SUPPLEMENTAL INFORMATION

Plant Hormone Quantification: IAA and SA Extraction and Quantification

<u>Materials</u>

Indole-3-acetic acid (IAA) and salicylic acid (SA) were purchased from Sigma-Aldrich (St. Louis, MO) and Acros Organics (Geel, Belgium), respectively. Isotope-labeled internal standards d4-salicylic acid (d4-SA) and indole-2,4,5,6,7-d5-3-acetic acid (d5-IAA) were sourced from CDN Isotopes (Pointe-Claire, Quebec). Methanol and acetonitrile (HPLC-grade) were sourced from J.T. Baker (Avantor Performance Materials) and LC-MS grade water was purchased from Honeywell Research Chemicals. Individual stock solutions of unlabeled and labeled compounds were prepared in 50% methanol and stored at -80 °C. Standard solutions were prepared fresh in 30% methanol in the linear concentration ranges of 32 pM to 10 μ M. An internal standard solution was prepared in 30% methanol containing 2.5 μ M d5-IAA and d4-SA.

Plant Hormone Extraction

Frozen plant material was extracted with 900 μ L of extraction solvent (ice-cold acetonitrile/methanol; 1:1 v:v) while samples were kept cold on ice. Ten (10) microliters of the internal standard mixture and two stainless steel 5 mm beads were added to each sample tube followed by brief mixing by vortexing. Samples were placed in pre-cooled (-80 °C) Tissue Lyser II racks and homogenized for 2 min at 15 Hz. Samples were centrifuged at full speed for 5 min at 4 °C, then the supernatant was transferred to a new 2 mL tube. Samples were re-extracted with another 900 μ L of extraction solvent, and then homogenized again for 2 min at 15 Hz. The

samples were then centrifuged and supernatant transferred as previously described. The extraction solvent was removed under reduced pressure with a speed-vac until completely dry. Samples were reconstituted in 30 % MeOH (200 μ L) and mixed thoroughly for 30 min at 4 °C. Finally, samples were filtered through 0.8 μ m PES spin-filters and 40 μ L of clarified supernatant was transferred to a 96-well microplate. Two (2) μ L of sample was injected onto the column.

LC-MS/MS Instrumentation

Clarified samples were analyzed on an Eksigent ekspert^m microLC 200 coupled to a Sciex 6500 QTrap[®] (Framingham, MA) operated with polarity-switching electrospray ionization. The LC separation was achieved using a Waters (Milford, MA) Acquity UPLC[®] BEH C18 1.0 × 100 mm, 1.7 μ m column kept at 50 °C with a flow rate of 15 μ L/min while the autosampler was set at 8 °C. The mobile phases were 0.1 % acetic acid and 3:1 acetonitrile:methanol containing 0.1 % acetic acid running a gradient of 20 % B for 4 minutes ramping to 70 % B at 7 minutes, increasing to 95 % B at 7.5 minutes, holding for 5.5 minutes, then re-equilibrate at initial conditions at 13.5 minutes for 10 minutes (total runtime is 23.5 minutes). Data analysis was completed using MultiQuant 3.0.2 (AB Sciex) by normalizing the peak areas of the unlabeled analytes relative to the peak areas of the labeled internal standards. Calibration curves were linear (*r* values = > 0.99) within the ranges provided above applying a 1/x weighting scheme.

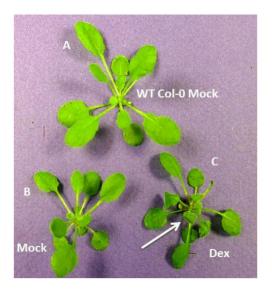
Compound	MRM Transition	Retention time (min)	DP (V)	EP (V)	CE (V)	CXP (V)
IAA	176.0 → 130.0	10.24	23	7	40	19
d ₅ -IAA	181.0 → 134.0	10.22	23	7	25	19
SA	137.0 → 93.0	10.20	-22	-13	-20	-10
d ₄ -SA	141.0 → 97.0	10.18	-41	-9	-23	-11

