√
aρD/Cth is what one finds after numerically solving the 1D dynamics (Fig. 4A). In contrast,

for n > 1, this method yields no such wave speed bound.

6 Assessing the validity of a continuum analysis

Next, we consider the validity of a continuum analysis like (S3b) for studying asymptotic wave dynamics. To
do so, we compare our continuum wave speed relationships, (S11) and (S16), to a simple model of discrete
cells on a lattice in 1D (Fig. 5A). We refer to this as the discrete lattice model. We briefly discuss the results
of this lattice model below, and show that it agrees with the continuous model when the separation between
cells, d, is much less than the characteristic length D/v. This heuristic also holds for cells in two and three
dimensions, and for cells scattered randomly according to a Poisson process.

To start, we first calculate the three-dimensional concentration (SI units of 1/m3) generated by a continu-
ously emitting point source emitting at a rate a at a distance x after a time t. For diffusion in m dimensions,
we will refer to this concentration as c•,m(x, t). For diffusion in m = 2 dimensions, we will consider a
semi-infinite environment in order to recapitulate (S16), which holds for cells in one (two) dimensions with
diffusion in a semi-infinite two-dimensional (three-dimensional) space. These relationships are:

c•,1(x, t) =
a

h2

∫ t

0

dT
e−x

2/4DT

(4πDT )1/2
=

a

h2

√
t

πD

(
e−x

2/4Dt −
√
πx2

4Dt
erfc

√
x2

4Dt

)
(S45a)

c•,2(x, t) =
2a

h

∫ t

0

dT
e−x

2/4DT

4πDT
= − a

2πhD
Ei

(
− x2

4Dt

)
(S45b)

with erfc[.] the complementary error function and Ei[.] the exponential integral. We have assumed one-
dimensional diffusion takes place in a narrow channel with cross-sectional area h2 and two-dimensional
diffusion takes place in an extracellular medium of thickness h.
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Next, we assume the cells in this lattice model perform a signaling relay with Heaviside activation: once
the local concentration exceeds a threshold Cth, they participate in the signaling molecule emission at a
rate a. If the resulting wave speed is v, then a cell at a distance x̃ = −jd from the wave front has been
emitting for a time jd/v. That cell then creates a concentration cj,m = c•,m(jd, jd/v) at (x̃, t) = (0, 0). The
full concentration at the wave front is Cth by definition, and it is equal to the sum of the concentrations
created by all cells behind the wave front. This gives us the following self-consistency relationships between
the threshold concentration, Cth; wave speed, v; diffusion constant, D; and cell separation d:

diff. in 1D: Cth =

∞∑
j=1

cj,1 =
a

vh2

∞∑
j=1

√
j
vd

πD

[
e−jvd/4D −

√
j
πvd

4D
erfc

(√
j
vd

4D

)]
(S46a)

diff. in 2D: Cth =

∞∑
j=1

cj,2 = − a

2πhD

∞∑
j=1

Ei

(
−j vd

4D

)
. (S46b)

(S46a) and (S46b) provide relationships analogous to (S11) and (S16). In fact, in the limit vd/4D � 1, the
sums in these relationships are well-approximated by an integral over j from j = 0 to ∞. In this limit, with
ρ = 1/d, (S46a) becomes Cth = aρD/h2v2, the one-dimensional analog of (S11); similarly, (S46b) simplifies
to Cth = 2aρ/πhv, the one-dimensional analog of (S16). (One can turn (S46b) into an integral from j = 0 to
∞. The integrand diverges at j = 0, but is still integrable because the divergence is logarithmic.) Therefore,
we can see that the continuum limit is valid when the separation between cells is d� 4D/v. We have shown
the approach to the continuous theory limit in Fig. 5B/C.

