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1.1 Linkage attacks

Linkage attacks can be categorized in three cases. Case I: A perfect auxiliary data is linked to a

perfect database to reveal the identity or the preferences of the owner of the auxiliary data. Case

II: A perfect auxiliary data is linked to a noisy database to reveal the identity or the preferences of

the owner of the auxiliary data. Case III: A noisy auxiliary data is linked to a noisy database to

reveal the identity or the preferences of the owner of the auxiliary data. See SI Figure 1.
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Supplementary Figure 1: Different cases of linkage attacks.
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1.2 Similarity and Sparsity

Following Narayanan and Shmatikov [1], one can define similarity between two individuals (indi

and ind j) in a phenotype dataset as the total number of genotypes they share normalized by the total

number of genotypes inferred for both from the functional genomics data. This could be formalized

as:

Sim(indi, indj) =
∑k Sim(indk

i , indk
j )

|supp(indi)∪ supp(indj)|

Sim(indk
i , indk

j ) is 1 if kth genotype on the functional genomics data is the same for both individuals

and 0 otherwise. Then a database D is (ε,δ )−sparse with respect to the similarity measure Sim if

Pr[Sim(indi, indj)> ε ∀ indi 6= indj]≤ δ

As in the case for Netflix preference dataset, we found that any two individual does not share

similarity more than 20% (SI Figure 2).

Supplementary Figure 2: Sparsity of the phenotype dataset with respect to similarity.

1.3 Sensitivity and Precision

We defined the sensitivity and the precision of a set of genotypes called from a functional ge-

nomics experiments or from the DNA extracted from a coffee cup as the measured of how much
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of the correct genotypes captured given the individual’s full genotype profile and how much of

incorrect genotypes captured (noise), respectively (SI Figure 2).

called variants gold standard

FP TP FN

sensitivity = TP / ( TP + FN )

precision   = TP / ( TP + FP ) 

Supplementary Figure 3: Sensitivity and precision.

1.4 Experimental Protocols

1.4.1 DNA extraction protocol from coffee-cup lids

We used the QIAamp DNA Investigator Kit from QIAGEN. This kit is design to purify DNA

from forensic and human identity samples. We first swabbed the surface of the coffee-cups using

a cotton swab dipped into 1 µliter purified water. We followed the QIAamp DNA Investigator Kit

protocol suggested for isolation of DNA from surface swab samples without modification. The

final amount of DNA isolated from coffee-cups were around 0.9 to 1 ng.

1.4.2 Whole genome amplification

Due to the very low starting amount of purified DNA, we used a single-cell whole genome

amplification kit (REPLI-g Single Cell Kit), which allows uniform PCR amplification from single

cells or limited sample materials to use in next-generation sequencing applications. We then used

Monarch PCR and DNA Cleanup Kit to purify the DNA from PCR reactions.
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1.4.3 Illumina sequencing

Amplified DNA samples from coffee-cups as well as the purified PCR-free DNA from blood

(as gold standard) were sent to Yale Center for Genome Analysis for Illumina Whole Genome Se-

quencing. Coffee cup samples were sequenced in 10x coverage and blood samples were sequenced

in 30x coverage.

1.4.4 Illumina genotyping arrays

We used Infinium OmniExpressExome-8 BeadChip for the amplified DNA samples from coffee

cups. Infinium OmniExpressExome-8 arrays surveys tag SNPs located on exons from all three

HapMap phases, which includes 273,000 exonic markers. Each SNP is represented on these chips

by on average 30 beads. Yale Center for Genome Analysis performed the BeadChip protocol and

calculated the call rates using Illumina BeadStudio.

1.4.5 Nanopore Sequencing

Due to the low quality DNA obtained from coffee-cups, we did not perform size selection of

fragments from the PCR-based libraries we obtained using Oxford Nanopore (ONT) rapid se-

quencing kit. Total of 12 libraries from 6 coffee cups per individual were barcoded using the ONT

rapid barcoding kit. Libraries were sequenced across an individual R9.4 flow cell on a single Min-

ION instrument. A total of 844,599 reads were successfully base-called and demultiplexed using

Guppy. The recommended MinION run-time was 48 h, therefore run was terminated after 48 h.

SNP calling is performed using Nanopolish software.