Compound-dependent parameters

Source settings

Ionspray voltage: polarity switching between -4500 V in -ve to 4500 V in +ve

Curtain gas: 15

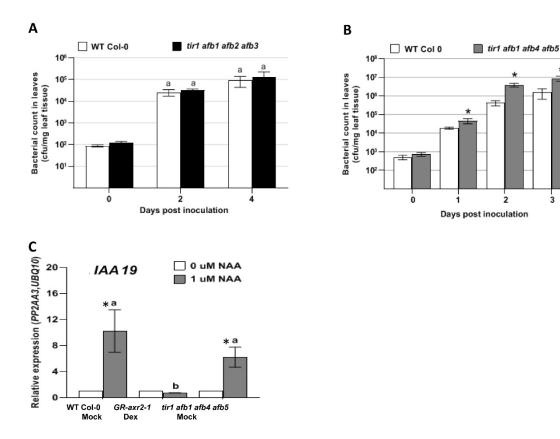

Gas 1: 35

Gas 2: 35

Supplemental Table 1 Primers used in this study

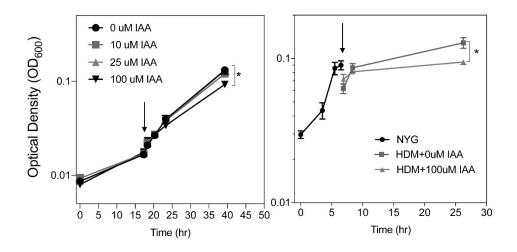
Gene	Forward primer (5'-3')	Reverse primer (5'-3') T-qPCR	Reference for primers			
GH3.3 AT2G23170	TGTGTGAGTTTCACGCCAAT	CAAAGGAGGGACAGAGTGGA	(32)			
IAA19 AT3G15540	GAGATGTGGCAGAGAAGATG	TTCCTCAAATAAGGCACACC	(32)			
PR1 AT2G14610	GGAGCTACGCAGAACAACTAAGA	CCCACGAGGATCATAGTTGCAACTGA	(32)			
PP2AA3 AT1G13320	AACGTGGCCAAAATGATG	AACCGCTTGGTCGACTATCG	(61)			
<i>UBQ10</i> At4g05320	CGTTAAGACGTTGACTGGGAAAACT	GCTTTCACGTTATCAATGGTGTCA	(61)			
avrPto PSPTO_4001	ATGACGGGAGCGTCAGGAATCAAT	ATCCGTTCGGGTTCATAGTCGCAA	(30)			
HrpL PSPTO_1404	TCAGGAAAGCTGGGAAGAC-GAAGT	ATGTTCGACGGCAGGCAATCAATG	(30)			
mqo PSPTO_1136	GCGGCTGATGGCTCCATCGAC	CGGGACCGGATTGATGAACGAC	This work			
cmaA PSPTO_4709	CCGTGATGTTTACCTCTGGCAC	GGACGAGTGATGTACGTAGCTGC	This work			
hcp1 PSPTO_2539	GGTCGACGCAGGCATAACGC	CTCCTTGCCGTCGTTAGTGCG	This work			
tvrR PSPTO_3576	GGCTCGCAACGGCCCATCTG	CATGCGGTAGACGGCCAGCG	This work			
PSPTO_5415 16S rRNA PSPTO_r01	GCCAGGAAGGGCATGTGCTG TAATGGCTCACCAAGGCGACG	AATCCCTTGATGACCGGCACG TGGCTGGATCAGGCTTTCGC	This work This work			
rpoD PSPTO_0537	GAAGTTGACGAAAGCTGGACCG	CGACGGTTGATGTCCTTGATCTC	This work			
gyrB PSPTO_0004	CTTCAGCTGGGACATTCTGGC	AACCGCCTTCGTACTTGAACAG	This work			
recA PSPTO_4033	TAGAACTTCAGCGCGTTACC	GCCAACTGCCTGGTTATCT	(36)			
Genotyping (PCR) and Cloning						
sid2-2 sm108F WT- Sm30F	TTCTTCATGCAGGGGAGGAG CAACCACCTGGTGCACCAGC	AAGCAAAATGTTTGAGTCAGCA	(32)			
GR-axr2-1 axr2	GR: GCCATCGTCAAAAGGGAAGG	TGACTCTAACTCGGTAAGGTTCAT	This work This work			
TopoGW_GRF1	CACCATGATTCAGCAAGCCACTGC		This work			
GR_AXR2_R1		TGAGGTTCATAAGTTGGCCGAT CATTTTTGATGAAACAGAAGCT	This work			
GR_AXR2_F1	AGCTTCTGTTTCATCAAAAAATG ATCGGCCAACTTATGAACCTCA		This work			
AXR2_V1_R1		TCAAGATCTGTTCTTGCAGTACT	This work			

