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71

1 Mathematical justification for true pairwise distance distri-72

bution73

Here we provide a mathematical justification supporting the principle that the true pairwise distance dis-74

tribution is obtained when the pairwise distances are taken between localizations separated by a frame75

difference much longer than the average lifetime of the fluorophore.76

77

Blinking causes the position of a fluorophore to appear throughout multiple frames, we refer to the lo-78

calizations from the same fluorophore as a blinking trajectory and we define the first localization in a79

blinking trajectory as the true localization and all subsequent localizations as repeats. An illustration of80

two blinking fluorophores for a one dimensional image is shown in Fig.S1 with the true localizations of the81

fluorophores shown as green dots and repeats in red. For this justification we assume that the blinking82

behavior of the fluorophores are independent of each other and the photo-kinetics of the fluorophores are83

constant and uniform throughout the acquisition of the image. Note: this is one of the major assumptions84

needed to apply DDC.85

86

The number of repeats for an arbitrary fluorophore, a, follows an unknown random variable, numb(a), and87

the determination of the true position of fluorophore a, xa, is dependent upon the localization precision88

of the microscope, δ. For the toy model in Fig.S1 we have no error in determining the position of the89

fluorophore for simplicity. The distances contributed by two arbitrary fluorophores within an image can90

then be split into the three arrays/categories below:91 
C1 =

√
((xa + δ)− (xb + δ))2

C2(1 : γ) =
√

((xa + δ)− (xb + δ))2

C3(1 : γ′) ≈
√

((δ)− (δ))2

 ,

where γ = (numb(a)+numb(b)+numb(a)×numb(b)) and γ′ =
∑numb(a)

n=0 n+
∑numb(b)

n=0 n, are the number of92

distances contributed to the pairwise distance distribution for the different categories. Here we should note93

that the number of distances contributed by the repeats [C2 and C3] can be much higher than the distances94

contributed by the true localizations, C1. The pairs of localizations belonging to the three categories for95

the two fluorophores are shown in Fig.S1 for reference.96

97

The distances in each of the categories are separated in time by a certain number of frames, ∆n. We define98

N as the maximum lifetime of a fluorophore. The fact that the fluorescent fluorophores have a limited99
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lifetime creates constraints on the frame differences the distances in each category can posses. The possible100

frame differences for the distances in categories C2 and C3 are then the following:101 {
∆nC1 −N < ∆nC2 < ∆nC1 +N

∆nC3 < N

}
,

where ∆nC1 is the frame difference between the true localizations in C1.102

103

Notice that if we only use the distances between localizations that are separate in time by N , ∆n = N ,104

a pair of arbitrary fluorophores that have at least some localizations in their blinking trajectories with105

a frame difference of N will contribute a certain number of distances, from C1 and C2 and all of the106

distances in C3 will be eliminated.107

108

Now, if we use the distances with ∆n = N , the number of distances contributed from C1 and C2 from109

any pair of arbitrary fluorophores follows the unknown random variable φ. [The distances contributed by110

each pair of fluorophores follows the same unknown random variable because the photo-kinetics of each111

fluorophore is the same.]112

113

Then, to obtain an accurate approximation of the true pairwise distance distribution, PT (∆r), we construct114

the probability distribution with a bin width δ, assume that the pairs of arbitrary fluorophores (pairs(i))115

within each distance bin i is large, and use the distances between localizations that are separated in time116

by N . The approximate true probability of observing a distance within bin i is then the following:117

P i
d(∆r|∆n = N) =

∑pairs(i)
w=1 φ∑Allpairs
q=1 φ

≈ pairs(i)× φ
Allpairs × φ

=
pairs(i)

Allpairs
= P i

T (∆r), (1)

where Allpairs is the number of pairs of fluorophores, φ is the mean of the random variable and P i
d(∆r|∆n =118

N) is the bin i of the pairwise distance distribution between all localizations separated by the given frame.119

Equation 1 shows that with the previously mentioned assumptions the probability of finding a distance120

within each bin will be identical to that of the true pairwise distance distribution, justifying the principle.121

Note that each frame difference larger than N can be used to approximate the true pairwise distance122

distribution, therefore creating the pairwise distance distribution using all distances between localizations123

that are separated by a frame difference larger than N leads to an even better approximation of the true124

pairwise distance distribution.125

126

2 The Inner Workings of DDC127

2.1 Defining the Likelihood128

Here we define the Likelihood as the following:129

130

L({R, T}|r,n) =
∏

i,j∈{T}

PT (∆ri,j)×
∏

i∈{R},j∈{R,T}

PR1(∆ri,j|∆ni,j), (2)

where {R, T} are sets that contain the indices of the localizations that are considered the repeats {R} and131

the true localizations {T}, where both sets account for every localization. The actual experimental data132

are stored within the two terms r & n, with the prior containing the coordinates of every localization and133

the later containing the frame. The first term on the right determines the probability of observing all of134

the distances between every pair of true localizations. Here the probability distribution PT (∆ri,j) is the135



Bohrer 4

true pairwise distance distribution, which gives the probability of observing a distance ∆r between the136

two localizations i & j if they are both true localizations. The second term is the probability of observing137

all of the distances between the pairs of localizations if at least one is considered a repeat. Here, the138

probability distribution PR1(∆ri,j|∆ni,j) gives the probability of observing the distance between the pair139

of localizations given the frame difference between them if at least one of the localizations is a repeat.140

Note that every pair of localizations are within the likelihood calculation no matter which localizations are141

assigned to the sets {R & T}.142

143

Overall, by maximizing the Likelihood a subset of true localizations is determined, where the pairwise144

distances between the true localizations are independent of frame, ∆n, and follow PT (∆r). Below we145

provide all additional information needed to calculate L({R, T}|r,n). First we discuss how to determine146

the second distribution PR1(∆ri,j|∆ni,j) and second the methodology for determining the two sets {R & T}.147

148

2.1.1 Determining PR1(∆r|∆n)149

To determine PR1(∆r|∆n) we utilize the pairwise distance distributions between localizations with a given150

frame Pd(∆r|∆n) and the true pairwise distance distribution PT (∆r). Here PT (∆r) is known, determined151

using the pairwise distances between localizations that are separated by a frame greater than N (See Main152

Text).153

154

Again, the desired distribution PR1(∆r|∆n) gives the probability of observing a distance between localiza-155

tions for a given ∆n if at least one of them is a repeat. PR1(∆r|∆n) is therefore made up of the distances156

between {R and T} and {R and R}, where the curly brackets with the and indicate the pairwise distances157

between the localiztions within the sets. While Pd(∆r|∆n) is made up of the distances between {R and158

T}, {R and R}, and {T and T} for a given ∆n. Therefore, PR1(∆r|∆n) is equal to Pd(∆r|∆n) with the159

contribution from the distances between true localizations removed, {T and T}.160

