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Abstract Voltage imaging enables monitoring neural activity at sub-millisecond and12

sub-compartment scale, and therefore opens the path to studying sub-threshold activity, synchrony,13

and network dynamics with unprecedented spatio-temporal resolution. However, high data rates14

(>800MB/s) and low signal-to-noise ratios have created a severe bottleneck for analysis of such15

datasets. Here we present VolPy, the first turn-key, automated and scalable pipeline to pre-process16

voltage imaging datasets. VolPy features fast motion correction, memory mapping, segmentation,17

and spike inference, all built on a highly parallelized and computationally efficient framework that18

optimizes memory and speed. Given the lack of single cell voltage imaging ground truth examples,19

we introduce a corpus of 24 manually annotated datasets from different preparations and voltage20

indicators. We benchmark VolPy against this corpus and electrophysiology recordings,21

demonstrating excellent performance in neuron localization, spike extraction, and scalability.22

23

Introduction24

While several methods have been developed to process voltage imaging data at mesoscopic scale25

and multi-unit resolution (Marshall et al., 2016; Carandini et al., 2015; Akemann et al., 2012), to26

date there is no established pipeline for large-scale single cell analysis, which was only recently27

necessitated by sensitive new voltage indicators (Knöpfel and Song, 2019; Abdelfattah et al., 2019;28

Adam et al., 2019; Kannan et al., 2018; Piatkevich et al., 2019, 2018; Roome and Kuhn, 2018).29

Indeed, voltage imaging datasets present significant new challenges compared to calcium imaging,30

calling for new approaches. On the one hand, dataset sizes have increased one or two orders of31

magnitude (Tens of GBs vs TBs per hour), and on the other hand, assumptions of existing calcium32

imaging analysis methods may be inappropriate. For instance, non-negative matrix factorization33

(NMF) methods (Giovannucci et al., 2019) fail when applied to voltage imaging data for three34

reasons (Buchanan et al., 2018): (i) while good segmentation approaches exist for somatic imaging,35

these fail for other imaging modalities, (ii) it is difficult to separate weak components from noise36

using current NMF approaches; (iii) since voltage traces typically display both positive and negative37

fluctuations around the baseline resting potential, the NMF framework, based on non-negativity in38

both spatial and temporal domains, is not readily applicable to voltage imaging data.39
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Related work40

Some relevant methods are beginning to populate the literature. For instance, ad-hoc solutions41

presented in (Abdelfattah et al., 2019) provide interesting starting points to extract and denoise42

spikes semi-automatically, but suffer from some drawbacks. First, they require manual or semi-43

manual selection of neurons, which is both labor intensive and prone to irreproducibility. Second,44

the algorithms do not scale well in computational time and memory. Finally, these algorithms45

are not embedded into a reusable and well documented format, which hinders their reuse by a46

broad community (Teeters et al., 2015). A more standardized approach is provided by (Adam et al.,47

2019; Buchanan et al., 2018). However, this method does not embed an adaptive and automated48

mechanism for spike extraction and is not integrated in a robust, scalable and multi-platform49

framework. Further, lack of ground truth datasets has so far hindered the validation of all these50

approaches. In summary, no validated, complete, scalable and automatic analysis pipeline for51

voltage imaging data analysis exists to date.52

Contributions53

To address these shortcomings, we established objective performance evaluation benchmarks and54

a new analysis pipeline for pre-processing voltage imaging data, which we named VolPy. First, in55

order to establish a common validation framework and to automate neuron segmentation, we56

created a corpus of annotated datasets with manually segmented neurons. Second, we used57

this benchmark to train a supervised algorithm to automatically localize and segment cells via58

convolutional networks (He et al., 2017). Third, we introduced an improved algorithm to denoise59

fluorescence traces and extract single spikes, which builds upon the SpikePursuit prototype (Ab-60

delfattah et al., 2019). We modified the core SpikePursuit algorithm to achieve better performance61

and scalability, both by speeding up the underlying optimization algorithm, and by building the62

infrastructure to parallelize it efficiently and with low memory requirements. Notably, the algorithm63

is automatically initialized using the neural network for localizing and segmenting neurons, a task64

that was previously performed manually. Fourth, we quantitatively evaluated VolPy neuron segmen-65

tation, spike extraction and scalability. Segmentation was evaluated on 24 datasets, encompassing66

different brain areas, animal preparations and voltage indicators (Tables 1 and 2). The performance67

of VolPy on the validation set was high for datasets with more training samples, but progressively68

degraded when less data was available. When compared with electrophysiology data, VolPy spike69

extraction featured F1 scores mostly above 90% on three example neurons. The computational70

performance of VolPy was evaluated on the largest dataset available to us and showed promising71

results in terms of computational time (up to 66 frames/sec) and memory requirements (down to72

1.5X RAM of the original dataset size).73

We integrated our methods within the CaImAn ecosystem (Giovannucci et al., 2019), a popular74

suite of tools for single cell resolution brain imaging analysis. This integration allowed us to use75

and extend CaImAn’s tools for motion correction and memory mapping to enable scalability of our76

algorithms. In particular, we adapted CaImAn to perform motion correction (Pnevmatikakis and77

Giovannucci, 2017), memory mapping (Giovannucci et al., 2019), and run the modified SpikePursuit78

algorithm on voltage imaging data. Besides the obvious computational advantages, this made79