Supplemental Figures



Supplemental Fig. 1. Dex treatment of *GR-axr2*-1 transgenic plants results in abnormal leaf morphology. (A) WT Col-0; (B) and (C) *GR-axr2*-1 transgenic plants, 1 day after spraying with 0.1 % Ethanol (Mock) or 10 mM Dexamethasone in 0.1 % Ethanol (Dex). Arrow indicates curled leaves that did not expand normally.

t


3

2

Supplemental Fig. 2. Growth of PtoDC3000 and expression of auxin-responsive genes IAA19 in auxin receptor mutants.

(A) Growth of PtoDC3000 in the tir1 afb1 afb2 afb3 mutant. Similar results were observed in 3 additional independent experiments. (B) Growth of PtoDC3000 in WT Col-0 and tir1 afb1 afb1 afb5 plants. Values are an average ± SEM for data from 4 biological replicates (leaves) for day 0 and 8 replicates for days 1, 2, and 3. Results were analyzed using ANOVA, followed by a Tukey's post test, and asterisks (*) indicates significant differences between WT Col-0 and *tir1 afb1 afb4 afb5* (4X) mutant plants with P < 0.05 at each time point. Plants were inoculated with a bacterial suspension of 10⁶ cfu ml⁻¹. Samples from this experiment were used for gene expression experiments shown in Fig. 5. (C) Expression of the auxinresponsive gene IAA19 after NAA treatment. Values are an average ± SEM for 3 biological replicates for Col-0 WT Mock, GR-axr2-1 and tir1 afb1 afb4 afb5. Samples indicated by different lower-case letters are significantly different (p<0.05). Similar results were obtained in a second independent experiment. * indicates significant difference between treatment (0 and 1 μ M NAA) with p<0.05. Results were analyzed using ANOVA, followed by a Tukey's post test. Samples indicated by different letters are significantly different at p<0.05.

Supplemental Figure 3. Impact of IAA on growth of PtoDC3000 in culture

(A) Growth of *Pto*DC3000 in Hrp De-repressing Medium (HDM) containing the indicated concentrations of IAA. IAA was added to the cultures at mid-log (arrow), and growth was monitored by quantifying cell density (OD_{600}) over ~ 24 hours. (B) *Pto*DC3000 was grown in NYG to an OD of ~0.1, cells were collected via centrifugation, resuspended in NYG or HDM (arrow) containing the indicated concentrations of IAA and grown for ~24 hours. Growth was monitored by quantifying cell density (OD_{600}). Cells were collected at 1.5 hours after transfer to HDM for RNA isolation. Cell cultures were grown in triplicate for both experiments. Data points are the average of 3 biological replicates per treatment and error bars represent S.E.M. A student's t-test was performed to compare the effect of the IAA treatments on bacterial growth to Mock treatment with DMSO. * p<0.05 . The data shown in panel B are from cultures used to monitor the effect of IAA on PtoDC3000 gene expression shown in figure 4.