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Abstract	11 

Humans often traverse real-world environments with a variety of surface irregularities and 12 

inconsistencies, which can disrupt steady gait and require additional effort. Such effects have, however, 13 

scarcely been demonstrated quantitatively, because few laboratory biomechanical measures apply 14 

outdoors. Walking can nevertheless be quantified by other means. In particular, the foot’s trajectory in 15 

space can be reconstructed from foot-mounted inertial measurement units (IMUs), to yield measures of 16 

stride and associated variabilities. But it remains unknown whether such measures are related to 17 

metabolic energy expenditure. We therefore quantified the effect of five different outdoor terrains on foot 18 

motion (from IMUs) and net metabolic rate (from oxygen consumption) in healthy adults (N = 10; 19 

walking at 1.25 m/s). Energy expenditure increased significantly (P < 0.05) in the order Sidewalk, Dirt, 20 

Gravel, Grass, and Woodchips, with Woodchips about 27% costlier than Sidewalk. Terrain type also 21 

affected measures, particularly stride variability and virtual foot clearance (swing foot’s lowest height 22 

above consecutive footfalls). In combination, such measures can also roughly predict metabolic cost 23 

(adjusted 𝑅" = 0.52, partial least squares regression), and even discriminate between terrain types (10% 24 

reclassification error). Body-worn sensors can characterize how uneven terrain affects gait, gait 25 

variability, and metabolic cost in the real world. 26 
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 2 

Introduction	33 

The metabolic energy cost for human walking varies considerably with terrain. For example, loose sand 34 

can double the cost compared to a smooth, hard surface [1,2]. Overall energy expenditure is also 35 

determined by other variables such as carried load, movement speed, and grade or ground slope [3–5], 36 

each with readily identifiable effects. But the effect of terrain could depend on more complex factors such 37 

as unevenness of the surface, its compliance and energy absorbing properties, and looseness and 38 

instability of the substrate. That complexity is typically avoided in predictions of metabolic cost, in favor 39 

of a single multiplicative factor, the terrain coefficient, for the relative gross metabolic cost compared to 40 

treadmill walking. Typical values are 1.0 for blacktop surface, 1.2 for light brush, 1.5 for heavy brush, 41 

and 2.1 for loose sand [2]. But aside from this overall effect, there is presently scant understanding of how 42 

terrain affects a person’s actual movements and actions, which are the ultimate determinants of energy 43 

expenditure. If the gait adaptations for different terrains could be quantified, they might offer insight 44 

regarding the control of locomotion and improved predictions for its energetic cost. 45 

 46 

It is challenging to determine the biomechanical adaptations for different terrains. Traditional laboratory 47 

measures include kinematics and ground reaction forces [6], which can yield mechanistic measures such 48 

as fluctuations in kinetic energy when walking on sand [1], or the work performed by the leg joints on an 49 

artificial, uneven treadmill surface [7], with attendant energetic cost. But such laboratory measures are 50 

difficult to obtain outdoors. This limitation favors simpler equipment such as body-worn accelerometers, 51 

whose signals can be correlated with energy expenditure [e.g., 8–12], albeit with limited ability to 52 

distinguish terrain type [13]. Yet another possibility is to use shoe-mounted inertial measurement units 53 

(combining accelerometers and gyroscopes) to reconstruct the foot’s path in space and placement on 54 

ground [14,15]. These data can reveal trends in walking speed, stride length, and stride variability [16], 55 

which may in turn reveal the effects of real-world terrain. 56 

 57 

Ground terrain could have various effects on the foot’s motion during walking. Most obvious is the 58 

elevation change over a step, which is energetically costly for a net elevation increase [17], and might 59 

also increase cost for terrain that undulates from step to step with no overall slope. Terrain might also 60 

affect parameters such as average stride length and width, which also determine energy expenditure [e.g., 61 

18,19]. Uneven terrain may require the foot to be lifted higher mid-swing [20], with an attendant cost 62 