VolPy immediately available to the research labs already relying on the CaImAn ecosystem.80

In summary, we have developed a validated, scalable, turn-key, documented and easily installed81

voltage imaging analysis pipeline that has been packaged into a popular open source software suite.82

This will enable an increasing number of laboratories to exploit the advantages provided by voltage83

imaging and therefore accelerate the pace of discovery in neuroscience.84

The paper is organized as follows. We first report the new methods developed in VolPy, then we85

benchmark their performance, and finally we discuss some implications. We leave most of the fine86

implementation details for the Material and Methods section.87
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Table 1. Properties of three heterogeneous types of datasets. For each type of dataset the name, organism,
brain region, source, imaging rate, voltage indicator, and the total number of neurons selected by the manual

annotators are given.

Name Organism Brain region Source Rate (Hz) Indicator # neurons

L1 Mouse L1 cortex Abdelfattah et al. (2019) 400 Voltron 523

TEG Zebrafish Tegmental Abdelfattah et al. (2019) 300 Voltron 107

HPC Mouse Hippocampus Adam et al. (2019) 1000 paQuasAr3-s 41

Methods88

Creation of a corpus of annotated datasets89

To date there is no metric to establish whether voltage imaging algorithms for single cell localization90

and/or segmentation perform well in practice. To overcome this problem, and with the goal of91

developing new supervised algorithms, we generated a corpus of annotated datasets (Ground92

truth, GT) in which neurons are manually segmented. GT is constructed by human labelers from93

two summary images (mean and local correlation images, Figure 1 B and C) and a pre-processed94

movie that highlights active neurons (local correlation movie, Suppl Movie 1). More specifically,95

after motion correction, we generate a mean image, a correlation image and a correlation video as96

follows:97

Mean image. To compute the mean image, we average the movie across time for each pixel and98

normalize by the pixel-wise z-score.99

Correlation image. The correlation image is a variation of that implemented in (Smith and Häusser,100

2010), which is applied to a baseline-subtracted movie. To estimate the baseline of the movie,101

frames are first binned according to the window length (a parameter set to 1 second). We compute102

the 8tℎ running percentile of the signal for each pixel. Intermediate values of the baseline are103

inferred by spline interpolation, which is a fast approximation of a running window. After removing104

the baseline of the movie, we compute the correlation image of the movie by averaging the temporal105

correlation of each pixel with its eight neighbor pixels. We also normalize the correlation image by106

z-scoring when fed to the neural network.107

Correlation movie. We introduce a novel type of denoising operation, the correlation movie. The108

correlation movie is essentially a running version of the correlation image computed over over-109

lapping chunks of video frames. This new type of denoising significantly improves the visibility of110

spikes in voltage imaging movies (see Movie 1). There are two parameters governing the creation111

of the correlation movie, the chunk size (number of frames over which each correlation image is112

computed) and stride (the number of frames to skip between consecutive chunks).113

We implemented parallelized routines which allow to compute efficiently summary images and114

correlation movies. These routines need only to load in memory small contiguous chunks of the115

input movies and can process them efficiently in parallel over multiple cores.116

Guided by these three visual cues, two annotators marked the contours of neurons using the117

ImageJ Cell Magic Wand tool plugin (Walker, 2014). For neurons to be selected both annotators had118

to agree on the selection, which had to fulfill the following criteria: (i) neurons were very clear on119

at least one of the three cues; (ii) Neurons were moderately clear in one of the summary images120

and exhibited a spatial footprint in selected frames of the local correlations movie (see Figure 8).121

Summary information about the annotated datasets is reported in Table 1. Examples of manual122

annotations are reported in Figure 3 (red contours).123

A novel analysis pipeline for voltage imaging124

Voltage imaging is characterized by high data rates (up to 800 MB/sec). This often leads to the125

creation of movies that are difficult to manage using conventional computers. Even though scalable126

algorithms for calcium imaging exist (Giovannucci et al., 2019), they fail when applied to voltage127

imaging. Here we propose a novel scalable pipeline for automated analysis that performs prepro-128
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Figure 1. Analysis pip eline for voltage imaging data. (a) Four pre-processing steps are required to extract spikes
and neuron locations from voltage imaging movies. (b) Correlation image (front) and mean image (back) of one

of the Layer1 neocortex movies as the input of the segmentation step. (c) The segmentation step outputs class

probabilities, bounding boxes and contours. The results are overlaid to the correlation image in (b). (d) Result of

trace denoising and spike extraction. The gray dashed horizontal line represents the inferred spike threshold.

cessing steps required to extract spikes and sub-threshold activity from voltage imaging movies. In129

Figure 1 we illustrate the proposed standard pipeline for analyzing voltage imaging data. First, input130

data is processed to remove motion artifacts with parallelized algorithms, and saved into a memory131

map file format that enables efficient concurrent access. In a second stage, VolPy localizes candidate132

neurons using supervised algorithms (Figure 1a and c). Finally, VolPy denoises fluorescence traces,133

infers spatial footprints, and extracts neural activity of each neuron through unsupervised learning134