1.4.6 RNA extraction protocol and RNA-Seq

Blood samples from individuals were sent to Yale Center for Genome Analysis for RNA purifi-

cation and Illumina high coverage total RNA-Seq sequencing following the suggested protocols
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by Illumina. Total RNA-Seq data yielded more genotypes than the gEUVADIS data. To do a

fair comparison in linkage attacks, we downsampled the total number of captured variants to the

average number of variants observed in gEUVADIS dataset.

1.5 Mapping and Genotyping Statistics for Coffee-cup Samples

Supplementary Table 1: Mapping Statistics for WGS data.

Sample Name # of Total Reads Percentage of Mapped Reads

Ind1-Cup1 127,850,309 82.36

Ind1-Cup2 137,723,180 82.14

Ind1-Cup3 160,138,265 61.50

Ind1-Cup4 215,379,662 75.98

Ind1-Cup5 157,769,539 83.56

Ind1-Cup6 121,329,654 83.54

Ind2-Cup1 207,414,742 83.58

Ind2-Cup2 151,139,298 62.65

Ind2-Cup3 122,164,133 83.76

Ind2-Cup4 220,846,681 77.93

Ind2-Cup5 140,335,759 85.26

Ind2-Cup6 172,391,527 88.97

1.6 Data

The functional genomics data except Hi-C were downloaded from the ENCODE Data Portal. Hi-C data was taken

from ref. [2]. WGS and WES data were taken from the 1000 Genomes Data Portal. The accession codes and references

of the data are summarized in SI Table. 3.

1.7 Genotyping accuracy

We calculated the rate of false information for all the functional genomics assays for the individual NA12878. Rate

of false information (RFI) is calculated as the ratio between the linking score of the false positive SNPs and all SNPs

inferred from functional genomics data at a given coverage. SI Figure 4a shows that the noise for Hi-C data was

lower compared to WGS data at lower coverage. We attribute this finding to the deeper sequencing of the genomics

regions in close spatial proximity. Hence, sampling more reads from regions at low coverage is more likely compared
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Supplementary Table 2: Genotyping statistics for different technologies.

WGS
Genotyping

Array
ONT

samples
Called

variants

Correct

variants

Overlap

with RNA-Seq

Called

variants

Correct

variants

Overlap

with RNA-Seq
Call rate

Called

variants

Correct

variants

Overlap

with RNA-Seq

ind1-cup1 219,887 127,389 2,843 781,807 544,932 4 84% 14 0 0

ind1-cup2 526,798 366,539 5,764 805,034 572,318 11 86% 287 9 0

ind1-cup3 252,452 104,710 2,314 761,566 532,966 1 81% 79 14 0

ind1-cup4 217,840 84,418 2,323 672,857 452,859 2 72% 12 4 4

ind1-cup5 25,822 6,984 272 808,505 600,175 5 86% 0 0 0

ind1-cup6 56,577 30,580 601 743,598 574,474 3 79% 0 0 0

ind2-cup1 267,844 127,606 9,872 751,349 534,890 12 80% 122 15 3

ind2-cup2 243,783 136,480 9,831 788,263 562,419 15 84% 0 0 0

ind2-cup3 35,133 6,848 949 823,790 608,231 5 88% 0 0 0

ind2-cup4 85,613 56,716 5,014 821,752 500,897 11 88% 0 0 0

ind2-cup5 228,913 93,103 7,450 696,447 515,111 8 74% 67 12 2

ind2-cup6 229,167 102,538 7,734 702,263 474,838 6 75% 83 6 2

to uniform sampling of reads from WGS. ChIP-Seq data had a comparable noise levels to WGS and Hi-C data given

the shallow sequencing depth. ChIP-Seq targeting CTCF had the lowest noise (SI Figure 4b). We further found that

the polyA RNA-Seq experiment had the lowest noise compared to WES and total RNA-Seq. This could be attributed

to the deeper sequencing of regions containing highly expressed genes and deeper sampling from these regions. In

general, assays targeting the transcriptome such as WES and RNA-Seq produced noisier genotypes compared to WGS

and Hi-C experiments; single-cell RNA-Seq was the noisiest among all the assays, as expected (Figure 4c).
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Supplementary Table 3: The functional genomics experiments used in this study with their total