[21]. Finally, balance might be more challenging on some terrains, requiring stabilizing adjustments [22] 63 

including foot placement [7,23]. Thus, motion of the foot may entail energy expenditure. 64 

 65 
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 3 

The purpose of this study was to determine how foot paths change with terrain, and how they relate to the 66 

energetic cost of walking. Here, foot path refers to the foot’s translation in three dimensions during a 67 

single swing phase, starting from the previous stance phase and including the ending stance phase, when 68 

the foot is stationary. We tested whether this path exhibits changes in standard gait measures, such as 69 

average stride length and height and their respective variabilities, as a function of terrain. We also tested 70 

these measures for correlation with energy expenditure, to examine the possible link between foot path, 71 

energy cost, and terrain.  72 

 73 

Methods	74 

We measured healthy adults walking on five types of common outdoor surfaces: Sidewalk, Dirt, Gravel, 75 

Grass, and Woodchips (see Figure 1). The experiment was performed outdoors in Nichols Arboretum 76 

(Ann Arbor, MI), a University-operated park with well-groomed walking trails, selected to pose little 77 

challenge to any healthy individual. For all conditions, subjects followed trails intended for walking, 78 

except for Grass which was in a meadow without a specific trail. All of the surfaces were selected to have 79 

very little elevation change, in terms of visible undulations, total change (maximum net grade of 0.96% 80 

on Gravel), and cross-slope. We measured metabolic energy expenditure, foot paths, and attendant stride 81 

parameters during walking. Stride information was collected using inertial measurement units (IMU) 82 

(Opal sensors, APDM Inc., Portland, OR) attached atop each foot. A global positioning system device 83 

(GPS; Garmin Ltd., Olathe, KS) was also used to characterize the route’s speed, distance, and elevation. 84 

 85 

Experiment	86 

Ten adult subjects (N=10, 5 male and 5 female, age 18 - 48) participated in the study. Subjects had an 87 

average body mass of 64.86±10.10 kg (mean ± s.d.) and an average leg length of 0.90±.07 m (mean ± 88 

s.d.). Subjects provided written informed consent before the experiment. The study was approved by the 89 

University of Michigan Health Sciences Institutional Review Board (HUM00020554).  90 

 91 

Subjects walked on each surface, presented in random order, for 8 minutes. Approximate speed of 1.25 92 

m/s was controlled by following the experimenter, who walked according to GPS speed and attempted to 93 

make only gentle speed corrections, to avoid costs for artificial speed fluctuations [24]. Some surfaces 94 

were limited in length, and so subjects reversed their direction and continued walking. Turns occurred at 95 

most 10 times per 8-minute trial.  96 

  97 
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Respirometry data were collected for the entirety of each trial (Oxycon Mobile, CareFusion Corp., San 98 

Diego, CA). To allow time to reach steady-state, only the last 3 minutes of data from each surface were 99 

used for metabolic energy expenditure. The rates of oxygen consumption and carbon dioxide production 100 

(mL/min) were converted to metabolic rate (W) using standard formulae [25,26]. Net metabolic rate �̇�met 101 

was calculated by subtracting metabolic rate of a separate quiet standing trial (97.29 ± 27.06 W) from 102 

gross. We also calculated a dimensionless net metabolic cost of transport, defined as the net energy 103 

expended to move a unit body weight a unit distance. 104 

 105 

For each trial, a total of 90 strides per foot were analyzed from forward walking sections at the beginning 106 

of the trial (Figure 2). Estimated foot paths were derived from IMU data according to an algorithm 107 

described previously [15]. Briefly, the method uses gyroscope and accelerometer data to estimate spatial 108 

orientation, and then integrates translational accelerations twice to yield displacements, with inertial drift 109 

reduced by correcting the velocities during stance to zero. Here, foot path actually refers to the path of the 110 