(Figure 1a and d). Notice that the presented framework is modular, and therefore allows for easy135

testing of new algorithms by replacing individual components of the pipeline. In what follows we136

present each stage of the VolPy pipeline in detail.137

Motion correction and memory mapping138

First, movies need to be corrected for samplemovement. We performed this registration relying on a139

variation of the algorithm described in (Giovannucci et al., 2019; Pnevmatikakis and Giovannucci,140

2017), which exploits multi-core parallelization and memory mapping to register frames to a141

template based on cross-correlation. The only variation with respect the original algorithm is that142

the new implementation can perform motion correction on a large number of small files containing143

a single image (a typical output format of fast imaging cameras). This avoids the memory-intensive144

job of transforming single image files into multi-page files, and limitations of file size. Motion145

correction, similarly to (Giovannucci et al., 2019), is performed in parallel over multiple segments of146

the same movie and the result is directly stored in a memory mapped file that is efficiently readable147

frame-by frame (Fortran (F) order, see Materials and Methods). Relying on the algorithms of CaImAn,148

we then efficiently create a second copy of the file that allows rapid pixel by pixel reads (C order, see149

Materials and Methods) instead of frame by frame (memory mapping, Figure 1a). This enables a150

fundamental feature of VolPy, that is the ability to quickly read arbitrary portions of the field of view151

in any direction without having to load the full movie into memory. In summary, the first two steps152

of the pipeline generate two copies of the motion corrected movie, one efficiently and concurrently153

read frame-by-frame, and one pixel by pixel. This allows parallelization of all the operations which154

are required to generate summary images and denoise the signal, as specified below.155
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Table 2. All annotated datasets for segmentation of VolPy. For each dataset the name, size of datasets and
number of neurons.

Name Size # Name Size #

L1.00.00 20000*512*128 84 HPC.29.04 20000*164*96 2

L1.01.00 20000*512*128 53 HPC.29.06 20000*228*96 2

L1.01.35 20000*512*128 69 HPC.32.01 20000*256*96 4

L1.02.00 20000*512*128 61 HPC.38.05 20000*176*92 4

L1.02.80 20000*512*128 43 HPC.38.03 20000*128*88 2

L1.03.00 20000*512*128 79 HPC.39.07 20000*264*96 5

L1.03.35 20000*512*128 57 HPC.39.03 20000*276*96 5

L1.04.00 20000*512*128 43 HPC.39.04 20000*336*96 4

L1.04.50 20000*512*128 34 HPC.48.01 20000*224*96 2

TEG.01.02 10000*364*320 33 HPC.48.05 20000*212*96 4

TEG.02.01 10000*360*256 29 HPC.48.07 20000*280*96 2

TEG.03.01 10000*508*288 45 HPC.48.08 20000*284*96 3

Segmentation156

The low SNR of voltage imaging data hinders the applicability of the segmentation methods previ-157

ously devised for calcium imaging data (Pnevmatikakis et al., 2016). Here we propose to initialize158

denoising algorithms with supervised learning approaches. While previous attempts at cell localiza-159

tion and segmentation have extended U-Net fully convolutional network architectures (Falk et al.,160

2019), in our hands this family of methods failed when facing datasets in which neurons overlap161

(Figure 3a). We hypothesize that this happens since U-Net is a semantic segmentation approach,162

which aims at separating neurons pixels from the background pixels, and therefore performs poorly163

in our instance segmentation task of separating overlapping neurons. We approached the problem164

with Mask R-CNN, a convolutional network for object localization and segmentation (He et al., 2017).165

Mask R-CNN is a particularly promising architecture as it enables to separate overlapping objects in166

a specific area by providing each object with a unique bounding box.167

The network, which is trained with a corpus of annotated datasets generated by us, takes sum-168

mary images as input and outputs contours and bounding boxes of candidate neurons (Figure 1c),169

along with a class probability. An example of the network inference on a validation dataset by170

VolPy is shown in Figure 2. The resulting network performs well in our task on widely different171

datasets.172

Trace denoising and spike extraction173

Classical algorithms for denoising calcium imaging movies and extracting spikes from the corre-174

sponding fluorescence traces fail when applied to voltage imaging movies. On the one hand, the low175

signal-to-noise ratio and the complex background fluorescence require new methods for refining176

spatial footprints, and on the other hand, substantially different biophysical models underlie the177

temporal dynamics of the fluorescence associated to spikes. To solve both problems, we build178

upon and extend the SpikePursuit algorithm (Abdelfattah et al., 2019). In particular, we improve179

SpikePursuit in the following directions (see Material and Methods for details):180

• While the original version of the algorithm required manual selection of candidate neurons,181

VolPy automatically initializes it using the output of the trained Mask R-CNN (Figure 1c and d).182

• A minimal amount of data needs to be loaded in memory thanks to the memory mapping183

infrastructure, thereby reducing memory requirements.184

• We increase the reliability of the underlying inference algorithm, by introducing a more robust185

estimate of the background.186

• We scale up the performance by improving the algorithms which perform Ridge regression187
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Figure 2. Result of processing a mouse L1 neocortex voltage imaging dataset using the VolPy pipeline. (a)
Correlation image (left) and mean image (right) overlaid with contours detected by VolPy. (b) Temporal traces
corresponding to neurons in panel (a) extracted by VolPy (left). The dashed gray portion of the traces is
magnified on the right.