161

To properly eliminate the part of the distribution that is due to the distances between the true localiza-162

tions, we quantify the makeup of Pd(∆r|∆n) and then proportionally remove PT (∆r) from Pd(∆r|∆n),163

resulting in PR1(∆r|∆n).164

165

Pd(∆r|∆n) is itself a combination of two distributions PT (∆r) & Pblink(∆r), where the distances between166

different fluorophores follow PT (∆r) [Categories C1 and C2] and the distances between localizations from167

the same fluorophore follow Pblink(∆r) [Category C3]. Here the probability distribution Pblink(∆r) is the168

probability of observing a distance between a pair of localizations that are from the same fluorophore169

[Category C3] and is determined by the resolution of the SMLM experiment.170

171

We can determine Pblink(∆r) by comparing PT (∆r) to Pd(∆r|∆n < N). The distribution PT (∆r) by defini-172

tion lacks all distances between pairs of localizations that are from the same fluorophore and only contains173

distances between localizations from different fluorophores [Categories C1 and C2]. While Pd(∆r|∆n < N)174

not only contains the distances between pairs of localizations from the same fluorophore [Category C3],175

but the distances between different fluorophores [Categories C1 and C2]. Note that within a SMLM ex-176

periment the resolution is very high, and therefore the distances between the localizations from the same177

fluorophore are very small, much less than 1000 nm. Therefore, the “shape” of the tails of the two distri-178

butions PT (∆r) and Pd(∆r|∆n < N) match each other, as they both only contain the distances between179

different fluorophores (Data not shown). With this understanding in mind, the distribution Pblink(∆r) can180

be obtained by subtracting PT (∆r) from Pd(∆r|∆n < N) so that the probability of observing a distance181

greater than 1000 nm is approximately zero, and then normalizing so that the distribution sums to one.182

183
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To determine the proportion of each distribution making up Pd(∆r|∆n), Pd(∆r|∆n) can be fit to the184

following equation:185

X(∆n) = Fit[(1−X)× Pblink(∆r) +X × PT (∆r)], (3)

where X is between 0 and 1.186

187

The proportion of the distances that follow PT (∆r) come from the distances between {T and T} and {R188

and T}. We must therefore take this into consideration when determining the proportion of PR1(∆r|∆n)189

that follows PT (∆r). To adjust the proportion of the distribution that follows PT (∆r) we calculate the190

ratio of the number of distances from {R and T} relative to the number of distances from {T and T} and191

{R and T}.192

193

This ratio can be determined by calculating the average number of repeats per fluorophore, numb. numb194

can be obtained without having to perform any additional experiments, using the approximate probability195

that a localization is a repeat (See Approximating the Probability a Localization is a repeat Section of196

this Supporting Material) and Alg. 1 to obtain a relatively accurate estimation as to the number of blinks197

per fluorophore. (Note: for this calculation κ(density) = 0 and κ2(frame) = 0, discussed later.) Here we198

should note that numb could also be determined by experiment, though these experiments can be difficult199

and are very sensitive to model specific errors.200

201

The ratio of the number of distances from {R and T} relative to the number of distances from {R and T}202

and {T and T} is then the following (See Mathematical Justification Section of this Supporting Material):203

α =
numb + numb + numb ∗ numb

1 + numb + numb + numb ∗ numb

=
#{R and T}

#{R and T}+ #{T and T}
. (4)

where #{R and T} indicates the number of distances between the localizations within the two sets. The204

distribution PR1(∆r|∆n) is then equal to the following equation:205

PR1(∆r|∆n) = Norm[PT (∆r)×X(∆n)× α + Pblink(∆r)× [1−X(∆n)]]. (5)

Here Norm indicates that the distribution within the brackets is normalized so that it sums to one. The206

distribution PR1(∆r|∆n) is a combination of the two distributions that are from the distances between lo-207

calizations from different fluorophores (PT (∆r))) and the distances between the localizations from the same208

fluorophore (Pblink(∆r)). The first term (PT (∆r) × X(∆n) × α), first accounts for the proportion of the209

distribution Pd(∆r|∆n) that results from the distances between localizations from different fluorophores210

and then scales this proportion further with α, so that the contribution from the distances between the211

pairs of true localizations are removed. PR1(∆r|∆n), for the 1 dark state no clustered simulation is shown212

in Fig. S8A. As expected, there is a large probability for small distances and small frame differences due213

to the proportion of distances between the blinks of the same fluorophores being large. Then as the frame214

difference increases, the proportion of distances between the blinks of the same fluorophores decreases and215

the distribution converges upon the true pairwise distance distribution, Fig. S8A.216

217

2.1.2 Determining the sets {R} and {T}218

To assign a localization to either the {R} set (repeat) or the {T} set (True Localization) DDC uses the
following:

{R, T} = Alg1[r,n,M, κ(density), κ2(frame)]. (6)

The sets {R} and {T} are determined within Algorithm 1, which uses the parameters and data within the219

brackets to assign each localization to one of the two sets. The actual experimental data are stored within220
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the two terms r & n, where r contains the coordinates of each localization and n contains the frame. Here,221

M is a matrix that contains the information that is used to determine the probability that a localization222

is a repeat (See Approximating the Probability a Localization is a repeat Section) and κ(density) &223

κ2(frame) are monotonic functions that are determined within the MCMC. The two functions κ(density)224

& κ2(frame) allow DDC to adjust the probability calculation by taking into consideration the local density225

of the image and the frame of each localization. These are the two functions that vary during the MCMC226

to maximize the likelihood, defining the two sets. We discuss the specifics of κ(density) & κ2(frame)227

within the section Alg. 1, Linking Localizations into Trajectories.228

2.2 Approximating the probability that a localization is a repeat229

Depending upon the number of localizations within a SMLM image, the number of subsets of localizations230

can be extremely large. To speed up the phase space search and to minimize the likelihood of overfit-231

ting DDC calculates the approximate probability that each localization is a repeat (within the blinking232

trajectory) of a prior localization and only investigates the more likely subsets of localizations using the233

MCMC approach (Alg. 1, Linking Localizations into Trajectories). Below we discuss how the approximate234

probability that each localization is a repeat can be determined and then describe Algorithm 1, which235

defines which localizations are true localizations and which are repeats within DDC.236

237

Here we define the matrix M, which gives the probability that a localization is a repeat of a prior localization238

given a distance, ∆r, and ∆n between the localizations.239

M(∆r ∈ i,∆n) =
P i
d(∆r|∆n)− ω × P i

T (∆r)

P i
d(∆r|∆n)

, (7)

where P i
d(∆r|∆n) is the raw probability for the distance between two localizations to be in bin i, given240

that they are separated by ∆n, P i
T (∆r) is the true pairwise distance distribution and ω =

∑
i>>σ P

i
d(∆r|∆n)∑

i>>σ P
i
T (∆r)

,241

where σ is the localization precision of the microscope. Here ω is a scaling factor used to match the242

tails of the two distributions, as the distance distributions have a similar shape for ∆r >> σ. Fig. S5243

illustrates this calculation and the assumption about the tails of the distribution. M, for the 1 dark state244

no clustered simulation is shown in Fig. S8B, as expected, there are high probabilities with small ∆r and245

small ∆n, which get lower as ∆r and ∆n increase. M is the matrix that Alg. 1 uses to link localizations246

into trajectories.247

248

2.3 Alg. 1, linking localizations into trajectories249

Here we describe Alg. 1, which DDC uses to determine which localizations are linked into trajectories using250

the previously defined M and κ(density) & κ2(frame). (See Approximating the Probability a Localization251

is a repeat) Note: one could easily modify the algorithm and have it take into consideration more informa-252

tion to determine which localizations belong to each set, but at a computational cost and risk of overfitting.253