IMU, located on the instep of the shoe. From these paths, we computed gait parameters such as stride 111 

length, width, and height, all defined as displacements over one stride. To reduce the amount of data, only 112 

the left foot data were used for the measures reported here. We report average and root-mean-square 113 

(RMS, equivalent to standard deviation) variability of stride parameters, except for average stride width, 114 

which was unknown because each IMU recorded independent data for one foot, with no reference to the 115 

other foot. We also estimated two additional parameters defined by the foot’s stationary positions at 116 

beginning and end of stride, and the straight line connecting those positions. Projected onto the sagittal 117 

plane, the virtual clearance was defined as the closest distance the foot reaches to this line (measured 118 

perpendicularly) during the middle of swing phase (illustrated in Figure 2), extending a measure 119 

previously defined for flat ground [27] to include different footfall heights. Projected onto the transverse 120 

plane, lateral swing displacement was defined as the maximum distance the foot departs from this line, 121 

also mid-way through the swing phase.  122 

 123 

Stride parameters and energy measures were normalized to account for differences in subject body size 124 

and height. We used body mass M, standing leg length L (defined as floor to greater trochanter), and 125 

gravitational acceleration g as base units. Thus, stride distances were normalized by L, and net metabolic 126 

power [28] by 𝑀𝑔/.0𝐿2.0 (average 0.90 m, 1893 W across subjects). Quantities were then reported in 127 

dimensional form by multiplying by the mean normalization factor across subjects. 128 

 129 

We tested whether terrain conditions affected energy expenditure and gait parameters. We calculated the 130 

mean and standard deviation of the measures across subjects for each terrain surface. Differences between 131 
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 5 

the conditions were quantified by repeated-measures ANOVA tests. We also tested the correlation 132 

between energy expenditure and the gait parameters using linear regression for each variable individually. 133 

The latter included a separate offset constant for each individual, included in the fit, with overall goodness 134 

of fit therefore evaluated with an adjusted R2. The significance level 𝛼 was set at 0.05. 135 

 136 

To explore reduction of dimensionality within the data, we also performed principal components analysis 137 

(PCA) and linear discriminant analysis (LDA). The PCA was intended to reduce the 11-dimensional 138 

stride measures into a smaller number of combinations, and reveal which combinations contribute most to 139 

the observed variations, without regard to terrain type. The LDA (using only linear terms for each 140 

predictor) was performed to use the same data to classify the terrains, with knowledge of each trial’s 141 

terrain included. Finally, an additional set of regressions was performed between metabolic rate and stride 142 

measures, using principal components regression (PCR) and partial least squares regression (PLSR), to 143 

determine how a small set of data combinations can predict metabolic rate, again with adjusted R2 to 144 

evaluate goodness of fit. 145 

 146 

Results	147 

We found the foot paths to be highly dependent on terrain. This was observable qualitatively in the foot 148 

paths, which showed changes in variability compared to the Sidewalk condition as viewed from the side 149 

and above (see Figure 3 for representative paths). Such terrain-related differences were also confirmed 150 

quantitatively for most of the stride parameters considered (Figure 4), particularly the measures of virtual 151 

clearance (mean changing by up to 58% and variability by up to 63%), and to lesser degree, lateral swing 152 

displacement (mean and variability, summarized in Table 1).  153 

 154 

Participants also expended varying amounts of energy as a function of terrain (Figure 4, top). Net 155 

metabolic rate �̇�met varied with terrain type for groupwise (repeated measures ANOVA, P = 7.1e-11) and 156 

for most pair-wise comparisons (post hoc paired t-tests, P < 0.05), with the greatest difference (27%) 157 

found between Woodchips and Sidewalk. The only non-significant comparisons were Dirt vs. Sidewalk, 158 

Gravel vs. Dirt, and Grass vs. Gravel (P ≥ 0.05). Summary results below are presented in order of 159 

increasing mean metabolic rate: Sidewalk, Dirt, Gravel, Grass, Woodchips.  160 

 161 

Stride parameters also correlated with metabolic rate irrespective of terrain classification. From linear 162 

regression, nearly every stride measure was found to be significantly correlated to metabolic rate �̇�met 163 