during inference of spikes and spatial masks.188

Embarrassingly parallel computing in VolPy189

Unlike CaImAn, which is based on a Map-Reduce framework to parallelize execution, VolPy relies on190

an embarrassingly parallel paradigm (Herlihy and Shavit, 2011). Embarrassingly parallel solutions191

exploit the lack of dependence among tasks to efficiently deploy concurrency. Indeed the core of192

VolPy algorithms decouples computations so that each neuron is processed independently.193

First, motion correction in VolPy is parallelized by processing temporal chunks of movie data194

on different CPUs while saved in a memory mapped file which is efficiently read frame-by-frame.195

second, the various summary images and correlationmovies can be computed in parallel processing196

contiguous temporal chunks of the memory mapped movies. Subsequently, the motion corrected197

file is processed and saved into another memory mapped file which efficiently read pixel-by-pixel.198

Finally, during trace denoising and spike extraction, candidate neurons can be processed in parallel199

without significant memory overhead based on the fact that the signal of each neuron is localized200

in pixels near to the center of the neuron. Exploiting this locality, VolPy processes in parallel context201

regions surrounding each candidate neuron (see Materials and Methods) by reading concurrently202

from the pixel-by-pixel memory mapped file. Each process extracts denoised fluorescence signals203

and spikes from the corresponding context region. In conclusion, VolPy enables automatic analysis204

of large scale voltage imaging datasets. In Figure 2, we report the result of preprocessing an205

example mouse L1 neocortex voltage imaging dataset with the VolPy pipeline.206

Results207

In what follows we report a systematic evaluation of VolPy against ground truth in terms of perfor-208

mance in identifying neurons, spike extraction and scalability.209

VolPy localizes neurons using a moderate amount of training data210

We trained a modified version of the Mask R-CNN network architecture (see Material and Methods211

for details) on three heterogeneous types of datasets (Table 1) and evaluated its performance using212

3-fold cross validation (see Table 2 and Materials and Methods for details). In Figure 3a, we com-213

pared the contours predicted by VolPy with manual annotations on three example datasets: VolPy is214

able to identify candidate neurons even in conditions of low signal-to-noise and spatial overlap. In215
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Figure 3. Evaluation of VolPy segmentation. (a) Evaluation of segmentation against three manually annotated
datasets including mouse sensory cortex (left, Voltron, dataset L1.00.00), mouse hippocampus (center,

paQuasAr3, dataset HPC.48.08), and larval zebrafish (right, Voltron, dataset TEG.01.02). In the upper panels,

neurons that are found by both VolPy (yellow contours) and manual annotators (red contours) are displayed
over the mean image. The bottom panels display neurons that are found by VolPy but are not present in the
ground truth (yellow, False Positives) and neurons that are in the ground truth but are not found by VolPy (red,
False Negatives). (b) F1 score performance of VolPy for all the evaluated datasets. The F1 score is computed
through stratified cross-validation (see Material and Methods). (c) Average performance on training and

validation sets grouped by dataset type (see also Table 3). Error bar represents one standard deviation.

order to quantify VolPy performance in detecting neurons, we employed a precision/recall frame-216

work (see Material and Methods for details), which accounts for the amount of overlap between217

predicted and ground truth neurons when assigning matches and mismatches (Giovannucci et al.,218

2019). In Figure 3b and Table 3 we summarize the F1 score for all the probed datasets. The results219

indicate that our segmentation approach performs well provided sufficient neurons are fed to train220

the algorithm. Indeed, VolPy obtained F1 scores of 0.89±0.01 on the L1 dataset (532 neurons in total),221

0.71 ± 0.02 on the TEG datasets (107 neurons), and 0.46 ± 0.07 on the HPC dataset (39 neurons). In222

case of TEG, the performance of VolPy is fair considering that the network was trained with only two223

datasets of this type. In the HPC datasets however the performance on both training and test sets is224

relatively inferior. We hypothesize that this is due to the fact that not enough data are available (see225

#neurons column in Table 1), possibly combined with the low signal to noise typical of this dataset226

type. Note that we used a single neural network trained on the three dataset types simultaneously.227

Despite clear differences in neuronal shapes, size, SNRs and data acquisition system the network228

performed well across them, suggesting that it will generalize to similar datasets. However, new229

datasets deviating substantially from these typologies will need to be added to the training set to230

improve generalization performance.231
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Table 3. Results of VolPy for segmentation. For each type of datasets, number of datasets, number of neurons,
recall, precision, F1 score for training and validation computed by stratified cross-validation are provided.