254

We wanted our methodology to be able to account for heterogeneous distributions of fluorophores within255

the same image and to incorporate the “time” dependence for the appearance of localizations. Therefore,256

one single cutoff probability or threshold was avoided. Instead we made the probability at which localiza-257

tions are linked together into the same blinking trajectory related to the local density of the image before258

blinking correction and related to the frame of the localization.259

260

Note: during the maximization of the likelihood for all of the systems within this work we could not261

simply eliminate localizations without taking into consideration the “probability of repeat”, as this led to262
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an extremely large phase space and did not converge within a reasonable amount of time.263

264

Here the reasoning for incorporating the density is this: the more dense a region of an image is the265

more likely that a true localization could be considered a repeat by chance (based off of the probability266

calculation, see Alg. 1) and therefore the density of the image needs be taken into consideration. To267

incorporate the heterogeneity of the image DDC determines the local density of each localization before268

the blinking correction. To do this DDC calculates the number of raw localizations that are within 2σ269

(SMLM resolution) and have a frame difference greater than N , for each localization. DDC then defines270

a monotonically increasing function that is a function of the density, κ(density) [Initially κ(density) = 0].271

The flexibility of this function allows DDC to handle heterogeneous distributions of fluorophores by taking272

into consideration the local density of the image for the probability calculation (See Alg. 1).273

274

Note: the shape of this function is determined during the MCMC approach and is discussed within Alg.275

2.276

277

The reasoning to include the frame information within the probability calculation is: because more local-278

izations appear at the beginning of the acquisition of an image when compared to the end of the acquisition,279

localizations would be more likely to be considered repeats at the beginning of the acquisition than at the280

end by random chance. (Because fluorophores photo-bleach during the acquisition of a SMLM image.)281

The time dependence is utilized in a similar manner as the density, where a monotonically decreasing func-282

tion of the frame of each localization is incorporated into the probability calculation, κ2(frame), see Alg 1.283

284

Note: the shape of this function is also determined during the MCMC approach and is discussed within285

Alg. 2.286

287

To link localizations into trajectories DDC utilizes Alg. 1. This simple algorithm goes through all local-288

izations and links them into trajectories, starting with the localizations that are most similar in frame.289

To decide whether or not to link two localizations into the same trajectory [or two trajectories into one]290

the algorithm used the mean of the “probabilities of blink” of the localizations being considered. DDC291

calculates the probability of being a blink with the matrix M, and then divides the mean probability by292

1 + κ(density(ii)) + κ2(frame(ii)). This takes into account the local density and frame of the localization293

ii. If the probability of the localization [or localizations] is larger than .5, then the localizations are com-294

bined into the same trajectory. For each trajectory all localizations but the localization with the smallest295

frame in each trajectory are then considered blinks.296

297

Note: we should mention that the order in which the localizations in Alg. 1 are arranged does have a small298

influence on the trajectories that are formed, especially if the activation rate is high. Therefore, DDC299

also varies the order of the localizations during the MCMC approach to obtain different subsets of true300

localizations (See Alg. 2 of this Supporting Material for further details.)301

302

Note: we found that not including an algorithm of similar structure to Alg. 1 (takes into account the303

physical process of fluorophore blinking) either resulted in an extremely slow convergence or got stuck in304

minimums that deviated from the true image. Therefore, including the information within M is critical305

for DDC to converge upon the true image. We should also state that we did not perform an extensive306

search for alternatives and we do realize that improvements to Alg. 1 could be an area of improvement for307

DDC in future research.308
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2.4 Alg. 2, MCMC approach to maximize the likelihood309

Here we describe Alg. 2, which DDC uses to maximize the Likelihood and obtain the “correct” subset of310

true localizations.311

312

Algorithm 2 is a simple Markov Chain Monte Carlo (MCMC) approach that utilizes Alg. 1 in the process.313

The MCMC approach perturbs three parameters, κ(density), κ2(frame) and the order of the localizations314

to determine the “correct” subset of true localizations. For each step, one of the three previous parameters315

are modified by a small amount and the likelihood is calculated for the particular subset of true localiza-316

tions determined by Alg. 1, given those parameters. Alg. 2 then keeps the new parameter and resets the317

best likelihood if the likelihood is greater than the previous best likelihood or accepts the new parameters318

if the difference of the likelihood with the old likelihood is greater than a uniform random number. An319

example of a phase space search is shown in Fig. S9, where the maximization of the likelihood results in320

the results shown in red.321

322

We found that including the MCMC approach to maximize the log of the likelihood led to significant323

improvements in the correct number of fluorophores calculated for all systems. Furthermore, for the more324

heterogeneous distributions of localizations, the Small clusters simulation systems, the MCMC approach325

led to dramatic improvements in the image error, data not shown. Therefore, the MCMC approach is vital326

to the successful supplication of DDC even though it is the most computationally expensive step of the327

methodology.328

329

3 Evaluating the three most common threshold methodologies330

and the absolute best image error from thresholding331

Here we investigate the three most common threshold methodologies and compare their results with DDC.332

We also compare DDC to the absolute best Image Error thresholding can produce. We discuss the results333

from each of the comparisons here and whenever we reference the 2 dark state systems we are referring to334

Fig. 2 in the main text and whenever we mention the 1 dark state system we are referencing the results335

shown in Fig. S12.336

3.1 Equations for evaluating the different methods337

The image error of each methodology was calculated with the following equation:

ImageError =

∑
i,j[Norm(CorrectedImage(i, j))−Norm(RealImage(i, j))]2∑

i,j[Norm(UncorrectedImage(i, j))−Norm(RealImage(i, j))]2
, (8)

where i&j go over all pixels within the images, Norm() indicates that the image is normalized so that338

the maximum intensity is 1 and the lowest intensity is 0, CorrectedImage is the image that results from339

a blinking corrected methodology, RealImage is the image that results if an image is generated only using340

the true localizations and UncorrectedImage is the image with no blinking corrected methodology.341

The counting error of each methodology was calculated with the following equation:342

CountingError =
|Methods#ofloc−Real#ofloc|

Real#ofloc
× 100, (9)

where Methods#ofloc is the number of true localizations determined by the methodology and Real#ofloc343

is the actual number of true localizations.344
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3.2 2011, Semi-empirical equation to obtain photo-kinetics (T1)345

Perhaps the most famous and most widely used methodology to extract the photo-kinetics and correct for346

blinking is by utilizing a semi-empirical formula developed in 2011 (1). The parameters from the fit to the347

semi-empirical formula are also often used with the suggested optimal thresholds from Coltharp et al. (2)348

with a time threshold equal to 2 times the average dark time of the fluorophore.349