7 Initiation dynamics

In this section, we demonstrate the initiation time relationships discussed in the main text using Green’s
function integration. To do so, we write down the Green’s functions Gn,m(r, t;R, T ) describing diffusion of
molecules in m dimensions released by cells in n dimensions at (R, T ) and measured by cells at (r, t). For
n 6= m, we assume a semi-infinite environment. For cells in 1D and diffusion in 1D, we assume a narrow
channel of width h in both dimensions perpendicular to the channel. For cells in 1D or 2D and diffusion in
2D, we assume an extracellular medium of thickness h. We calculate the Green’s functions for cells in two
dimensions by integrating over a ring of diffusive sources at radius R; we calculate the Green’s functions for
cells in three dimensions by integrating over a shell of diffusive sources at radius R. Below, I0[.] is the zeroth
I-Bessel function and sinh[.] is the hyperbolic sine function. The Green’s functions are

G1,1(r, t;R, T ) = e−(r−R)2/4D(t−T )/h2
√

4πD(t− T ) (S47a)

G1,2(r, t;R, T ) = e−(r−R)2/4D(t−T )/2πhD(t− T ) (S47b)

G2,2(r, t;R, T ) = R I0 [rR/2D(t− T )] e−(r2+R2)/4D(t−T )/2hD(t− T ) (S47c)

G2,3(r, t;R, T ) = R I0 [rR/2D(t− T )] e−(r2+R2)/4D(t−T )/2
√
πD3/2(t− T )3/2 (S47d)

G3,3(r, t;R, T ) = R sinh [rR/2D(t− T )] e−(r2+R2)/4D(t−T )/r [πD(t− T )]
1/2

. (S47e)

One-by-one, we study the initiation time for these systems by studying the self-consistency relationship for
the threshold concentration Cth and initiation time tinit for a given initial signaling colony of size ri:

Cth = aρ

∫ tinit

0

dT

∫ ri

0

dR Gn,m(ri, tinit;R, T ) = aρ

∫ tinit

0

dT

∫ ri

0

dR Gn,m(ri, 0;R,−T ) (S48)

where the logic here is that the signaling wave initiates when the threshold concentration at the edge of
the initial signaling colony exceeds Cth. At tinit, cells outside the colony participate in the signaling and
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birth a diffusive wave with dynamics we have already studied extensively. This scenario assumes the cells
do not move – that the cell density is fixed. In the case of neutrophils, this means that we are ignoring the
possibility that a cell initially located off the target randomly encounters the target and starts signaling.
Unlike the asymptotic dynamics, the difference in diffusive and cell dimension is not the salient parameter
for understanding diffusive wave initiation. Rather, the initiation dynamics are determined solely by the
dimension of the diffusive environment.

We now seek to derive the equations in the main text which show the relationship between the wave
initiation time tinit and initial signaling colony size ri for various system dimensionalities when ri � D/v or
ri � D/v. The full relationships of tinit versus ri for various system dimensionalities are plotted in Fig. 3
of the main text.

Initiation with cells in 1D and diffusion in 1D

With cells and diffusion in 1D, we can perform the integral (S48) directly (for cells in 1D, we consider the
bounds on the integral over R to be −ri to ri) and get a closed form relationship:

Cth =
aρr2

i

h2D

[(
Dti/πr

2
i

)1/2
e−r

2
i /Dti − 1 +

(
1 +Dti/2r

2
i

)
erf
(
r2
i /Dti

)1/2]
. (S49)

In the limit where ri � Dti, we get that ti = 2D/v2 by using the asymptotic relationship (S11). This is the
minimum initiation time, tmin,1,1

tmin,1,1 = 2D/v2 (S50)

and it tells us that ri � Dti is equivalent to ri � D/v – we can appeal to the natural length and time
scales from our asymptotic analysis. We will soon see that this is also the minimum initiation time for cells
in 2D with diffusion in 2D and cells in 3D with diffusion in 3D; this is the case because, as in the asymptotic
analysis, we’ve essentially ignored the curvature of the target when calculating the ri � D/v initiation time.

In the opposite limit – ri � D/v – we can Taylor Expand (S49) and get

ri � D/v : tinit ≈ (πD/4v2)(D/vri)
2, (S51)

thus validating our equations in the main text.