Name #datasets #neurons recall(%) precision(%) F1(%)
train/val train/val train/val train/val train/val

L1 6∕3 349 ± 7∕174 ± 7 86 ± 4∕85 ± 3 94 ± 2∕95 ± 1 90 ± 2∕89 ± 1
TEG 2∕1 71 ± 7∕36 ± 7 70 ± 3∕67 ± 2 83 ± 7∕77 ± 3 76 ± 4∕71 ± 2
HPC 8∕4 26 ± 1∕13 ± 1 88 ± 11∕66 ± 7 55 ± 7∕40 ± 12 65 ± 8∕46 ± 7

VolPy detects with fidelity single spikes from voltage imaging data232

We validated the VolPy SpikePursuit algorithm on three voltage imaging datasets in which electro-233

physiology was simultaneously recorded with voltage imaging (see Figure 4). We automatically234

analyzed voltage imaging data in-vivo recordings frommouse L1 neocortex and Zebrafish Tegmental235

area (Abdelfattah et al., 2019) with the VolPy pipeline. The output of the algorithm are spatial236

footprints, voltage traces, and corresponding spike timings. Spikes for electrophysiology recordings237

were obtained by thresholding (see Figure 4). Spikes are matched against ground truth by solving238

a linear sum assignment problem using the Hungarian algorithm (see Material and Methods for239

details). The F1 score of each dataset (see Figure 4b) is computed relying on a precision/recall240

framework based on matched and unmatched spikes. We observe that VolPy performs well on241

all datasets (the F1 score across three datasets is 0.94 ± 0.03) and confirms that single spikes from242

voltage imaging data can be automatically extracted with fidelity.243

VolPy enables the analysis of large voltage imaging datasets on small and medium244

sized machines245

We examined the performance of VolPy in terms of processing time and peak memory for the246

datasets presented above. We ran our tests on a linux-based desktop (Ubuntu 18.04) with 16247

CPUs (Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz) and 64 GB of RAM. For segmentation, we used a248

GeForce RTX 2080 Ti GPU with 11 GB of RAM memory.249

Figure 5a reports the VolPy processing time in function of the number of frames. The results250

show that the processing time scales linearly in the number of frames. Processing 50 candidate251

neurons in a 1.5 minutes long video (512*128 pixel FOV) takes about 9 minutes. SpikePursuit (red252

bar) accounts for most of the processing time.253

In order to probe the benefits of parallelization, we ran VolPy 5 times on the same hardware254

while limiting the runs to 1, 2, 4, 6 and 8 CPUs respectively (Figure 5b). We observed significant255

performance gains due to parallelization, especially in the motion correction and SpikePursuit256

phase, with a maximum speed-up of 2.5X. Simultaneously, we recorded the peak memory usage of257

VolPy while running on a different number of CPUs for each run. Figure 5c shows how the peak258

memory increases with the number of threads. Therefore, VolPy enables speed gains by trading-off259

execution time for memory usage.260

Discussion261

Enabling automated and scalable analysis of voltage imaging data262

Recording voltage changes in populations of neurons is necessary to dissect the details of infor-263

mation processing in the brain. Voltage imaging is currently the only technique that promises to264

achieve this goal with high spatio-temporal resolution. Indeed, voltage imaging has a long history265

of development, having been widely used for in-vivo studies in the past. However, poor signal-to-266

noise ratio, photo-toxicity, bleaching, and other difficulties have so far hindered its wider use to267

answer questions at a cellular level. Recently, however, voltage imaging seems to have reached a268

point of inflexion and some notable examples are leading the way to new exciting developments269

(Abdelfattah et al., 2019; Roome and Kuhn, 2018; Adam et al., 2019; Piatkevich et al., 2019, 2018).270
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Figure 4. Validation of VolPy performance against electrophysiology. (a) Performance of VolPy in detecting
spikes validated on three datasets from zebrafish (Fish1 and Fish2) and mouse (Mouse). For each dataset, the

denoised spatial filter of the target neuron is presented on the left, while electrophysiology (top, blue) and

fluorescence signal denoised by VolPy (bottom, orange) are reported on the right. Spikes from electrophysiology
(blue dots) are obtained by thresholding (gray horizontal dotted line) while spikes from voltage imaging (orange

dots) are the output of VolPy. Spikes are matched between the two groups by solving a linear assignment
problem (see Material and Methods, gray vertical lines). (b) The F1 scores for each dataset are computed based
on the matched and unmatched spikes.
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Figure 5. Time and memory performance of VolPy. (a) Processing time for VolPy as a function of the number of
frames on a 512*128 pixels dataset initialized with 50 neurons. Processing time is the sum of motion correction

(blue), memory mapping (orange), segmentation (green), and SpikePursuit (red) times. The results indicate a

near linear scaling of the processing time with the number of frames. (b) Processing time for VolPy utilizing 1, 2,
4, 6 and 8 processors in parallel on a 10 GB dataset and 50 detected neurons. VolPy achieves a 2.5-fold speed
up when running in parallel on 8 cores. (c) Peak memory usage of VolPy in function of the number of processors.
Processing in parallel can lead to fair speed gains by regulating the trade-off between time and memory

consumption.

Despite the recent availability of high quality datasets, there is currently no established and vali-271

dated pipeline for the analysis of voltage imaging data. The unprecedented data size (one order of272

magnitude larger than already challenging calcium imaging datasets), low SNR, and high degree273

of signal mixing have so far limited the development of novel algorithms. Moreover, the lack of a274

universal benchmark prevents further quantitative comparisons. In this paper we provided both275

a corpus of manually segmented datasets and VolPy, the first turn-key, fully automatic, scalable276

and reproducible pipeline for the analysis of large scale voltage imaging datasets. VolPy equips277

experimenters with efficient computational routines for data handling, motion correction, memory278

mapping, neuron localization and segmentation, trace denoising and spike extraction. VolPy builds279

upon several optimized and robust routines of the well-established CaImAn framework, which it280

extends to deal with voltage imaging data.281

In particular, our contributions develop along the following lines. We provided a corpus of282