350

For this methodology the distance threshold is often set to 1 pixel (100nm) and the time threshold, td (dark351

time) is varied and the number of localizations at each td is quantified. Once the longer td is determine352

the time threshold is often set to approximately 2 times the dark time.353

354

To evaluate the effectiveness of this methodology we applied the methodology to the 1 dark state simula-355

tion data for the three different distributions of fluorophores, Fig S10. The semi-empirical formula fit well,356

but the error in the number of fluorophores and the average dark time was very significant, indicating that357

the methodology is flawed for systems with more than 1 blink per fluorophore. (The percent error for the358

extracted parameters is shown in the titles of each subplot.) This previously unknown degree of error is359

likely due to the small number of simulation systems to which the methodology was applied during the360

development of the methodology. Though, here we feel that we should state that this previous work was361

vital for informing the field just how important blinking correction can be.362

363

Considering the large amount of error in the extracted parameters, Fig. S10, we choose to assume that364

the methodology had perfect knowledge of the characteristic times for the dark states for each simulation365

system. When comparing the error with the time threshold set to 2 times the known dark time the error in366

the calculated number of fluorophores improved significantly, Fig. S12. For the two dark state simulation367

data we set the time threshold equal to 2 times the longer characteristic dark time. The results of applying368

these thresholds are shown in Fig. 2 in the main text.369

370

When compared to DDC across all molecular distributions and fluorophores DDC outperformed this371

methodology across every metric. Considering this is the only other methodology that does not require372

additional experiments to quantify the photo-kinetics of the fluorophore, the experiments here suggest that373

DDC should be utilized in every situation instead of this methodology.374

3.3 2013, Stringent thresholds to eliminate possibility of over-counting (T2)375

For the thresholding methodology of Puchner et al. (3), they first characterized the photo-kinetics of376

the fluorophore and then set an extremely stringent time threshold, so that 99% of blinking dark times377

would be linked together and a distance threshold equal to 4 times the resolution of the experiment. This378

methodology was mainly developed to eliminate the possibility of blinking leading to the appearance of379

clusters, but due to the extreme thresholds this method will deplete the intensity of true clusters.380

381

The results of comparing this thresholding methodology to the 1 dark state simulation systems is shown382

in Fig. S12. For the Image Error in each of the 3 systems DDC was significantly better than this thresh-383

olding methodology. The improvement was especially noticeable for the dense 1 dark state system, as the384

stringent thresholds are expected to be detrimental to dense clusters. Suggesting that DDC is better at385

obtaining the true underlying distribution of fluorophores.386

387

Interestingly, this methodology performed especially well for the number of fluorophores in the random388

and Small clusters 1 dark state systems, but failed for the dense system with a percent error around 15%.389

When compared to DDC for the number of fluorophores, DDC consistently had a percent error less than390

5%. Suggesting that DDC is also a more reliable method under this metric for this fluorophore.391
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392

The results for comparing this thresholding methodology with DDC for the 2 dark state simulation systems393

is shown in Fig. 2 in the main text. Across the board DDC was vastly better than this thresholding394

methodology for both the Image Error and the error in the number of fluorophores. Suggesting that when395

the photo-kinetics of the fluorophore are more complicated than a simple 1 dark state DDC is especially396

beneficial when compared to this methodology. Furthermore, this thresholding methodology requires the397

characterization of the fluorophore, which wastes valuable time and can be experimentally difficult at398

times.399

3.4 2012, Determining thresholds by knowing the number of fluorophores400

(T3)401

In the methodology developed by Coltharp et al. (2) they characterized the fluorophores to determine the402

number of blinks per fluorophore to determine the time threshold and the distance threshold. To deter-403

mine the number of blinks per fluorophore Coltharp et al. utilized a low activation (UV) laser and slowly404

activated the fluorophores so that individual time traces could be easily extracted. In the last section of405

the results of the main text we show that this methodology is likely flawed and varying activation intensi-406

ties change the photo-physics of the fluorophores potentially leading to errors in the number of blinks per407

fluorophore, Fig. 4. Though, further experiments would be needed for that particular fluorophore. Also,408

even if the time traces are properly extracted from fluorophores with the same photo-physics the fits to409

the dark time intervals are error prone and model dependent (2).410

411

Assuming perfect knowledge as to the number of blinks per fluorophore for this methodology, we scanned412

the number of localizations obtained for each time threshold and distance threshold. The ideal thresholds413

were determined using the thresholds for the minimal error in the number of localizations at the inter-414

section of the time and distance thresholds. Examples of this phase space search for six different systems415

investigated in this work are shown in the first column of Fig. S11, with the corresponding Image Error for416

each set of thresholds shown in the second column. (Note: the error is log scale for the first column so one417

can clearly see why the exact thresholds were chosen.) The thresholds determined by this methodology418

are shown in the following table:419

System Time Threshold (n) Distance Threshold (nm)
Random 1 dark 25 130

Small clusters 1 dark 20 130
Dense 1 dark 20 100

Random 2 dark 35 130
Small clusters 2 dark 35 130

Dense 2 dark 30 100
Filament 35 80

420

Note: Logically, the optimal thresholds for this methodology became less intense the more dense the molec-421

ular distributions became.422

423

The results of applying this methodology are shown in Fig. S12 for the 1 dark state systems and Fig. 2 for424

the 2 dark state systems. Considering with this methodology we assumed perfect knowledge for the number425

of blinks per fluorophore it was of little surprise that the error in the calculated number of fluorophores was426

actually lower than DDC for the 1 dark state systems. The error in the number of fluorophores was less427

than 6% for both methods for all systems for the 1 dark state fluorophore. Even though the error in the428

number of fluorophores for both methodologies was comparable, the DDC Image Error was lower for each429

1 dark state system when compared to this thresholding methodology. Suggesting, that DDC captures a430
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more reliable representation of the true localizations, while resulting in a comparable error in the number431

of fluorophores for the simple 1 dark state fluorophore.432

433

This was also the case for the 2 dark state simulation systems except for the dense distribution system.434

For the dense distribution system the error in the number of fluorophores was significantly worse for DDC,435

about 12%, while the thresholding methodology performed well with this metric. (We should note again436

that this is assuming perfect knowledge as to the number of blinks per fluorophore, so it is expected that437

the error in the number of fluorophores will always be low with this methodology.) Even though DDC438

performed worse for the dense 2 dark state system for the number of fluorophores, for the Image Error439

DDC greatly surpassed this thresholding methodology for all three distributions of fluorophores. The440

most significant improvement was for the dense system, where this thresholding methodology performed441

much worse than even an uncorrected SMLM image. Suggesting that DDC is vastly superior than this442

thresholding methodology for a more complicated 2 dark state fluorophore and great care should be taken443

when utilizing this methodology when actual clustering exists.444

3.5 The absolute best thresholds for the image error (T4)445

Considering DDC was able to surpass all of the traditional thresholding methodologies with regards to446

the Image Error, we wanted to see if any thresholds could surpass DDC. To do this we scanned the time447

threshold and distance threshold for each system and picked the thresholds that resulted in the mean448

minimum Image Error for each of the seven systems. The thresholds picked by this methodology are449

shown in the following table:450

System Time Threshold (n) Distance Threshold (nm)
Random 1 dark 17 160

Small clusters 1 dark 13 170
Dense 1 dark 5 190

Random 2 dark 39 140
Small clusters 2 dark 28 150

Dense 2 dark 3 210
Filament 43 80

Continuous Filaments 10 80

451

The results of comparing the absolute best threshold methodology with DDC is shown in Fig. S12 for the452