coverage

Individual ENCODE ID/Source Experiment # of Reads Read Length

NA12878 1kG WGS 757,704,193 255

NA12878 1kG WES 212,461,381 76

NA12878 Rao et al. 2014 Hi-C exp 1 PE1 219,616,072 101

NA12878 Rao et al. 2014 Hi-C exp 1 PE2 220,087,882 101

NA12878 Rao et al. 2014 Hi-C exp 2 PE1 448,843,710 101

NA12878 Rao et al. 2014 Hi-C exp 2 PE2 451,088,484 101

NA12878 Rao et al. 2014 Hi-C exp 3 PE1 536,684,803 101

NA12878 Rao et al. 2014 Hi-C exp 3 PE2 536,101,709 101

NA12878 ENCSR000CVT Total RNA-Seq 227,501,266 202

NA12878 ENCSR000COQ PolyA RNA-Seq 267,602,146 76

NA12878 ENCSR000AJA Single-cell RNA-Seq1 38,377,124 100

NA12878 ENCSR000AJH Single-cell RNA-Seq2 47,896,396 100

NA12878 ENCSR000AKF H3K4me1 42,763,056 36

NA12878 ENCSR145XQO HDGF 41,626,373 101

NA12878 ENCSR387QUV RELB 25,652,682 101

NA12878 ENCSR000DZN CTCF-Snyder 25,463,397 36

NA12878 ENCSR000AKA H3K4me3 20,221,959 36

NA12878 ENCSR000DYS JUND 18,701,295 36

NA12878 ENCSR000AOW H3K79me2 16,073,184 36

NA12878 ENCSR000AKE H3K36me3 15,239,685 51

NA12878 ENCSR000AOV H2AFZ 14,724,790 36

NA12878 ENCSR000AOX H3K9me3 14,049,420 36

NA12878 ENCSR000AKB CTCF-Broad 11,026,086 51

NA12878 ENCSR000BIF rnap2 10,428,778 36

NA12878 ENCSR000AKC H3K27ac 10,410,928 51

NA12878 ENCSR000AKG H3K4me2 9,815,194 51

NA12878 ENCSR000AKI H4K20me1 9,757,368 51

NA12878 ENCSR000AKD H3K27me3 8,454,639 51

NA12878 ENCSR000AKH H3K9ac 7,981,456 51

NA12878 ENCSR000DKV CTCF-Iyer 7,614,943 35

NA12878 ENCSR000BGD rnap2 7,516,461 36

NA12878 ENCSR000BGR PBX3 6,119,046 36

NA19239 ENCSR018VOS ChIA-PET (H3K4me1) 335,232,702 PE 101

NA19239 ENCSR332ZHA ChIA-PET (H3K4me2) 289,328,492 PE 101

NA19239 ENCSR952NXC ChIA-PET (H3K4me3) 322,739,907 PE 101

NA19239 ENCSR761FUE ChIA-PET (H3K27ac) 271,351,477 PE 101

NA19239 ENCSR000DLE CTCF-Iyer 9,999,915 36

NA19238 ENCSR823TEV ChIA-PET (H3K4me1) 286,387,111 PE 101

NA19238 ENCSR380UPB ChIA-PET (H3K4me2) 294,881,881 PE 101

NA19238 ENCSR029IXY ChIA-PET (H3K27ac) 289,564,091 PE 101

NA19238 ENCSR527RXH ChIA-PET (RAD21) 339,707,301 PE 101

NA19238 ENCSR000DLD CTCF-Iyer 16,368,229 36

NA12812 ENCSR281KLF Repli-Seq 8,082,874 36

NA12813 ENCSR834FTN Repli-Seq 9,999,915 36

NA10847 ENCSR000DYO POLR2A 6,476,857 28

NA10847 ENCSR000DYM RELA 19,376,644 28

NA18505 ENCSR000EAU POLR2A 28,951,453 28

NA18505 ENCSR000EAW RELA 22,274,656 28

NA18526 ENCSR000EAY POLR2A 5,058,348 28

NA18526 ENCSR000EBA RELA 6,353,939 28

NA18951 ENCSR000EBC POLR2A 8,729,371 28

NA18951 ENCSR000EBD RELA 5,514,493 28

NA19099 ENCSR000EBG POLR2A 7,759,177 28

NA19099 ENCSR000EBI RELA 11,961,302 28
9
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Supplementary Figure 4: Rate of False Information of functional genomics experiments from

NA12878 at different coverage (a) RFI comparison for Hi-C and WGS data at different coverage.