24 annotated datasets from different brain areas, collection systems and voltage indicators. We283

developed an automated segmentation supervised algorithm which relies on a Mask R-CNN neural284

network architecture. We trained a single network for all types of considered datasets and evaluated285

it using cross-validation. The algorithm performance is excellent when enough training data is286

provided, but smoothly degrades when input data is scarce for specific types of datasets. Regard-287

ing trace denoising and spike extraction approaches, we built upon the SpikePursuit algorithm288

(Abdelfattah et al., 2019) and extended it to make it fully automatic, to improve its reproducibility,289

performance, and to enhance its scalability. We benchmarked the performance of VolPy in extract-290

ing action potentials against ground truth electrophysiology, with results averaging an outstanding291

F1 score of 0.94. Scalability is achieved by leveraging the infrastructure previously deployed in292

CaImAn, which we adapted to enable the parallel processing of multiple neurons. VolPy enables a293

time-memory trade-off which can be tuned based on the available computing power. We demon-294

strated that VolPy enables voltage imaging data analysis on desktop computers. Towards our295

goal of providing a single package for dealing with standard problems arising in the analysis of296

imaging data, VolPy is fully integrated into CaImAn and is therefore immediately available to many297

laboratories worldwide. The proposed framework is therefore poised to promote the distribution298

of voltage imaging within the neuroscience community, and in consequence to open the path to a299

new generation of experiments bridging the gap between electrophysiology and optical imaging.300
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Future directions301

As more data become available and more users adopt VolPy, we plan to develop a graphical user302

interface for experimentalists to manually label datasets and transfer the resulting annotations to a303

cloud server, which we will periodically use to retrain and improve the performance of our system.304

SpikePursuit is built upon linear methods with a small number of easily-interpreted parameters.305

An advantage of this approach is that the parameters for can be tailored to different datasets306

by end users (for example: context area, number of spikes used for templates, filter bandwidth307

and confidence in segmentation). A continuing challenge for optical physiology is the limited308

electrophysiological ground truth available for training complex spike detection models. As more309

training data become available, we expect machine learning approaches to supersede the spatial310

and/or temporal filtering steps used by SpikePursuit within VolPy. Even without large training311

datasets, algorithmic improvements may be possible. For example, SpikePursuit implements312

efficient but approximate spike detection using matched filtering with a single template, but could313

be extended e.g. to include multiple templates or subtractive interference cancellation (Franke314

et al., 2015). VolPy and the datasets provided here provide an ideal common ground for comparing315

such methods.316

Finally, and similar to our work in calcium imaging (Giovannucci et al., 2017), we plan to general-317

ize our algorithm to real-time scenarios, where activity of neurons needs to be inferred on the fly318

and frame-by-frame.319

Materials and Methods320

Motion correction & Memory mapping321

VolPy performs motion correction and memory mapping similarly to CaImAn (Giovannucci et al.,322

2019). For motion correction, VolPy uses the NoRMCorre algorithm (Pnevmatikakis and Giovan-323

nucci, 2017) which corrects non-rigid motion artifacts in two steps. First, motion vectors are324

estimated with sub-pixel resolution for a set of overlapping patches which tile the FOV. Second,325

the sub-pixels estimates are upsampled to create a smooth motion field for each frame, which is326

then applied to correct the original frames. Unlike previously, our new implementation enables to327

perform motion correction on a large number of small files containing a single image (the typical328

output of fast imaging cameras). This is achieved by multiple parallel processes reading files incre-329

mentally and concurrently from the hard drive. This avoids the time- and memory-intensive job of330

transforming single image files into multi-page or hdf5 files. This modification leads to significant331

savings in memory, hard drive space and speed.332

VolPy adopts an optimized framework for efficient parallel data read and write. This framework333

is based on the ipyparallel and memory mapping Python packages (see Giovannucci et al. (2019) for334

more details). In brief, the former enables the creation of distributed clusters across workstations or335

HPC infrastructures, and the latter enables reading and writing slices of large data tensors without336

loading the entire file into memory. This is especially important for voltage imaging, considering337

the larger file sizes compared to calcium imaging. This framework, which in VolPy implements an338

embarrassingly parallel infrastructure, is used across different steps of the pipeline:339

• The output of the motion correction operation is saved into a set of F ordered Python memory340

map files without creating any other intermediate files. This is done in parallel over all the341

processed movie chunks.342

• The motion corrected F order files are then consolidated into a single C ordered memory map343

file. This is also performed in parallel over many processes.344

• During trace denoising and spike extraction, each process loads and processes in parallel a345

small portion of the field of view.346
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Figure 6. Segmentation algorithm of VolPy. (a) Mask R-CNN framework for segmenting neurons with summary
images as input to the network. (b) The output of VolPy segmentation algorithm run on three example datasets
from sensory cortex (left, Voltron, dataset L1.00.00), mouse hippocampus (center, paQuasAr3, dataset

HPC.48.08), and larval zebrafish (right, Voltron, dataset TEG.01.02). The mean images are overlaid with contours

(solid line), bounding boxes (dotted line) and detection confidence for each candidate neuron. Only neurons

with detection confidence greater than 0.7 are displayed.