1 dark state system. As expected this thresholding methodology performed best for the metric of Image453

Error when compared to the other thresholding methodologies. Interestingly, DDC was still able to outper-454

form the thresholding methodology in terms of the Image Error and in terms of the number of fluorophores.455

456

The results of comparing this thresholding methodology with DDC for the 2 dark state system is shown in457

Fig. 2. Interestingly, for this fluorophore the Image Error and the error in the number of fluorophores for458

the Random and the Small clusters systems was similar between the two methods. The major difference459

was for the dense system where the error in the number of fluorophores was around 80% for the thresh-460

olding system, while DDC maintained an error of about 12%. Suggesting that the Image Error for the 2461

dark state systems was similar between the two methods, but DDC was able to surpass this thresholding462

methodology in terms of determining the proper number of fluorophores.463

464

These results suggest that even with the absolute best thresholds DDC is still a more reliable approach in465

regards to the two metrics investigated within this work.466
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4 Methods467

4.1 Methodology of Sphan et al.468

The implementation of Sphan et al. was done by randomly selecting subsets of localizations (with re-469

placement) and then using the threshold of 2.5 (just as in (4)) as the definition of a cluster — to create470

the cluster masks. The normalized average density within the clusters (P/Po) vs. the relative area of the471

image the clusters covered (η) was plotted for all subsets of localizations to determine if clustering was472

significant for the system of interest. For this methodology, clustering is deemed significant if P/Po rises473

above 1 and stays above 1.474

475

We tested this method on three different simulation systems (Random, Small Clusters, Dense Clusters)476

with the two-state fluorophore and show these results in Fig. S15A. We observed that the randomly dis-477

tributed fluorophores maintained a P/Po equal to 1 while the Dense cluster system rose significantly well478

above 1, demonstrating that the methodology could adequately recognize that there were clusters in the479

Dense cluster system and that there were not clusters in the Random system. As expected an intermediate480

value for the Small cluster system was also observed.481

482

Next, to investigate the clustering of AKAP79/150 with an orthogonal method to DDC, we applied the483

methodology of Spahn et al. on the superresolution data of each of the two orthologs. The results of484

this analysis are shown in Fig. S15B, where P/Po for both rose slightly above a P/Po = 1. These results485

support the previous findings that the two are significantly clustered, supporting the analysis as quantified486

by DDC. Though, we should note that P/Po did not reach high values (like that for the Dense cluster487

system), suggesting that just as with DDC, the clustering of the two orthologs are not “extreme.”488

4.2 Specifics for simulations489

First, six different sets of data were simulated, 3 different underlying structures and 2 different fluo-490

rophores. The two fluorophores followed the two models in Fig.S2. In these simulations the fluorophores491

only registered as a localization if it was in the active state. For the different simulations the first condi-492

tion contained no clusters [Random] and all fluorophores were randomly distributed within a 1000nm by493

1000nm square and allowed to blink according to the kinetic models in Fig.S2. The second [Small clusters]494

and third [Dense] conditions had 3 clusters each with 10% of the fluorophores distributed into the clusters495

for the Small clusters system and 50% for the Dense system. For each of the simulations with clusters496

each cluster’s central location was randomly defined and the localizations within each cluster followed a497

normal distribution around that center with a σ = 40. For each of the six systems 24 different images were498

generated and analyzed for each methodology.499

500

Second, for the simulations involving filaments, we randomly distributed 50% of the true localizations along501

5 lines and randomly deposited the rest. We simulated 24 images, with 1000 true localizations each, with502

approximately 4000 localizations total, following the photo-kinetic model in Fig.S2A. These simulations503

produced filaments that were clearly visible, but not homogeneous along the filaments.504

505

Third, to produce “intersecting” continuous overlapping filaments we simulated filaments with no varying506

label density and with a localization error of 20 nm. This was done by placing a fluorophore every 5 nm507

along a filament. These simulations also followed Fig.S2A and resulted in images like that in Fig. 2 far508

right.509
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4.3 Methods for experiments that were used to calculate Z(∆n)510

4.3.1 Strains511

The strains with chromosomal fluorescent protein fusion tags were constructed using λ-RED-mediated512

homologous recombination (5). Some results used in this paper came from strains that also harbor a513

single chromosomal DNA site marker (tetO6), the DNA markers are positioned in various positions on the514

chromosome, and a portion of the results are not relevant and thus not discussed in this publication. The515

details for the construction of these bacterial strains are described in detail in a previous publication (5).516

4.3.2 Cell growth517

For live cell imaging, single colonies were picked from LB plates and cultured overnight in EZ Rich De-518

fined Media (EZRDM, Teknova) with 0.4% glucose, at room temperature (RT) with shaking. The next519

morning, cells were reinoculated into fresh EZRDM with 0.4% glucose and grown at RT until they have520

reached mid-log phase (O.D.600 0.3-0.4). For simultaneous visualization of DNA site markers (results521

are not reported here), cells were harvested and resuspended in fresh EZRDM supplemented with 0.3%522

L-arabinose and 0.4% glycerol and allowed to grow for two additional hours, these cells were harvested via523

centrifugation and imaged immediately.524

525

For fixed cell experiments, cells were grown accordingly and fixed in 3.7% (v/v) paraformaldehyde (16%526

Paraformaldehyde, EM Grade, EMS) for 15 min at RT, washed with 1X PBS and imaged immediately.527

4.3.3 Nascent rRNA labeling (smFISH)528

We performed smFISH using a previously published protocol ((6), (7)). Briefly, cells were grown in EZRDM529

glucose as previously described; 5 ml of mid-log phase cells were fixed with 3.7% (v/v) paraformaldehyde530

(16% Paraformaldehyde, EM Grade, EMS), placed for 30 min on ice. Next, cells were harvested via cen-531

trifugation, and subsequently washed two times in 1X PBS. Cells were then permeabilized by resuspending532

in a mixture of 300 l of H2O and 700 µl of 100% ethanol and incubating with rotation at RT for 30 min.533

Cells were stored at 4 °C until next day. Wash buffer was freshly prepared with 40% formamide and 2x534

SSC and put on ice. Cells were spun-down in a bench-top centrifuge at 10000 rpm for 3 min and the cell535

pellet was resuspended in 1 ml of wash buffer. The sample was placed on a nutator to mix for 5 min536

at RT. Hybridization solution was prepared with 40% formamide and 2x SSC, subsequently, dye-labeled537

oligo probes were added to hybridization solution to a final concentration of 1 µ M. Cell were spun-down538

again and 50 µl of hybridization solution with probe was added to the pellet. The hybridization sample539

was mixed well and placed overnight in a 30 °C incubator. Next day, 10 µl of hybridization sample was540

washed with 200 µl of fresh wash buffer and incubated at 30 °C for 30 min, this was repeated one more541

time. The washed sample was imaged immediately: without STORM imaging buffer for ensemble fluo-542

rescence, with STORM buffer to induce dye blinking for superresolution imaging. glucose oxidase + thiol543