As the amount of coverage increases, the RFI decreases. Overall, variants from Hi-C consistently

have lower RFI than the variants from WGS until the coverage reaches its maximum. (b) RFI

comparison for WES and different RNA-Seq experiments at different coverage. In general, there

is a decreasing RFI trend with increasing coverage, as seen in panel (a), except for single-cell

RNA-Seq. The noise increased for single-cell RNA-Seq experiments as more reads were included.

(c) RFI comparison for different ChIP-Seq experiments at different coverage. There was a general

trend of decreasing RFI with increasing coverage.

1.8 Contribution of very rare and unique genotypes to L( j,k) score

We calculated the number of unique, very rare and common genotypes for every individual in the 1000 genomes panel.

We observed around 15,000 unique genotypes per individual. This contributes around 11× 15,000= 165,000 bits of

information. We observed around 670,000 very rare genotypes, which have contribution of 7×670,000= 4,690,000

bits of information on average. In total, the contribution of unique and very rare genotypes is 4,855,000 bits of

information. We then calculated the information in the genomes of all the individuals in the 1000 genomes phase III

panel. Mean information per individual is around 2x107 bits. The contribution of unique and very rare variants then

becomes around 24% of the total information in an individual’s genome, despite that the number of unique and very

rare variant is only 3% of the total number of variants in an individual’s genome. Note that this calculation is based on

our scoring system adopted from Narayanan and Shmatikov [1], which assumes independence between variants.

1.9 Gap values for the individuals

Gap values for the remaining 7 individuals with different functional genomics assays are shown in SI Figure 5.
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Supplementary Figure 5: gap values for the remaining 7 individuals with different functional

genomics assays

1.10 Linking individuals to a panel in the presence of trios

We first added the genotypes of NA12878’s parents (NA12891 and NA12892) to the 1000 genomes panel and then

calculated the L(SG
NA12878,S

DB
k ) for all the individuals in the panel. Box plot (SI Figure 6) shows the distribution of the

L(SG
NA12878,S

DB
k ) values.
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Supplementary Figure 6: The distribution of L(SG
NA12878,S

DB
k ) values when the parents of

NA12878 are added to the 1000 genomes genotype panel.

1.11 Linking NA12878 to a different panel with or without NA12878 using

functional genomics data

We showed that if we have a panel of individuals with a vastly different genotyping frequencies (108 AFR and 2 EUR

individuals), we are still able to link NA12878 to the panel in all of coverage using the noisiest functional genomics

assay (single-cell RNA-Seq). If we remove NA12878 from this panel, the we identify the other EUR individual as

NA12878 due to the large difference between the EUR and AFR populations (SI Figure 7).
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Supplementary Figure 7: Linking NA12878 to a panel with 108 AFR and another EUR indi-

viduals, with and without NA12878 in the dataset.

1.12 Comparison of linking scores using different reference panels

The linking scores of the individuals are calculated using the 1000 genomes genotyping frequency distribution as

reference and a new panel consisting of 108 AFR and 2 EUR individuals as reference (Figure 8).
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1.13 Privacy-enhancing file formats for functional genomics experiments

1.13.1 Anonymizing the BAM files

We went through all the attributes of the BAM files and grouped them into two category: (1) attributes to generalize

with a common value and (2) attributes to keep as they are. The first category includes attributes that are leaking

variants. They are the sequence of the read, cigar attribute and optional fields in the BAM files that are tagged with

“AS” (alignment score) , “MD” (string for mismatching positions) and “NM” (string for distance to reference). MAPQ

values can also be revealing at times and suggested to be sanitized in certain cases. Cigar gives out information about

how many matching and nonmatching nucleotide there are in the read with respect to reference genome. As a result,

one can call variants by looking at the non-matching nucleotides. We converted all the cigars to perfectly matching

strings. For example, if the read length is 35 and the cigar is 14M1X15M, then the cigar is converted to 35M. AS

reveals information about the number of matching positions in a read. An adversary can predict if a read contains
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variant by looking at the alignment score and subtracting it from the read length. MD reveals information about

the mismatching positions and deletions in the reads and their corresponding nucleotides. For example, if there is a

nucleotide in the read that is “A” in the 15th position of 30 bp long read, and if the reference allele for this position

is G, then the MD tag will look like “MD:Z:14MA15M”, which directly reveals the variant position in the read. NM

reveals how many bases are different than the reference, which in turn gives away how many SNPs there are in the read.