Creating a corpus of annotated datasets347

We generate a corpus of annotated datasets in which neurons are manually segmented. For348

neurons to be selected at least one of the following criteria needed to be met: (i) Both annotators349

had to agree on the selection; (ii) Neurons were very clear on at least one of the three cues; (iii)350

Neurons were moderately clear in one of the summary images and appeared clearly in a few frames351

of the local correlations movie.352

Figure 8 shows the process of selecting neurons. Ground truth is inferred by human labelers353

from mean and local correlation images as well as a local correlation movie which highlights active354

neurons. Relying on these three visual cues, two annotators marked the contours of neurons355

(yellow color) using the ImageJ Cell Magic Wand tool plugin (Walker, 2014) and saved the result into356

the ROImanager in ImageJ.357

Segmentation via convolutional networks358

VolPy uses a variation of the Mask R-CNN framework (see Figure 6) to initialize spatial footprints of359

neurons. In the following section we will introduce the Mask R-CNN framework in the VolPy context.360
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Mask R-CNN361

Mask R-CNN (Figure 6a) is a network architecture which provides simultaneous object localization362

and instance segmentation via a combination of two network portions: backbone and head. The363

backbone features a pre-trained convolutional network (such as VGG, ResNet, Inception or others)364

for extracting features of the input image. Mask R-CNN also exploits another effective backbone:365

Feature Pyramid Networks (FPN) (Lin et al., 2017), a top-down architecture with lateral connections,366

which enables the network to extract features on multiple scales from the feature maps. In the367

head, based on the extracted features, a Region Proposal Network proposes initial bounding boxes368

for each candidate object, which are fed to two downstream branches. One of them is trained to369

predict a class label and a bounding box offset which refines the initial bounding box, while the370

other branch outputs a binary mask for each candidate object.371

VolPy Mask R-CNN372

We adapt Mask R-CNN to our purpose by introducing the following modifications. We choose a373

combination of ResNet-50 pre-trained on the COCO dataset and FPN as the backbone. The input374

of the network is a three channel image: two for the mean images and one for the correlation375

image. The three channel image is necessary in order to re-use the first few layers which were376

pre-trained on the COCO dataset. The network is trained to predict only one class, neuron or not377

neuron (background) instead of a multi-label output.378

Training: We randomly crop the input image into 128x128 crops and apply the following data379

augmentation techniques using the imgaug (Jung et al., 2019) package: flip, rotation, multiply (adjust380

brightness), Gaussian noise, shear, scale and translation. Each mini-batch contains six cropped381

images. We train on one GPU the heads (the whole network except the ResNet) of the network for382

2k iterations with learning rate 0.01 and then train layers after the first three stages of the ResNet383

(28 layers) for another 2k iterations with learning rate 0.001. We use stochastic gradient descent as384

our optimizer with a constant learning momentum 0.9. The weight decay is 0.0001.385

Validation: Images are padded with zeroes to make width and height multiples of 64 so that386

feature maps can be smoothly scaled for the Feature Pyramid Network . We only choose neurons387

with confidence level greater or equal to 0.7.388

Trace denoising and spike extraction389

Trace denoising and spike inference are performed by an improved version of the SpikePursuit390

algorithm (Abdelfattah et al., 2019), in which we optimized for speed, memory usage, and accuracy.391

The pseudo-code for the associated computational steps is reported in Algorithm (1) and Figure 7.392

The algorithm starts by approximating a neuronal signal and the background contamination from393

the ROI provided by the segmentation step. The algorithm then proceeds iteratively to detect394

the most prominent spikes, extract a waveform template from detected spikes, use the template395

to recover similarly-shaped spikes, reconstruct the trace from the recovered spikes, and use the396

reconstructed trace to improve the spatial filter. These steps are explained in more details below.397

ROI loading and preprocessing398

As a result of segmentation, each candidate neuron has an associated binary mask which represents399

its spatial extent (ROI region R). The ROI is dilated to get a larger region (50x50 pixels by default)400

centered on the neuron (context region C). Background pixels are defined as all the pixels in the401

context region at least nB pixels (12 pixels by default) away from the ROI region (background region).402

As a first step, all pixels in the context region are efficiently retrieved from the memory mapped file403

and high-pass filtered as Yℎ to compensate for photo-bleaching (Figure 7a-b, Algorithm 1 lines 1–8).404

The initial temporal trace t0 associated to a neuron can be approximated either from the mean405

signal of the ROI region pixels, or as a weighted average across all pixels in the context region when406
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Figure 7. Algorithm for fluorescence trace denoising and spike inference. (a) A small section of the movie
(context region) encompassing a candidate neuron and a neighboring area is loaded from the C ordered

memory mapped file. (b) After high-pass filtering the movie, the initial temporal trace of the candidate neuron is

approximated either from the mean signal of the ROI region pixels, or by applying the spatial filter to the

context region if an initial spatial filter is provided. Afterwards, two big steps are executed in loop until

convergence (or a maximum of 5 steps). The former ((c),(d),(e) and (f)) estimates spike times, and the latter ((g))

refines the spatial filter. (c) We extract the first 8 principal components of the background pixels using singular

value decomposition and then remove the background contamination via Ridge regression. (d) After high-pass

filtering the trace, we select spikes with peak larger than an adaptively selected threshold (gray dotted line). The

total number of peaks detected in the first round is constrained between 30 and 100. Later rounds of spike

detection include all spikes. (e) Waveforms of these spikes (gray) are averaged to obtain a spike template (black

line). (f) A whitened matched filter is used to enhance spikes which have a similar shape to the template. (g)