Initiation with cells in 1D and diffusion in 2D

Next, we consider the self-consistency equation (S48) with n = 1,m = 2. As before, we first consider the
limit of ri � Dv and recover (through (S16)):

tmin,1,2 = 4D/πv2 (S52)

while for ri � Dv,

ri � D/v : log
(
Dtinit/r

2
i

)
≈ 2D/vri. (S53)

Initiation with cells in 2D and diffusion in 2D

Moving on, we consider the case in the main text of cells in 2D with diffusion in 2D. To perform the
integration of (S48) in this case, it is easiest to rewrite the Bessel function in (S47c) in integral form, then
integrate first over time. With ri � D/v, such an analysis gives a minimum initiation time of

tmin,2,2 = 2D/v2. (S54)

In the opposite limit of ri � D/v,

ri � D/v : log(4Dtinit/r
2
i ) ≈ (2D/vri)

2
(S55)

as noted in the main text.
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Initiation with cells in 2D and diffusion in 3D

Now, we will see that diffusive waves do not always initiate in 3D environments. We consider the integral in
(S48), but take tinit →∞ which gives us a maximum concentration Cmax,2,3 at r = ri of:

Cmax,2,3 = 2aρri/πD (S56)

Thus, by (S16), if ri < D/v, Cmax,2,3 < Cth and the signaling wave cannot initiate. Examining (S48) for
ri ≈ D/v reveals

ri ≈ D/v : tinit ≈
(
πD/16v2

)
(vri/D)4(vri/D − 1)−2 (S57)

while

tmin,2,3 = 4D/πv2. (S58)

Initiation with cells in 3D and diffusion in 3D

Finally, we consider initiation with cells in 3D. Again, we consider the limit tinit →∞ in (S48) to get:

Cmax,3,3 = aρr2
i /3D. (S59)

Thus, waves do not initiate below a critical ri. However, here, the critical value is ri =
√

3D/v. As with 1D
cells/diffusion and 2D cells/diffusion, we recover

tmin,3,3 = 2D/v2 (S60)

in the limit ri � D/v.

8 Wave initiation with Hill function activation

We now characterize the effect of Hill function-like activation on the signaling wave initiation, as we have
done already for asymptotic dynamics. To do so, we consider a simple situation: cells within a volume of size
ri signal with some rate a while neighboring cells outside of the initial signaling volume (i.e., with r > ri)
signal with a concentration-dependent rate of acn/(cn + Cnth). These calculations give us an idea of how
sensitive the initiation dynamics are to the details of cell activation. As we will show, the initiation dynamics
with Hill function activation are a good approximation of the initiation dynamics for Heaviside activation
when for relatively small n. One can imagine that such a situation may be relevant in, e.g., the neutrophil
swarming experiments presented in the main text [8]. Here, cells in direct contact with a foreign protein
begin signaling their neighbors, which respond to the presence of the signaling molecule by participating in
the emission themselves. This analysis again treats the cell distribution as static and ignores the possibility
that neutrophils may randomly encounter the target.

Wave initiation with Hill function activation, cells in 1D, and diffusion in 1D

For cells in 1D with diffusion in 1D, the scenario described above can be described with the following equation
of motion:

∂c

∂t
= D

∂2c

∂r2
+
aρ

h2
Θ[ri − |r|] +

aρ

h2
Θ[|r| − ri]

cn

cn + Cnth
. (S61)

One can non-dimensionalize (S61) by dividing all the concentration scales by Cth, dividing all the length
scales by lc =

√
h2CthD/aρ, and dividing all the time scales by τc = h2Cth/aρ, thusly arriving at

∂(c/Cth)

∂(t/τc)
=
∂2(c/Cth)

∂(r/lc)2
+ Θ

[
ri − |r|
lc

]
+ Θ

[
|r| − ri
lc

]
(c/Cth)n

(c/Cth)n + 1
, (S62)
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which shows that lc =
√
h2CthD/aρ is the relevant length scale and τc = h2Cth/aρ is the relevant time scale.

(In the n → ∞ limit of Heaviside activation, τc = D/v2 and lc = D/v.) As with Heaviside activation, we
refer to the initiation time tinit as the time at which c(ri, tinit) = Cth. To find tinit, we numerically solve (S61)
using the methods discussed in Section 5. This gives the relationship of tinit/τc as a function of ri/lc and
n shown in Fig. 6A. As seen in Fig. 6A, even low-order (n = 1, 2, 3, 5, 10) Hill functions exhibit relatively
large (compared to τc) initiation times for ri � lc.