STORM buffer was used to image samples with only dye labeling (50 mM Tris (pH 8.0), 10 mM NaCl,544

0.5 mg ml-1 glucose oxidase (Sigma-Aldrich), 40 g ml-1 catalase (Roche), 10% (w/v) glucose and 10 mM545

MEA (Fluka))((8)). Thiol only STORM buffer (10 mM MEA, 50 mM Tris (pH 8.0), 10 mM NaCl) was546

used to image samples with both endogenously expressed fluorescent proteins and dye labeling. This was547

to preserve the fluorescent signal from fluorescent proteins, since the presence of glucose oxidase in the548

STORM buffer tended to quench the fluorescent protein signal. Pre-rRNA transcripts were detected with549

a single probe L1, conjugated at the 5’ with either Alexa Fluor 488 (NHS ester) or Alexa Fluor 647 (NHS550

ester) (IDT) ((9)). Upon receiving the commercial oligos, a working stock (50 M) was made and aliquoted551

for storage at -20 °C.552
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4.3.4 Cell imaging and SMLM analysis553

A 3% gel pad made with low-melting agarose (SeaPlaque, Lonza) in EZRDM was prepared. Live cells of an554

optimal imaging density were deposited onto the gel pad and immobilized with a coverslip for imaging as555

previously described ((6)). An Olympus IX-81 inverted microscope with a 100X oil objective (UPlanApo,556

N = 1.4x) was used, with 1.6x additional amplification. Images were captured with an Ixon DU-895557

(Andor) EM-CCD with a 13 µm pixel size using MetaMorph (Molecular Devices). Illuminations (405558

nm, 488 nm, 561 nm, 647 nm) were provided by solid-state lasers Coherent OBIS-405, Coherent OBIS-559

488, Coherent Sapphire-561, and Coherent OBIS-647 respectively. Fluorescence was split using a multi560

dichroic filter (ZT 405/488/561/647rpc, Chroma), and the far-red, red and green channels were further561

selected using HQ705/55, HQ600/50 and ET525/50 bandpass filters (Chroma). Gold fiducial beads (50562

nm, Microspheres-Nanospheres, Mahopac, NY) were used to correct for any sample drift during imaging.563

All superresolution images were acquired with a 10 ms exposure time with 3000-9000 frames. Activation of564

fluorescent proteins was done simultaneously to fluorophore excitation, and activation laser (405) was kept565

at a constant power throughout the imaging session. For two-color imaging, the simultaneous, multi-color566

acquisition was achieved using Optosplit II or Optosplit III (Cairn Research), colored channels were overlaid567

using calibration images from TetraSpeck beads (Life Technologies, T-7279), as previously described ((10)).568

Initial fitting of raw imaging data was performed via thunderSTORM plugin ((11)). Later analysis of569

localizations with DDC was processed using custom Matlab scripts, which will be made available upon570

request.571

4.4 Methods used for sister chromatid experiments572

4.4.1 Chromatin fiber preparation from Drosophila melanogaster embryos with YOYO-1573

staining:574

Young embryos (<2 hours old, 15-20 embryos per experiment) were collected and washed 3 times in575

room temperature lysis buffer (100mM NaCl, 25mM Tris-base, 0.2% Joy detergent, pH 10; adapted from576

McKnight and Miller (12)). Embryos were transferred to the center of a clean glass slide (Fisherbrand577

Superfrost Plus Microscope Slides) and subsequently drained of residual lysis buffer. Following removal of578

residual lysis buffer, 20 µl of fresh lysis buffer was then added to the surface of the glass slide to immerse579

embryos. Embryos were then manually broken apart with dissecting forceps to release embryonic nuclei580

from the intact embryo. After breaking open the embryo, the protective outer layers of the embryo (chorion581

layers, waxy layer and vitelline membrane) were removed, and the nuclei were allowed to sit in lysis buffer582

until fully lysed ( 2 minutes). 10 µl of sucrose/formalin solution (1M sucrose; 10% formaldehyde) was then583

added on top of the lysed nuclei, after which, a large coverslip (22x50mm; Thermo Scientific? Rectangular584

Cover Slips) was placed on top of the lysed chromatin solution and incubated for two minutes at room585

temperature. Following incubation, slides containing chromatin fibers derived from lysed embryonic nuclei586

were transferred to liquid nitrogen and allowed to sit for two minutes. Slides were then removed from587

liquid nitrogen, after which, the cover slip was removed with a razor blade. Slides were then transferred588

to cold (-20°C) 95% ethanol and incubated for 10 minutes. Slides were removed from ethanol and placed589

at a 45 deg angle for 2 minutes (or until almost all ethanol has evaporated from the slide, but it is not590

completely dry). 500 µl of fixative solution [0.5% formaldehyde in 1xPBST (1xPBS with 0.1% Triton)]591

was then slowly added to the surface of the slide, after which, the slide was incubated for 2 minutes.592

Slides were then drained of fixative solution and transferred to a coplin jar containing 50 ml of 1xPBS.593

To fully wash chromatin fiber samples, slides were then removed from coplin jar and drained of remaining594

1xPBS. Used PBS in the coplin jar was then discarded, and the coplin jar was refilled with 50 ml fresh595

PBS. Slides were then placed back inside coplin jar and incubated at room temperature for two minutes.596

Slides were removed from coplin jar and placed in fresh PBS two additional times in order to complete597

the wash process. Following washing, slides were transferred to a humid, dark place and pre-blocked with598

500 µl of blocking solution (2% BSA, MilliporeSigma Bovine Serum Albumin, in 1xPBS) for 30 minutes.599
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Blocking solution was then drained and 500 µl of DNA labeling solution containing 1uM YOYO-1-DNA600

dye (ThermoFisher Scientific Invitrogen YOYO-1) was then slowly added to the surface of the slide. Slides601

were then incubated for 120 minutes in a humid, dark place. Following incubation, slides were drained of602

DNA labeling solution and transferred to a coplin jar containing 50 ml of 1xPBS. Slides were removed from603

coplin jar and placed in fresh PBS two additional times in order to complete the wash process. Following604

washing, slides were removed from coplin jar and drained of residual 1xPBS. Slides were then mounted in605

preparation for STORM imaging.606

4.4.2 SMLM Imaging607

The single molecule localization microscopy (SMLM) imaging of DNA fibers is based on the DNA inter-608

calating dye method (Flors, 2009, PMID: 19554598). The fibers on cover slides were labeled with 1uM609

YOYO-1 for 120 min. 8-10 µL dSTORM buffer (Nahidiazar, 2016, PMC4938622) were added on the top610

of the fibers and sandwiched with a clean coverglass (#1 Fisher Scientific). The coverglass was then sealed611

with nail polish. The sample can be imaged within 4-5 hours with reasonable localizations. Image acqui-612

sitions were performed on an Olympus IX-71 inverted microscope with a 1.49 NA 100 X TIRF objective,613

a ZT405/488/561 dichroic mirror (Chroma), an ET525/50 emission filter (Chroma), and an Andor iXon614