(Table 2); the only non-significant measures (P ≥ 0.05) were mean walking speed and lateral swing (mean 164 

and variability). For goodness of fit, the top four correlates were mean virtual clearance, and RMS 165 
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 6 

variabilities of virtual clearance, stride height, and stride width. These measures were all strongly 166 

significant regressors (at most 𝑃 =3.1E-06), although the actual predictive abiilty was modest, with 167 

adjusted 𝑅" ranging 0.29 – 0.38). Part of the variation within the data may be attributed to inter-subject 168 

differences. This was revealed by improved fits (Table 2, “Ind R2”)when subject-specific offsets were 169 

removed from metabolic data, yielding for example an increase of 0.15 (i.e. a partial 𝑅")for mean virtual 170 

clearance. 171 

 172 

Principal components analysis revealed that the first two PCs could explain a substantial fraction of the 173 

observed stride measures (Figure 5). The first PC accounted for 65.8% of all terrain-specific variability in 174 

the stride measures, and was dominated by increased stride length, increased walking speed, and negative 175 

stride height (apparent downhill slope). The second PC accounted for an additional 21.7% (and thus both 176 

PCs 87.5%), and was dominated by increased stride length, increased stride height (apparent uphill slope), 177 

and increased stride width variability. These two PCs (together accounting for 87.5% of all data 178 

variability) were subsequently used as regressors of metabolic rate.  179 

 180 

Linear discriminants were able to classify the data reasonably well (Figure 5), with 10% resubstitution 181 

error rate (5 errors out of 50 observations from 5 terrains and 10 subjects). This was true despite 182 

substantial overlap between terrains and subjects in individual measures such as stride length vs. speed 183 

(Fig. 6, top). To illustrate the classification, we projected the stride measure data onto two sample 184 

discriminants: Gravel vs. Grass, and Sidewalk vs. Dirt, two pairs poorly distinguished by the individual 185 

stride measures. The discriminated data (Fig. 6, bottom) show reasonably good discrimination between 186 

those same pairs. 187 

 188 

Although we attempted to approximately control the average walking speed, there was some variation 189 

within each trial. Walking speed normally fluctuates slightly [29], with correlated fluctuations in stride 190 

length [16] consistent with the preferred stride length relationship [30]. Some individuals exhibited 191 

terrain-dependence in their relationship (Figure 6, top), but with no consistent statistical trend across 192 

subjects. Thus, the preferred stride length vs. speed relationship remained fairly intact across different 193 

terrains. There were also small but significant differences in mean speed and stride length across terrains 194 

(Table 1). 195 

 196 

Metabolic rate was explained reasonably well with all three methods considered (Fig. 7). The best 197 

explanation resulted from partial least squares regression (PLSR), which uses all stride measures and 198 

metabolic outcome data together to define a set of multivariate regressors (defined in Table 2). This 199 
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 7 

technique yielded adjusted R2 = 0.52 to predict metabolic rate using only two such regressor components. 200 

In contrast, principal components regression (PCR) first derives principal components to explain 201 

variations within the stride measure data (without considering outcome data), and then uses those 202 

components for regression. Using only the first two PCs (described above), PCR yielded R2 = 0.46 (see 203 

Table 2). Both of these exceed the fit for the strongest single univariate regression (virtual clearance, with 204 