Wave initiation with Hill function activation, cells in 2D, and diffusion in 2D

Next, we study the initiation dynamics above with cells and diffusion in two dimensions. Here, the dynamics
are governed by the following equation of motion:

∂c

∂t
= D

(
∂2c

∂r2
+

1

r

∂c

∂r

)
+
aρ

h
Θ[ri − r] +

aρ

h
Θ[r − ri]

cn

cn + Cnth
. (S63)

Now that we are considering the initiation dynamics, we must include terms like D(∂c/∂r)/r, which we could
previously neglect in our asymptotic analysis of cells in 2D with diffusion in 2D. The curvature of the initial
signaling colony matters when calculating initiation times. Note that (S63) can be non-dimensionalized
in the same spirit as (S62) with characteristic length scale lc =

√
hCthD/aρ and characteristic time scale

τc = hCth/aρ. As with cells and diffusion in 1D, we numerically solve (S63) using the methods discussed in
Section 5 to find tinit such that c(ri, tinit) = Cth. Here again, we see that even low-order (n = 2, 3, 5, 10) Hill
functions exhibit relatively large (compared to τc) initiation times for ri � lc.

Wave initiation with Hill function activation, cells in 3D, and diffusion in 3D

Finally, we study signaling wave initiation properties of a 3D environment by studying wave initiation with
cells and diffusion in 3D. To do so, we numerically solve the 3D analog of (S63),

∂c

∂t
= D

(
∂2c

∂r2
+

2

r

∂c

∂r

)
+ aρΘ[ri − r] + aρΘ[r − ri]

cn

cn + Cnth
, (S64)

which can be non-dimensionalized in the same spirit as (S62), but with characteristic length scale lc =√
CthD/aρ and characteristic time scale τc = Cth/aρ. We solve (S64) using the methods discussed in

Section 5 to find tinit such that c(ri, tinit) = Cth. This gives the numerically determined relationship of tinit

as a function of ri and n shown in Fig. 6C. We see that even low-order (n = 2, 3) Hill functions exhibit
relatively large (compared to τc) initiation times for ri � lc. Larger yet Hill functions (n = 5, 10) can lead
to very large initiation times (compared to τc) even for ri ≈ lc.

In fact, n > 3 activation functions can result in initiation failures when aρr2
i /3DCth � 1. To see

that this is the case, we treat (S64) in the steady state (∂c/∂t = 0) and use a perturbative analysis,
assuming cn/(cn + Cnth) � 1, in which case cn/(cn + Cnth) ≈ (c/Cth)

n
. In such a situation, we can write

c(r) ≈ c0(r)+c1(r) as the sum of a dominant contribution c0 that is generated by cells within ri and satisfies

0 = D

(
∂2c0
∂r2

+
2

r

∂c0
∂r

)
+ aρΘ[ri − r] (S65)

and a small correction c1 that is generated by cells beyond ri and obeys

0 = D

(
∂2c1
∂r2

+
2

r

∂c1
∂r

)
+ aρ

cn0
cn0 + Cnth

Θ[r − ri] ≈ D
(
∂2c1
∂r2

+
2

r

∂c1
∂r

)
+ aρ

(
c0
Cth

)n
Θ[r − ri]. (S66)

We can solve (S65) directly to arrive at:

c0(r < ri) =
aρ

2D

(
r2
i − r2/3

)
, c0(r > ri) =

aρr3
i

3Dr
(S67)

where the form of c0(r > ri) is reminiscent of solving for the potential of a uniformly charged sphere in
electrostatics [9]. If aρr2

i /3DCth = ε� 1, we can calculate the perturbation c1. By (S66), c1 obeys
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0 = D

(
∂2c1
∂r2

+
2

r

∂c1
∂r

)
+ aρ

(
c0
Cth

)n
Θ[r − ri] = D

(
∂2c1
∂r2

+
2

r

∂c1
∂r

)
+ aρ

(εri
r

)n
Θ[r − ri] (S68)

so that

c1(r < ri) =
aρr2

i ε
n

D(n− 2)
, c1(r > ri) =

aρεn

D(n− 3)

[
r3
i

Dr
+

r2

n− 2

(ri
r

)n]
. (S69)

For c1 to be a sensible perturbative correction, we require it to be positive (since we are adding source terms
to c0 to get c1) and much smaller than c0. This is the case when n > 3. In this limit, it is smaller than c0
by roughly a factor of εn – a very small correction. Thus, n > 3 activation functions can give steady-state
concentration profiles that do not trigger waves in a three-dimensional diffusive environment.

In Fig. 6C, we can indeed see that small n activation functions show less appreciable increases in the
initiation time as ri decreases.