Ultra 897 EmCCD camera. Ten to thirty 3000-frame acquisitions of YOYO-1 signal were then obtained615

with a 30 frame/second rate at 1 kW/cm2 488nm laser power. During the imaging, the activation 405 nm616

laser was ramped stepwise (Images were analyzed individually and then recombined) up by 1 W/cm2 per617

movies (3000 frames) to obtain more localizations. dSTORM data were first localized using 2D gaussian618

fitting in an ImageJ plug-in, ThunderSTORM. A bandpass filter (70 500nm) for sigma was applied to re-619

move the single pixel noise and out-of-focus molecules. The cross-correlation method in ThunderSTORM620

was applied to correct the long-time scale drift.621

4.4.3 Analysis622

To quantify the number of localizations between sister chromatids we first fit a spline function to cropped623

out regions that showed single filaments. We then projected the localizations along this new axis — so624

that there was no curvature within the filaments and they were centered. We then split the filament into625

as many specifically sized segments as possible (as varied within the corresponding figures) and quantified626

the number of localizations in the upper sister relative to the lower sister for the different blinking-artifact627

methods.628

4.5 Methods used for dynein experiments629

4.5.1 Cell line630

Stably transfected HeLa IC74-mfGFP cells (The dynein intermediate chain is GFP labeled, from Takashi631

Murayama lab, Juntendo University School of Medicine, Tokyo, Japan) were plated on a 8-well Lab-632

tek 1 coverglass chamber (Nunc). Cells were cultured under standard conditions (DMEM, high glucose,633

pyruvate, 10% FBS and 2 mM glutamine).634

4.5.2 Immunostaining635

Cells were fixed with PFA (4% in PBS) at RT for 20’ and incubated with blocking buffer (3% (wt/vol) BSA636

(Sigma) in PBS and 0.2% Tryton X-100 (Thermo Fisher Scientific) for 1 hr. Dynein intermediate chain-637

GFP was immunostained with primary antibody (chicken polyclonal anti GFP, Abcam 13970) diluted638

1:500 in blocking buffer for 45 minutes at RT. Cells were rinsed 3 times in blocking buffer and incubated639

for 45 minutes in secondary antibodies donkey-anti chicken labeled with photoactivatable dye pairs for640

STORM (Alexa Fluor 405-Alexa Fluor 647).641
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4.5.3 Imaging642

Imaging was done using Nanoimager-S microscope (Oxford Nanoimaging) with the following specifications:643

405, 488, 561, and 640 nm lasers, and 665–705 nm band-pass filters, 100× 1.4 NA objective (Olympus),644

and a Hamamatsu Flash 4 V3 sCMOS camera. Localization microscopy images were acquired with 16-ms645

exposure and 50,000 frames. 405-nm activation was kept constant and then processed using the NimOS646

localization software (Oxford Nanoimaging).647

4.5.4 Analysis648

To quantify each “cluster” as a particular oligomerization state we first quantified the number of localiza-649

tions within each individual cluster using the hierarchical tree clustering algorithm built within matlab.650

We then assigned the oligomer state of dynein (for each method) so that the fractions of each state were651

the same as in (13). We then compared the assigned state for each individual “cluster” as in the main652

text.653

4.6 Methods used for AKAP150654

For fixed-cell stochastic optical reconstruction microscopy (STORM) imaging, cells were fixed with 4%655

paraformaldehyde (PFA) for 20 min and then washed with 100 mM glycine in Hanks balanced salt solution656

(HBSS) to quench the free PFA. Cells were permeabilized and blocked in a permeabilization solution with657

0.1% Triton X-100, 0.2% bovine serum albumin, 5% goat serum, and 0.01% sodium azide in HBSS. The658

cells were then incubated overnight at 4°C with an anti- AKAP150 (Millipore Sigma 07-210, Cat. #659

07-210 EMD Millipore) antibody at a 1:500 dilution, followed by 1 to 2 hours with goat anti-rabbit Alexa660

647?conjugated antibodies at 1:1000 dilution. The cells were then post-fixed again in 4% PFA, quenched661

with 100 mM glycine in HBSS, and washed with HBSS to prepare for imaging. Immediately before imaging,662

the medium was changed to STORM-compatible buffer [50 mM tris-HCl (pH 8.0), 10 mM NaCl, and 10%663

glucose) with glucose oxidase (560 mg/ml), catalase (170 mg/ml), and mercapto-ethylamide (7.7 mg/ml).664

STORM images were obtained using a Nikon Ti total internal reflection fluorescence (TIRF) microscope665

with N-STORM, an Andor IXON3 Ultra DU897 EMCCD, and a 100x oil immersion TIRF objective.666

Photoactivation was driven by a Coherent 405-nm laser, while excitation was driven with a Coherent667

647-nm laser. Puncta localization was performed using both Nikon Elements analysis software.668

4.7 Methods used for characterizing blinking669

4.7.1 Sample preparation:670

Plac::mEos3.2 plasmid (pXY329) was constructed based on pJL005 (Plac::FtsZwt-mEos3.2) (14) using671

In-fusion cloning (Takara) to remove the ftsz gene. MG1655 cells were transformed with pXY329 and grow672

up in M9+ media. The cells are harvested at log-phase and fixed by 3.8% para-formaldehyde in 1X PBS673

buffer. The fixed cells were washed by 1X PBS for 3 times and saved in 4°C no longer than one week.674

675

Streptavidin conjugated with AlexaF luorTM647 (SA-AF647) was purchased from Thermo Fisher Scientific.676

The SA-AF647 working solution was made freshly every time by diluting original stock ( 36µM) to 10 pM677

in 1X PBS with 0.5% Tween20.678

4.7.2 Imaging679

PALM: Fixed MG1655-Plac::mEos3.2 cells were sandwiched between a 3% PBS agar-pad and a coverglass680

as previously described (15). PALM imaging was preformed as previous study (14) on an Olympus IX71681

inverted microscope with a 100X, 1.49 NA oil-immersion objective. The 561nm excitation laser power was682
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tuned to 1500 W/cm2 while the 405nm laser power varied from 0 to 3.5 W/cm2. For the 0 W/cm2 condi-683

tion, a short pulse (1 second) of 3.5 W/cm2 405nm laser was applied to activate some mEos3.2 molecules684

to red fluorescent state. At each 405-power condition, 6 movies of 3000 frame images with 10ms exposure685

time were collected continuously. Three repeats of all the 405-conditions were performed to get the average686

blinking behavior.687

688

dSTORM: 10pM SA-AF647 was flown into a preassembled chamber with biotin-PEG coated coverglasses689

from X for 5min and washed three times with 1X PBS. The STORM buffer was made freshly using the690

recipe described in (16) and injected to the chamber to replace the PBS buffer before imaging. All STORM691

images were taken after 60 min since the oxygen level in the buffer was shown to be stable after 1 hour.692

dSTORM imaging was performed on an Olympus IX81 inverted microscope with a 100X, 1.45 NA oil-693

immersion objective. The 647nm excitation laser power was tuned to 1800 W/cm2 while the 405nm laser694

power varied from 0 to 13.9 W/cm2. At each 405-condition, 2-3 5000-frame movies at different regions695

on the coverglass were taken with a 30ms exposure time. Two repeats of all the 405-conditions were696

performed.697

4.7.3 Data processing698

The single fluorophore spots in both PALM and dSTORM movies were localized by an ImageJ (17) plugin699