We converted all the alignment scores to the read lengths and all the MD, AS and NM tags to a perfectly matching

string (for example “MD:Z:30M” for the example above). For the sequence attribute, we find the position of the read

in the reference genome and replace the sequence attribute with the sequence in the reference. The rest of the attributes

of the BAM files are designated as the second category and kept as they are.

1.13.2 pBAM

Privacy-enhancing file formats can be generated for SAM, BAM and CRAM files. For simplicity, we will refer

the regular files as BAM and the privatized file format as pBAM. The difference between the regular files and the

privatized files are on the fields of cigar, sequence, alignment score, the string for mismatching positions and the string

for the distance to the reference. Note that any optional field that leak sensitive information about the sample can be

manipulated. We focus on AS, MD and NM tags throughout this paper, since they are the most obvious leakages, but

a module to manipulate any other tag can easily be added to pTools.

Let’s assume read length for the sequencing experiment is 30, which is the total number of nucleotides in a frag-

ment. Below are itemized description of how cigars are converted to privatized cigars along with examples.:

Cigars in non-intronic reads (i.e cigars with no ‘N”):

• Cigar for perfectly mapped reads is a number of read length followed by the letter “M”, indicating every

nucleotide in the read is mapped to the reference human genome. This also means that there is no variant in

this read (unless indicated in the MD tag). In this case, regular BAM has “30M” in the cigar and pBAM will

have ‘30M” in the cigar as well.

• Cigar for reads that contain a mismatch is marked with the letter “X”. For example, if the 10th nucleotide in the

fragment has a mismatch, then the cigar in the regular BAM becomes “9M1X20M”. This usually means that

there is a SNP on the 10th nucleotide of the fragment. Since we know the start coordinate of the read from the

regular BAM, an adversary can easily infer that there might be a SNP on the “start + 10”th coordinate of the
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genome of the sample. To prevent that we convert “9M1X20M” to “30M” in the pBAM file. This conversion

does not add any noise to the calculation of depth since “start + 10”th is sequenced, however as a different

letter.

• Cigar for reads that contain soft-clipping is marked with the letter “S”. For example, if the first 5 nucleotides are

soft-clipped from the fragment, then cigar becomes “5S25M”. The start coordinate reported as the beginning of

mapped nucleotides, which is the 6th nucleotide of the fragment. In this case, we report the cigar as “30M” and

keep the start coordinate as it is. This is because soft-clipping can be due to a structural variant, insertion or a

deletion. The associated noise with this conversion is that the coordinates between “start+26” and “start+30”

gain extra read, i.e depth.

• Above point applies for the reads with hard-clipping that are marked by the letter “H”. For example, if the

nucleotides from 1st to 21st are hard-clipped from the fragment, then cigar becomes “20H10M”. In this case,

we report the cigar as “30M” ignoring the hard-clipped nucleotides. The associated noise with this conversion

is that the coordinates between “start” and “start + 20” gain extra read, i.e depth.

• Note that some analysis pipelines such as ENCODE RNA-Seq and ChIP-Seq processing pipelines do not

include these clipped reads in their analysis, in which case these reads can be filtered out as they add the most

noise to the signal after sanitization.

• Cigar for reads that contain an insertion is marked with the letter “I”. For example, if the 23th to 30th nucleotide

in the fragment is an insertion, then the cigar in the regular BAM becomes “22M8I”. Since we know the start

coordinate of the read from the regular BAM, an adversary can easily infer that there is an insertion on the

“start + 23”th coordinate of the genome of the sample. To prevent that we convert “22M8I” to “30M” in

the pBAM file. The associated noise with this conversion is that the coordinates between “start + 22” and

“start + 22+ 8” gain extra read, i.e depth.

• Cigar for reads that contain a deletion is marked with the letter “D”. For example, if the 13th to 14th nucleotide

in the fragment is a deletion, then the cigar in the regular BAM becomes “12M2D16M”. Since we know the

start coordinate of the read from the regular BAM, an adversary can easily infer that there is an deletion on the

“start + 12”th coordinate of the genome of the sample. To prevent that we convert “12M2D16M” to “30M” in

the pBAM file. This conversion add any noise to the deleted coordinates as well as the last 2 nucleotide at the

end of the read as total read length has to be capped at 30.This also prevents signal profiles to leak the small

deletions as the curve that corresponds to the deletion will look smooth based on its neighboring nucleotides.