R2 = 0.34). As few as two multivariate regressors can therefore explain a greater proportion of the 205 

variations in the outcome data, compared to any single measure. 206 

 207 

Discussion	208 

This study tested for relationships among the foot’s path and placement, the type of ground terrain, and 209 

the energy expended for walking. We found that multiple stride parameters are indeed terrain-dependent 210 

and correlated with energy cost. Notably, more challenging terrain caused increases in virtual ground 211 

clearance and in the variability of most measures, for example of lateral swing motion. These measures 212 

were in turn correlated with increased energy cost. Any single measure could only predict metabolic rate 213 

imperfectly, but there was also considerable interdependency among measures, as revealed by 214 

dimensionality reduction techniques. We found that both principal components analysis and partial least 215 

squares regression could yield reasonable predictions of metabolic cost based on as little as two 216 

multivariate components. We next provide our interpretation of the relationship between stride measures 217 

and metabolic cost on different terrains, and their possible utility.  218 

 219 

Participants made only subtle changes to their average gait pattern as a function of terrain. Most notable 220 

was virtual clearance of the swing foot, which increased on more challenging terrain (Table 1), and was 221 

highly correlated with energy expenditure (Table 2). The latter is consistent with controlled experiments 222 

showing a high cost for increased clearance [21]. Of course, the details of actual surface variations were 223 

unknown, and so virtual clearance is merely an indicator of possible adaptations to true ground clearance. 224 

There were also small changes in stride length and speed with terrain, which may be attributable in part to 225 

imperfectly controlled walking speed rather than the terrain itself.  226 

 227 

While the average gait pattern changed little, variability in most of the gait measures examined showed 228 

high dependence on terrain. The most notable sensitivities were for variability in stride height, stride 229 

width, virtual clearance, and lateral swing motion. Variability could result directly from the unevenness of 230 

ground, or from controlled adjustments made to stabilize balance, which is thought to be passively 231 

unstable in the lateral direction [22,23]. Active stabilization is achieved in part through lateral foot 232 

placement [23,31–34]. Uneven ground appears to disrupt gait to substantial degree, and would be 233 
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 8 

expected to require substantial active stabilization. Aggregating these various contributions, the overall 234 

effect is that uneven ground leads to uneven foot motion and uneven steps. 235 

 236 

Stride measures also appear to be predictive of energy expenditure. Nearly every stride measure exhibited 237 

significant correlation with energy expenditure, most strongly the RMS variabilities of stride height, 238 

virtual clearance, and stride width (Table 2). Walking speed is generally a strong predictor of energy cost 239 

[5,35]. Our interest here was in factors other than speed, which we therefore attempted to control at fixed 240 

value across terrains (e.g. 0.5% speed difference between Woodchips and Sidewalk). Thus, the weak and 241 

non-significant correlation between speed and energy cost (Table 2) was merely a consequence of 242 

experimental control rather than a finding. Walking speed also generally determines stride length 243 

[16,29,36], which was not explicitly controlled and differed slightly with terrain. By itself, stride length 244 

was a barely significant correlate of energy cost (Table 2), which could be due in part to an actual effect, 245 

and in part to imperfect experimental control of speed. Indeed, co-variation of speed and stride length 246 

dominated the first principal component of stride measures (Fig. 5), and predicted energy expenditure 247 

from the principal components regression (PCR, Fig. 7). In addition, all stride variability measures were 248 

individually correlated with energy cost (Table 2), although they contributed relatively little to the first 249 

two principal components. Variability in stride length and timing [37] and fluctuations in speed [24] have 250 

been reported to affect metabolic cost, perhaps due to the effort of varying gait. These results illustrate the 251 

importance of interdependencies among stride parameters, and the complex relationship of cost to gait 252 

parameters.  253 

 254 

Another well-known predictor of energy expenditure is elevation change. Even though elevation changes 255 

were modest on the terrains studied here, a non-zero stride height would generally be expected to indicate 256 

how much the body is lifted or lowered against gravity, and therefore drive energy expenditure. Other 257 

cost-determining variables more specific to terrain included virtual clearance and its variability, and 258 

variability of stride height and width. If a single predictor is desired that is both sensitive to terrain and 259 

predictive of energy expenditure, the strongest candiate is virtual clearance (Fig. 7), followed by lateral 260 

swing variability, which may be an indicator of the balancing challenges posed by uneven ground. 261 