9 Green’s function integration for information wave front finding

Having enumerated the Green’s functions in the previous section, we now explain our numerical integration
method used in the main text. To find the information wave front for cells in n dimensions and diffusion
in m dimensions with continuous emission and Heaviside activation, one is looking for a curve rc(t) that
defines the wave front: Cth = c(rc(t), t). Thus, with an initial signaling colony of size ri, one must solve the
problem:

Cth = aρ

∫ t

0

dT

∫ max[ri,rc(T )]

0

dR Gn,m(rc(t), t;R, T ). (S70)

We do so by first finding the initiation time according to (S48), then finding rc(t) at discrete times, incre-
menting in steps of ∆t (we use ∆t = D/10v2 in the main text and Fig. 7, which gives convergence of the
information wave front). We use linear interpolation between these points to define a continuous curve rc(t).

As an example of this method, we have plotted various information wave fronts in Fig. 7. These wave
fronts assume different values of the diffusion constant D and the threshold concentration Cth is fit to give
the experimentally observed wave initiation time in ref. [8]. As we can see from the plot, there is a small
range of values for D for which one can construct an information wave front that agrees with the data (Fig.
7 A). These values of D are consistent with the diffusion constant of small molecules like LTB4. Values
of D differing significantly from this range give information wave fronts that differ significantly from the
experimentally observed wave front.

10 Simple diffusion model

In the main text, we showed the qualitative differences between a signaling relay, in which cells emit one
type of signaling molecule in response to the local concentration of the same molecule, and a simple diffusive
signaling model, in which cells within some volume signal surrounding cells, which do not participate in the
signaling at all. Here, we explicitly calculate some of the properties of a simple diffusion model. We consider
cells in 2D, with a region of cells of size ri at z = 0 in which the cells emit diffusible signaling molecules at
rate a. In equation form,

∂c

∂t
= D

(
∂2c

∂r2
+

1

r

∂c

∂r
+
∂2c

∂z2

)
+ aρδ(z)Θ[ri − r] (S71)

describes the concentration in space and time. To calculate concentrations, one can either propagate this
equation directly or, as we do in the main text, integrate Green’s functions in a manner similar to that
described above. For cells in 2D with diffusion in 3D (assuming a semi-infinite environment), this gives
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c(r, z = 0, t) = aρ

∫ t

0

dT

∫ ri

0

dR G2,3(r, 0;R,−T ) (S72)

as the concentration at z = 0. One can take gradients according to ∂c/∂r.
In the limit r � ri, the signaling colony looks like a point source, meaning that (S72) can be simplified

according to
∫
dR G2,3 ≈ r2

i e
−r2/4DT /

(
4
√
πD3/2T 3/2

)
. Thus, we get that

r � ri : c(r, z = 0, t) ≈ aρr2
i

2
√
πD3/2

∫ t

0

dT
e−r

2/4DT

T 3/2
=
aρr2

i

2Dr
erfc

(
r2

4Dt

)1/2

(S73)

which, in the limit of r2 � Dt, gives

r � ri,
√
Dt : c(r, z = 0, t) ≈ aρr2

i

Dr
erfc

(
r2

4Dt

)1/2

≈ aρr2
i

r2

√
t

πD
e−r

2/4Dt (S74)

which shows that the concentration profiles of simple diffusive models indeed have very shallow, Gaussian
(with 1/r2 adjustments) tails.

Similarly, for cells in 2D with diffusion in 2D,

c(r, t) =
aρ

h

∫ t

0

dT

∫ ri

0

dR G2,2(r, 0;R,−T ) (S75)

describes the concentrations. In the same limits (r � ri,
√
Dt), we get

r � ri,
√
Dt : c(r, t) ≈ aρr2

i t

hr2
e−r

2/4Dt (S76)

as the concentration. Here again, we see that the concentration profiles are shallow Gaussian with 1/r2

adjustments. We plot the resulting gradients in this thin extracellular medium limit against the gradients
from a comparable relay model in Fig. 8B.

11 Quantifying the effects of chemotaxis

To understand the effects that chemotaxis has on our model, we consider cells in 2D. The results below can
be adopted to study cells in 3D or 1D, though the dimensionality of the cells has no effect on the asymptotic
signaling wave speed.