• There are also cigars that may have multiple of the above letters. Here are a few examples and the solutions:
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Cigars in intronic reads (i.e cigars with ‘N”):

• Cigar for perfectly mapped reads but split due to the introns are split by the letter “N”. For example, if there is

a 1000 nucleotide long intronic region between mapped regions, it can have a cigar as “10M1000N20M”. In

this case pBAM will have a cigar of “10M1000N20M” as well.

• If the reads are split in the mapped regions due to mismatch, insertion, deletion or clipping, then pBAM deals

with them such that splice sites are as accurate as possible. Here are few examples;

– Cigar “3S15M1000N10M2D” becomes “18M1000N12M”, which does not add any noise to the splice

site.

– Cigar “10M3D3M1000N3M2I9M” becomes “16M1000N14M”, which does not add any noise to the

splice site.

Details of these examples are depicted in Figure 9.
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noise

start + 73
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Supplementary Figure 9: Visual representation of mapped fragments before and after convert-

ing the cigars for pBAM file format. The insertions, deletions, soft and hard-clipping as well as

intronic reads are depicted. The noise that is added to the pBAM file in order to enhance privacy

is also depicted in the fragments.

1.13.2.1 Transcriptome alignments pTools searches the reference transcriptome for the position of the

transcripts and reports the reference transcriptome sequences in the pBAM. We used the reference transcriptome files

that are generated by RSEM software.

1.13.3 .diff files

.diff files contain the difference between the original BAM files and the pBAM files in a compact form. If the infor-

mation is already available in the reference human genome such as sequence of the fragment, then the .diff file does

not report it. This is done to keep the .diff files as small as possible. These are the files that require special permission
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to access and contains the private information about the individual. To be able to go back and forth between BAM and

pBAM files using the .diff files, the BAM and pBAM files are required to be coordinate sorted.

1.13.4 Utility-privacy balance

SI Figure 10 shows the utility-privacy balance under different read lengths, observed and sanitized number of variants.
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Supplementary Figure 10: The balance between the privacy and utility under different conditions

1.13.5 Utility of the pBAM files

SI Figure 11 shows the difference of various quantification metrics from ChIP-Seq data when BAM vs. pBAM files

are used.
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Supplementary Figure 11: The difference between ChIP-Seq peak calling using BAM and

pBAM as input for the fold over change compared to control, the number of reads that pile

up on the location of peak and the location of the peak summit.

1.14 Relation to differential privacy

Differential privacy ensures a high level of privacy such that adversary retrieves similar result with and without

the addition of the individual’s data to the database [13]. A randomized algorithm A that retrieves results A(D) from

database D is considered ε-differentially private if the results satisfies the condition

prob(A(D) =C)

prob(A(D±i) =C)
= eε

, (1)

where D±i indicates the addition or subtraction of ith individual to the database. This concept applies to databases of

individuals, in which database itself is not released and calculations from this database (i.e algorithm A) is randomized

such that adversary cannot infer information about individuals in the database.

We fist tried to see if we can apply differential privacy to BAM files, where we consider each read in the BAM file

as an entry and the file itself as a database. The idea is that everytime we retrieve a read from BAM file, it will be

manipulated such that with or without the retrieved read, when genotyping is performed the results will be the same,

20



hence one cannot infer the variant in that retrieved read.

However since our desire is to be able to use the data for further processing such as testing a newly developed

algorithm or quantifying gene expression without the need to go through special access process, retrieving information

from BAM files one read at a time, while satisfying the differential privacy is not practical. Moreover, ensuring that

the final pile of reads will have high enough utility to make any biological conclusions is challenging as randomizing

the data might affect the conclusions.

1.14.1 Leakage from MAPQ

We found that read with MAPQ values that are smaller than mean MAPQ contain insertions, deletions, soft and hard

clipping more than expected (Figure 12), hence they might leak the location of large SVs. In Figure 12, we analyzed

a subsampled BAM file from a whole genome sequencing data. The BAM files from functional genomics data are

noisier than WGS, however the MAPQ values could still potentially be a source of variant leakage.
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Supplementary Figure 12: Potential variant leakage from MAPQ scores. As can be seen, the

reads with potential large SVs have smaller than expected MAPQ scores. An adversary can

sort the MAPQ scores in a BAM file and guess the location of these SVs that are mapped with

low MAPQs.
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