Alternatively, the PCR and PSLR results show that IMU-derived foot paths can also yield multivariate 262 

components, or linear combinations of measures, that can be more reliably predictive than any single 263 

variable. Of course, IMU-based measures are unlikely to replicate the accuracy of a (portable) 264 

respirometry system, but IMUs are less obtrusive and easier to wear, especially in real-world conditions, 265 

and may still yield data informative of metabolic cost. 266 

 267 
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 9 

Stride measures may also serve as a supplement to terrain classification. A terrain such as “grass” can 268 

vary substantially in height, thickness, density, and underlying substrate, which itself may vary in 269 

softness, granularity, friction, and moisture content. Even if terrain were accurately imaged and quantified 270 

for geometric scale and irregularity [38], there may be a plethora of variables relevant to gait. In contrast, 271 

a few stride measures, such as stride and swing foot variability (Figs. 5 and 6) can directly measure a 272 

terrain’s effect on gait, and even discriminate among terrains. Gait measures are unlikely to discriminate 273 

better than visual observation, but they do offer continuous quantification of a terrain’s effects. Just as the 274 

classification of “highway” might be supplemented by information about traffic and road conditions, a 275 

prospective hiker or trekker might gain from knowledge of a “grass” trail’s typical effects on stride 276 

variability, time to destination, or metabolic cost (Fig. 7). There may well be benefit to quantifying terrain 277 

by entire new continuous measures or discrete categorizations, independent of semantic classifications.  278 

 279 

This work is subject to a number of limitations. We based our analysis on a relatively small number of 280 

summary measures, but a more intensive approach might be to instead use the actual foot path trajectories 281 

directly, including both translation and orientation data. The much larger volume of source data, with 282 

appropriate data reduction, might yield stronger classifiers and correlators. Another limitation of the 283 

present foot path reconstruction technique is that measurement errors are unavoidably greater than those 284 

typical for laboratory motion capture. Our foot path estimation relies on the foot being nearly stationary at 285 

some point during stance, which may not occur for every stride on softer terrains such as Woodchips. 286 

This adds significant uncertainty to estimates of stride height and its variability in these conditions. 287 

Indeed, all of the variability reported here is in part due to terrain, inertial drift, and other measurement 288 

noise, in addition to true motion variability. In particular, there can be vast variations between terriains of 289 

a single type such as Sidewalk. Each location in the world, whatever its classification, may have unique 290 

effects on gait, that may nonetheless be quantifiable. 291 

 292 

There are also limitations to the degree that kinematic measures can explain energy expenditure. Energy 293 

cost depends considerably on mechanical work performed by the body [39], even on uneven terrain [7], 294 

but foot paths cannot capture the force or power produced by the leg. In addition, inertial data cannot 295 

readily discern step width, which also appears to change on uneven terrain [7] and could contribute to 296 

energy cost [18]. Thus, IMU-derived foot paths are neither absolute nor comprehensive measures. More 297 

complete kinematic data are obtainable with IMU suits (e.g., Perception Neuron suit, Noitom Ltd, Miami 298 

FL USA), which might improve upon our results. We find that foot-mounted IMUs appropriately meet 299 

the trade-off between data quantity and convenience and practicality for real-world usage. 300 

 301 
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An improved study would include more variables than examined here. This could include more 302 

challenging terrain with significant speed and elevation variations, or with carried loads, to evaluate the 303 

interactions that determine energy expenditure [5,40,41]. Measures of gait and energy expenditure could 304 

conceivably be combined with geographical information systems (GIS) technology and embedded into 305 

map databases [42]. Although foot motion hardly encompasses all of the gait adaptations for terrain, it is 306 

highly sensitive to the type of terrain, and has a discrete ability to categorize or discriminate terrains 307 

objectively. It also exhibits a continuous correlation with energy expenditure, which could potentially 308 

have predictive applications. 309 

 310 
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Table 1. Stride measures and energy expenditure for five terrains. Results are shown as mean ± s.d. across 408 
subjects (N = 10). Significance (S) of each measure indicated by asterisk ‘*’ (repeated measures ANOVA, 409 
P < 0.05). 410 
 411 