We consider the same signaling motif as in the main text – that cells emit a diffusible molecule with rate
a once the local concentration of the same molecule exceeds Cth – but now consider a time-varying density.
Our model is a coarse-grained one; we study the case of cells moving toward the origin (radially inward) with
a mean speed u once the local concentration exceeds Cth. This is a toy model of neutrophil chemotaxis and
is, of course, an approximation because the mean radial speed will depend on – among many other factors
– the strengths of the gradients the cells use for chemotaxis. In full, for cells in any number of dimensions
and within this model,

∂c(r, t)

∂t
= D∇2c+ aρ(r, t)Θ[c− Cth] (S77a)

∂ρ(r, t)

∂t
= ∇ · (ur̂ρ) Θ[c(r, t)− Cth] (S77b)

where r̂ is the unit vector pointing radially outward. For cells in 2D,

∂c(r, z, t)

∂t
= D

(
∂2c

∂r2
+

1

r

∂c

∂r
+
∂2c

∂z2

)
+ aρ(r, t)δ(z) (Θ[c− Cth]Θ[r − ri] + Θ[ri − r]) (S78a)

∂ρ(r, t)

∂t
=
u

r

∂ (rρ)

∂r
Θ[c− Cth]Θ[r − ri] (S78b)
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which are the coupled equations we will study going forward. Note that we have included a source term for
cells within the initial signaling colony of radius ri.

We again assume a signaling wave propagates at outward with speed v. In this case, the cell density
beyond the target is described by:

ρ(ri < r < vt, t) = ρ0
1 + ut/r

(1 + u/v)2
(S79)

which one can derive by assuming an outward propagating wave with speed v, a group of inward chemotaxing
cells with speed u, and an initially uniform density of cells ρ0. To do so, we consider the signaling wave
passing a cell at radius R and time t − T . At a later time t, the cell initially at R has moved inward a
distance uT . Thus, the density at r = R−uT and t is ρ(r, t) ∼ ρ0R/r = ρ0(1 +ut/r)/(1 +u/v). Integrating
this density and demanding conservation of cell number gives (S79).

Effect on asymptotic wave speed relationships

Before numerically solving (S78a) and (S78b) to show the precise effects chemotaxis has on the concentration
profiles, concentration profiles, and information wave fronts, we calculate the effect it has on the asymptotic
wave speed.

To do so, we first show that only cells within ≈ D/v of the wave front contribute to the concentration at
the wave front. To contribute to the concentration at the wave front, you need to be within about a diffusion
length of it. If the wave front passed a time t ago, that means being within δr ≈

√
Dt. However, we know

that t = δr/v, so δr ≈ D/v – the characteristic length scale of diffusive waves.
As only cells within ≈ D/v of the wave front contribute to concentration at the wave front, we are

considering cell densities on the order of:

ρ(r = vt−D/v, t) = ρ0
1 + ut/r

(1 + u/v)2
≈ ρ0

1 + ut/(vt−D/v)

(1 + u/v)2
. (S80)

In the asymptotic regime of vt� D/v, we get

ρ ≈ ρ0/(1 + u/v) (S81)

meaning the density of cells that contribute to the wave front propagation is approximately constant. There-
fore, we may modify the analysis that lead to (S11) and (S16) to get two new asymptotic equations for the
wave speed:

h� D/v : Cth =
aρ0D

hv2(1 + u/v)
(S82)

and

h� D/v : Cth =
2aρ0

πv(1 + u/v)
. (S83)

For neutrophils and the information wave front presented in the main text (reproduced in Fig. 9), 1 +u/v ≈
1 + (0.3 µm/s)/(2 µm/s) = 1.15 and the effect of chemotaxis on the asymptotic dynamics is small.

Effect on transient dynamics

To study the effect of chemotaxis on the transient dynamics of neutrophil swarming, we utilize a modified
version of our Green’s function method reported in Section 9 to propagate (S78a) and (S78b). One can
do so using the same algorithm described previously, but with the following modifications with rc(t) the
information wave front:

• For radii r at time t satisfying ri < r < rc(t), find the time t∗(r, t) at which the neutrophils at radius
r at time t began chemotaxing inward. This time satisfies the relationship rc [t∗]− r = u(t− t∗).
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• The density at r is therefore given by the ratio of rc [t∗] to r with an additional factor of one plus the
ratio of the inward advection speed to the outward-propagating wave speed at rc[t

∗] and t∗:

ρ(r, t) = ρ0
rc [t∗] /r

1 + u
(
∂rc[t∗]
∂t

)−1 . (S84)

This is analogous to (S79) and reduces to (S79) in the asymptotic limit of rc(t) = vt.