ThunderSTORM (18). All the spots with irregular properties (abnormal sigma, too high or low intensity,700

or multiple spots within 500 nm range) were removed. A customized Matlab code was used to link the701

same spots within 3-4 folds of localization limitation (100nm) throughout the whole movie using a nearest702

neighbor algorithm. The continuous frames with localization from the same linked fluorophore were counted703

as on frames. Other frames before the last on-frame were counted as off frames. Blinking number was704

calculated as the sum of on frame number.705
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5 Algorithms706

Algorithm 1

1: procedure Determine which Localizations Are Blinks
2: M(∆r,∆n) ← Probability that a localization is a repeat of the preceding localization given the

Distance and Frame between the preceding localization
3: traj(i) ← is the trajectory that localization i is assigned (before the for loops each localization is

assigned it’s own personal trajectory)
4: ∆rtraj(i),traj(ii) and ∆ntraj(i),traj(ii) ← arrays containing the pairwise distances and frame differences

between all localizations in the two trajectories containing localization(i) and localization(ii)
5: Γ = length(∆rtraj(i),traj(ii))
6: κ(density(i)) ← a monotonically increasing function that is dependent upon the local density of

localization(i) without blinking correction (Supporting Material).
7: κ2(frame(i))← a monotonically decreasing function that is dependent upon the frame of localiza-

tion(i) (Supporting Material).
8: {T}=1:length(Localizations) ← the indices that are the true localizations
9: {R}=empty array ← the indices of the localizations that are repeats
10: for ∆n=1:max(frame) do
11: for i=1:length(Localizations) do
12: for ii={T} do
13: if frame(ii)-frame(i)=∆n then

14: if
[
∑Γ
j M(∆rtraj(i),traj(ii)(j),∆ntraj(i),traj(ii)(j)]/Γ

1+κ(density(ii)+κ2(frame(ii))
>.5 then

15: Combine all the Localizations within the two trajectories into a single trajectory
16: Eliminate Localization(ii) from {T} as it is now considered a repeat
17: Include Localization(ii) in {R} as it is now considered a repeat
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Algorithm 2

1: procedure Markov Chain Monte Carlo to Maximize Likelihood
2: Max Lik=−∞
3: Count=1
4: Number of Steps=1000
5: while Count<Number of Steps do
6: κ(density(:)) = κStored(density(:))
7: κ2(frame(:)) = κStored2 (frame(:))
8: C = rand ← a random uniform number
9: if C < 1/3 then
10: Adjust the function κ(density(:)) by a small amount
11: Ensure that κ(density(:)) is still a monotonically increasing function of density
12: Ensure that the mean of κ(density(:)) over all density values from all localizations equals

zero
13: else if C < 2/3 then
14: Adjust the function κ2(frame(:)) by a small amount
15: Ensure that κ2(frame(:)) is still a monotonically decreasing function of the frame
16: Ensure that the mean of κ2(frame(:)) over all localizations equals zero
17: else
18: Perturb the order of localizations that have the same frame . This will change which

localizations are linked together into the same trajectory

19: {R, T} ← Perform Alg. 1 with new κ(density(:)), new κ2(frame(:)), and in new defined order
20: Lik ← Calculate log likelihood with new Corrected Localizations
21: if Lik>Max Lik or log(rand) < |MaxLik − Lik| then
22: Store new parameters
23: Max Lik=Lik
24: else
25: Go back to old parameters

Count=Count+1
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Figure S1: The top row shows a simple one dimensional system illustrating the blinking of two fluorophores,
where the green dots are the true localizations and the red dots are repeats. The subsequent rows show
the different categories referenced within the Supporting Material, with the pink lines illustrating the pairs
of localizations for each category.
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Figure S2: The two kinetic models used to simulate blinking, A.) 2 dark state and B.) 1 dark state. The
transition probabilities per frame are shown in the figure.
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Figure S3: The pairwise distance distributions for both photo-kinetic models shown in Fig.S2 and 6
molecular assemblies. Note here that the axis is no longer log scale as in the main text and the true
pairwise distance distribution is shown as black dots.
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Figure S4: Example scatter plots of the experimental data used to verify that the pairwise distance
distributions reached a steady state distribution. We show 3 cells for each molecular assembly, with the
localizations colored with the frame of the localization.
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after being corrected with DDC. When the likelihood is maximized all of the pairwise distance distributions
will match the true pairwise distance distribution. [The true pairwise distance distribution is shown as
black dots.]
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Figure S7: Maximization of Likelihood Results in Correct Conformation of Localizations: For 6 systems
investigated within this work, we randomly varied the percentage of true localizations and calculated the
log(Lik) and the image error for each conformation (See Text).
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Figure S8: a. The probability distribution to observe a distance for a given ∆n , in units of resolution σ,
between two localizations when at least one of them is a repeat, PR1(∆r|∆n). This specific distribution
is for the 1 dark state no clusters system. (See Supporting Material text for details as to how these
distributions are used to calculate Likelihood) b. The probability that a localization is the repeat of a
given localization given the frame and distance between the localizations. These probabilities are calculated
using the calculation shown in the prior figure.
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Figure S9: An example of the MCMC phase space search for the 2 dark state Small clusters system.
For the number of localizations subplot a dashed black line shows the true number of localizations. For
the bottom two subplots we show red lines indicating where the Likelihood was maximized. [Note: here
we chose a random starting position for κ(density) to illustrate the burn in phase of the MCMC, when
κ(density) starts at zero the burn in phase is not so extreme.]
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Figure S10: Resulting Error in Using Methodology of Annibale et al. (1): Here we only show the results
for the 1 dark state systems with the fits to the semi-empirical formula (See Text). In the titles of each
subplot we show the percent error in determining the number of true localizations and the average dark
time.
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Figure S11: Determining the Thresholds for the Coltharp et al. Approach: In the first column we show the
difference from the true number of localizations for the various time thresholds and distance thresholds,
log scale (ln[abs(#loc −#loctrue)/#loctrue]. In the second column we plot the Image Error for each pair
of threshold values for six systems.
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Figure S13: Scatter plots for a section of a cell with the localizations from AKAP79 with the color indicating
the frame of the localization (Blue is early and Red is late). Here we show three different methodologies
with the same thresholds used previously (19).
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Figure S14: Here we show the results for determining the proper thresholds utilizing the methodology
of T1 for AKAP79/AKAP150. The data was fitted to the double exponential used previously. Here the
proper threshold is equal to two times the larger average dark time, either t1 or t2.
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Figure S15: A. The results of computationally varying the label density on some of the simulation systems.
B. The results of computationally varying the label density on AKAP79 and AKA150. (Values greater
than 1 indicate significant clustering.)



Bohrer 35

Figure S16: The ratio of the number of localizations between sister chromatids for each of the three
methodologies using different sized segments along the fibers (Supporting Material, expected value is 1).
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Figure S17: Here we show the raw Image Error (Not Normalized) for the uncorrected SMLM images for
varying the density of the localizations and the activation energy.
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