 412 
Measure Sidewalk Dirt Gravel Grass Woodchips S P 

       
  

Virtual Clear-

ance (m) 
Mean 0.031±0.008 0.033±0.009 0.041±0.009 0.049±0.008 0.050±0.009 * 4.66e-08 
RMS 0.006±0.001 0.006±0.002 0.007±0.001 0.010±0.002 0.011±0.003 * 3.70e-04 

 
      

  
Lateral Swing 

(m) 
Mean 0.039±0.015 0.040±0.013 0.043±0.016 0.039±0.012 0.043±0.016 * 1.28e-12 
RMS 0.016±0.003 0.017±0.003 0.019±0.003 0.019±0.004 0.020±0.004 * 6.69e-05 

 
      

  

Stride Height 

(m) 
Mean –0.004±0.021 –0.013±0.019 0.056±0.027 0.038±0.028 0.019±0.062  1.74e-01  

RMS 0.014±0.002 0.016±0.004 0.028±0.003 0.031±0.003 0.044±0.008  2.84e-01 
 

      
  

Stride Length 

(m) 
Mean 1.411±0.069 1.470±0.064 1.404±0.096 1.440±0.064 1.451±0.054 * 1.84e-09 
RMS 0.033±0.005 0.027±0.005 0.034±0.005 0.038±0.003 0.043±0.005  6.35e-02 

 
      

  
Stride Width RMS 0.051±0.009 0.056±0.006 0.066±0.010 0.068±0.008 0.099±0.013  4.23e-01 

(m) 
      

  
         

Speed 
(m/s) 

Mean 1.281±0.085 1.334±0.089 1.263±0.118 1.279±0.085 1.287±0.085 * 1.04e-13  
RMS 0.048±0.009 0.038±0.006 0.047±0.007 0.050±0.004 0.059±0.009 * 1.53e-04 

         

Net Metabolic 

Rate (W) 
Mean 189.1±29.00 204.4±35.96 218.9±35.62 223.2±28.27 240.8±28.91 * 7.11e-11  

      
  

 
      

  
Net Cost of 

Transport 
Mean 0.232±0.036 0.241±0.038 0.272±0.033 0.275±0.035 0.294±0.031 * 3.28e-09 

      
  

  413 
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Table 2. Linear relationship between net metabolic rate (outcome variable) and individual stride 414 
measures. Linear regression was performed on each measure, yielding a slope (with 95% confidence 415 
intervals, c.i.) and constant offset, as well as adjusted R2 and individualized adjusted 𝑅" (with separate 416 
offset for each subject, “Ind”). The difference between individualized and traditional 𝑅" indicates how 417 
much of the variability was due to subject offsets, as opposed to terrain type. Significance (P < 0.05) of 418 
regression indicated by dagger ‘†’, and significant difference in regressor across terrains by asterisk ‘*’ 419 
(identical to Table 1). Regression slopes are reported in units of W/m for all regressors except speed (W ⋅420 
s ⋅ m8/), and offsets in units of W. 421 
 422 