• We assume that once the cells reach the target edge, they pack inward at a maximum density, in
units of the cell diameter dc, of ρmax = 1/d2

c . For the experiments we discuss [8], this means that
ρmax ≈ 10 ρ0.

With all of these adjustments, and using the reported value of u ≈ 20 µm/s in [8], we arrive at the navy
information wave front in Fig. 9A. This curve is a fit by eye to the experimental information wave front and
has fit parameters of D = 1.5×10−10 m2/s and v = 1.73 µm/s, corresponding to a threshold concentration of
Cth/aρ0 = 2

πv(1+u/v) ≈ 3.07×105 s/m. For reference, the black curve in Fig. 9A is the information wave front

from Fig. 4 of the main text, for which D = 1.25× 10−10 m2/s and Cth/aρ0 = 2
πv(1+u/v) ≈ 3.67× 105 s/m.

Thus, including chemotaxis only negligibly affects our fit values.
To compare the two models in Fig. 9A, we plot both the concentration profile (Fig. 9B) and the

concentration gradient (Fig. 9C) for a given critical radius (the dashed line in Fig. 9A). When one accounts
for chemotaxis, the concentration profile near the target steepens relative to a model with a stationary cell
distribution. We can therefore see that chemotaxis itself can lead to steeper concentration profiles, though
the model we have explored here only accounts for an average inward drift of the cells.
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Figure 1: A: Signaling molecule concentration profiles for cells in 2D and diffusion in 2D. Here, we assume
continuous emission and no signaling molecule decay (left panel), continuous emission and signaling molecule
decay (middle panel), or pulsed emission with no signaling molecule decay (right panel). The decay constant
for the middle panel is γ = v2/4D while the pulse width is τ = 2D/v in the right panel. For the left, center,
and right panels, the threshold concentration is calculated according to (S11), (S27), and (S24), respectively.
As discussed in the main text, the concentration profiles flatten (with respect to the profile generated by
continuous emission without decay) inside the wave front once decay or pulsed emission is accounted for. B:
Signaling molecule concentration profiles for the same cases as in A, but with diffusion in 3D. Compared to
the case of continuous emission without decay, the concentration profiles flatten (when accounting for decay)
or have a local maximum (in the case of pulsed emission).
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Figure 2: A: Wave speed v for square pulse emission by cells in 2D with diffusion in 2D as a function of pulse
width τ . We normalize v by the τ →∞ wave speed of (aρD/Cth)1/2. At τ = τc = hCth/aρ, the wave speed
goes to zero, and for shorter pulses there is no wave-like solution. B: Wave speed for continuous emission by
cells in 2D with diffusion in 2D, accounting for signaling molecule decay at rate γ. For γ = tmin, 2D = 1/2τc,
with τc as in panel A, the wave speed goes to zero and there are no wave-like solutions for larger decay
rates. C: wave speed v as a function of pulse width τ for square pulse emission of a signaling molecule
by cells in 2D with a 3D diffusive environment. At τ ≈ 1.53τc = 1.53D(2Cth/πaρ)2 (vertical dashed line),
there is a minimum wave speed of v ≈ 0.6 × (2aρ/πCth) (horizontal dashed line), unlike with 2D diffusion.
Importantly, τ ≈ 1.53τc is longer than the minimum initiation time of 4τc/π. Thus, for values of τ between
these two, cells can reach the threshold concentration but cannot propagate a traveling information wave.
D: Wave speed v as a function of decay rate γ for cells in 2D with diffusion in 3D. At γ = (π/4)2/τc, with
τc as in C, the wave speed goes to zero.
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h. In order to calculate the concentration with the appropriate boundary conditions of ∂c/∂z at z = 0, h, one
need only add the contributions from ”image cells” at z = ±2jh for j = 1, 2, .... B: Universal curve (black
line) showing non-dimensionalized wave speed (vh/2D) versus non-dimensionalized threshold concentration
(πCthD/aρh). In the limit of vh/2D � 1, we recover the familiar 3D scaling law of (S16) (blue line). In the
limit of vh/2D � 1, we get the 2D scaling law of (S11) (red line).
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Figure 4: Wave speeds and profiles with Hill function activation. A: Numerical simulation of cells in 1D with
diffusion in 1D and Hill function activation. The details of the simulation are described in the Supplementary
Information text. For n ≥ 2, we see good agreement between the Heaviside theory (black lines) and the
Hill function numerics (red dots). Snapshots are shown at t/τc = 5, 10, 15, 20, 25 where τc = h2Cth/aρ
equals D/v2