Regressor Slope ± c.i. Offset R2 Ind R2 S P 

Virtual clearance Mean 1714. ± 399.9 155.6 0.34 0.49 †* 2.63e-11 

 RMS 5948. ± 1657. 182.5 0.29 0.46 †* 3.4e-09 

Lateral swing Mean 89.05 ± 494. 224.6 -0.01 0.00 * 0.719 

 RMS 2329. ± 1729. 187.4 0.06 0.07 †* 0.00937 

Stride height Mean 167.3 ± 139.1 225.1 -0.02 0.08 † 0.0195 

 RMS 1410. ± 353.6 193.1 0.30 0.56 † 2.05e-10 

Stride length Mean 88.77 ± 86.88 102.3 0.38 0.03 †* 0.0454 

 RMS 1414. ± 820.2 174.3 0.02 0.18 † 0.00113 

Stride width RMS 689.3 ± 262.6 185.1 0.14 0.35 † 3.11e-06 

Speed Mean 1.96 ± 68.6 226.3 0.19 0.00  * 0.954 

 RMS 1067. ± 593.3 170.1 0.02 0.16 †* 0.000713 
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 423 
Figure 1. Measurement of foot paths and energy expenditure on outdoor terrain. Subjects walked on 424 
different terrains while wearing a portable respirometry system, a global positioning system (GPS) 425 
device, and one inertial measurement unit (IMU) per foot. Sample data from one subject show traces for 426 
walking speed and elevation from GPS, rates of oxygen consumption and carbon dioxide production, and 427 
angular velocity and translational acceleration vs. time. Terrains included Sidewalk, Gravel, Grass, 428 
Woodchip, and Dirt, along with transitions between them (gray lines, not analyzed). Walking speed was 429 
loosely regulated via GPS (average speeds listed); terrain segments were selected to avoid large net 430 
changes in elevation during trials.   431 
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 432 
Figure 2. Sample foot path trajectories and associated measurements, as viewed from above and from the 433 
side. Forward vs. lateral foot displacements from each trial were used to compute stride covariances. 434 
Vertical path of foot was used to determine virtual clearance, relative to straight line between start and 435 
end of stride.  436 
 437 

 438 

 439 

 440 
Figure 3. Representative foot path trajectories for each terrain (from one representative subject), as 441 
viewed from above and from side. All strides were arranged to have common origin, to emphasize 442 
variation among strides. Color of trajectories varies gradually between beginning (blue) and end (red) of 443 
trial, to indicate time course of strides. 444 
 445 
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 447 
Figure 4. Summary measures of energetic cost and stride measures on five different terrains. Energy 448 
expenditure in terms of net metabolic rate and net metabolic cost of transport (energy per unit distance 449 
and weight). Stride measures are shown as mean and root-mean-square (RMS) variability: virtual 450 
clearance, lateral swing distance, stride height, stride length, stride width (variability only), and walking 451 
speed. Bars denote across-subject means; error bars denote standard deviation across subjects (N = 10). 452 
 453 

 454 

 455 

 456 
Figure 5. Principal components and linear discriminants of stride measures, shown as a series of columns 457 
of horizontal bars, each row representing a stride measure. First five principal components (PCs) are 458 
shown, as well as two linear discriminants, for (LD1) Gravel vs. Grass, and (LD2) Sidewalk vs. Dirt (with 459 
constant offsets listed). Stride measures from all subjects and all terrains contributed to this analysis. 460 
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 461 
Fig. 6. Stride measures for all subjects (N = 10) and all terrains, plotted in two ways: (top) Stride length 462 
vs. Speed, and (bottom) Linear discriminants against each other (i.e. a projection of multi-dimensional 463 
data onto two discriminants). Each data point represents one subject’s average measures for one terrain. 464 
Stride lengths and speeds (filled symbols) were highly correlated with each other, and overlapped for 465 
different terrains. As an example of within-trial variations, top graph also shows all strides from all 466 
terrains for a single representative subject (smaller, lightly shaded symbols). Linear discriminants 467 
improve separation between two pairs of terrains (separators denoted by dashed lines). 468 
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 469 
Figure 7. Net metabolic rate for all subjects and all terrains, fitted vs. observed. Observed refers to 470 
empirical measurements (five terrains, N = 10 each). Fitted refers to three ways to predict metabolic rate: 471 
Principal components regression from first two PCs (PCR; adjusted R2 = 0.46); Partial least squares 472 
regression (PLSR; adjusted R2 = 0.52; and from virtual clearance in a single-variable linear regression 473 
(Clearance; overall adjusted R2 = 0.34; shown fitted with subject-specific offsets, 𝑅" = 0.49). Fit types 474 
are denoted by symbol shape, and terrains by color. 475 
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