Θ, the characteristic time scale for Heaviside activation. Note that the x-axis is scaled by the
characteristic length lc = h(DCth/aρ)1/2, which is the length scale for Heaviside activation with a delta
function source, D/vΘ. In the insets, we display the wave speed for the order-n Hill function, vn, compared to
the Heaviside activation wave speed, vΘ = (aρD/h2Cth)1/2. Our fit to the n = 1 data gives vn=1 ≈ 1.93vΘ,
but we have shown in Section 5 that vn=1 = 2vΘ, meaning that the wave speeds in the insets are slight
underestimates. B: Numerical simulation of cells in 1D and diffusion in 2D with Hill function activation.
For n ≥ 2, the wave speed and concentration profiles (blue dots) agree well with the Heaviside theory
(black lines). The theory plotted here assumes a delta-function-like source with respect to the extra diffusive
dimension, as in (S12). The numerics, however, use a very narrow (H = lc/10) Gaussian source. Here, the
characteristic length lc = πhDCth/2aρ equals D/vΘ, the length scale for Heaviside activation. The x-axis
is scaled by the same quantity. Snapshots are shown at t/τc = 5, 10, 15, 20, 25 with the characteristic time
τc = D(πhCth/2aρ)2 equal toD/v2

Θ, the time scale for Heaviside activation. In the insets, we display the wave
speed for the order-n Hill function, vn, compared to the Heaviside activation wave speed, vΘ = 2aρ/πCth.
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2D.
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the experimental chemotactic index data from Reategui et al. (color plot) [8]. Here, we take ri = 100 µm,
though the target in the experiment is a smaller, oblong object. The size of the target has no effect on
the convex shape of the information wave front. The black line is reproduced from the main text and
has D = 1.25 × 10−10 m2/s and asymptotic wave speed v ≈ 1.7 µm/s (the threshold concentration is
Cth/aρ = 2/πv). This diffusion constant is consistent with a small molecule like LTB4, and the resulting
information wave dynamics can be made to fit the information wave front – both the initiation time of ≈ 200 s
and the transient dynamics. Other choices of parameters (green: D = 1.8×10−10 m2/s, v ≈ 2.3 µm/s, navy:
D = 0.8 × 10−10 m2/s, v ≈ 1.3 µm/s) give information wave fronts that are also roughly consistent with
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dashed) diffusion constant, an information wave with the correct initiation time does not have the correct
transient dynamics. The wave speeds for these larger and smaller diffusion constants are, respectively,
v ≈ 11 µm/s and v ≈ 0.3 µm/s.
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√
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model at t = 20D/v2. Thus, hCth,relay/aρ = 25 s while hCth,diff./aρ ≈ 0.25 s. B: Snapshots of radial
gradients at various times for both the relay (black) and simple diffusion (grey) models. The dashed vertical
lines indicate the location of the wave fronts. For short times (left) the relay’s information wave front lags
behind the simple diffusion model’s information front, though it later catches up (middle) and passes it
(right). At all times, for cells just inside the wave front, the relay model creates gradients that are orders of
magnitude larger than does simple diffusion.
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Figure 9: A: Information wave fronts for cell signaling relays with (navy) and without (black) chemotaxis.
The information wave fronts are overlaid on the experimental chemotactic index data from Reategui et al.
(color plot) [8]. The black curve is reproduced from the main text. Both models can account for the observed
information wave fronts by fitting two parameters: the signaling molecule diffusivity, D and the threshold
concentration, Cth. B/C: Concentration profiles (B) and gradients (C) generated by the signaling relay
models in A. The wave front is indicated in all panels by the dashed line, and the concentration profiles and
gradients are plotted at the times such that the threshold concentration is equal to the concentration at the
wave front. When one accounts for chemotaxis, the concentration profiles near the target steepen relative
to models without chemotaxis.
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