Refine spatial filter through Ridge regression. Calculate the weighted average of movie (using the refined spatial

filter) as the new temporal trace for the next iteration.
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a spatial filter w calculated from previous chunk of data was available (Algorithm 1 lines 9–13):407

t0 =
⎧

⎪

⎨

⎪

⎩

1
n(R)

∑

x∈R
Yℎ[∶, x] if w is not given

∑

x∈C
Yℎ[∶, x]w[x] if w is given

(1)

where n(R) represents number of pixels in the ROI region.408

Afterwards, two steps are executed in loop until convergence (or a maximum of 5 steps). The409

former tries to estimate spike time, and the latter tries to approximate the spatial filter.410

Spike time estimation411

In order to estimate spike times from the fluorescence traces (Figure 2c-f) we proceed as follows.412

First, we compute the singular value decomposition of the background pixels Yb:413

Yb = UΣV (2)

where U contains the temporal components. This is then used to remove background con-414

tamination via Ridge regression, in which Ub, the first 8 components of U is the regressor and the415

temporal trace is the predictor (Algorithm 1 line 15–16).416

� = (U T
b Ub + �b‖Ub‖

2
F I)

−1U T
b t0 (3)

t = t0 − Ub� (4)

We experienced that a very high signal-to-noise ratio neuron with large spatial footprint included in417

the background pixels led to poor performance due to unregularized linear regression used at this418

stage in the original SpikePursuit implementation. Use of non-regularized regression to remove419

the background can allow real signal to be subtracted from neuron traces if the neuron’s trace420

is captured by the background PCs. To ameliorate this issue, we modified the original algorithm421

by adding an L2 regularizer to penalize large regression coefficients. This provided more reliable422

results with respect to the original implementation on multiple datasets.423

After background removal, the trace is high-pass filtered with a cut-off frequency of 60 Hz and424

two rounds of spike detection are performed. The first round selects spikes with peak larger than425

an adaptively selected threshold, while keeping the total number of peaks between 30 and 100426

(Algorithm 3). A spike template z is computed by averaging all the peak waveforms:427

z = 1
ns

ns
∑

i=1
t[s[i] − � ∶ s[i] + �] (5)

where s is the list of spike time, ns is total number of spikes, � is the half size of window length.428

Subsequently, a whitened matched filter (Franke et al., 2015) is used to enhance spikes with shape429

similar to a template. More in details, we use the Welch method to approximate the spectral density430

of the noise in the fluorescence signal. Second, we scale the signal in the frequency domain to431

whiten the noise. Finally, we convolve with a time-flipped template. The template we used is the432

peak-triggered average.433

The latter round of spike detection incorporates all the spikes detected by applying a newly434

computed threshold. Then, a reconstructed and denoised trace is computed by convolving the435

inferred spike train (q) with the waveform template:436

r = z ∗ q where q[t] =
{

1 if there is a spike at time t

0 otherwise
(6)
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Spatial filter refinement437

The second step, illustrated in Figure 2g, is to refine the spatial filter. The updated spatial filter is438

computed by Ridge regression, where the reconstructed and denoised trace is used to approximate439

the high-passed video (Algorithm 1 line 18):440

w = (Y T
ℎ Yℎ + �w‖Yℎ‖

2
F I)

−1Y T
ℎ r (7)

Subsequently, the weighted average of movie with the refined spatial filter is used as the updated441

temporal trace for the following iteration:442

t = Yℎw (8)

The ridge regression problem was originally solved in SpikePursuit by directly calculating the443

analytical solution (normal equation). However, the multiplication and inverse of large matrices was444

computationally inefficient. We decided to apply an iterative and much more efficient algorithm to445

solve the regression problem (Paige and Saunders, 1982) implemented in the Scikit-Learn package446

(’lsqr’).447

Precision/Recall Framework to measure segmentation performance448

In order to measure the performance of VolPy segmentation, we compared the spatial footprints449

extracted by VolPy with our manual annotations (see (Giovannucci et al., 2019) component regis-450

tration for a detailed explanation). In summary, we computed the Jaccard distance (the inverse of451

intersection over union) to quantify similarity among ROIs, and then solved a linear assignment452

problem with the Hungarian algorithm to determine matches and mismatches. Once these were453

identified, we adopted a precision/recall framework and we defined True Positive (TP), False Positive454

(FP), False Negative (FN), and True Negative (TN) as follows:455

TP = number of matched spatial footprints
FP = number of spatial footprints in VolPy but not in GT
FN = number of spatial footprints in GT but not in VolPy
TN = 0

(9)

Next we computed precision, recall and F1 score of the performance in matching as the following:456

457

Precision = TP∕(TP + FP)
Recall = TP∕(TP + TN)
F1 = 2 × Precision × Recall∕(Precision + Recall)

(10)

Note that the F1 score is a number between zero and one. The better the performance of458

matching, the higher the F1 score.459

Cross-Validation to evaluate segmentation model on limited datasets460

In order to decrease the selection bias originated from the separation in training and validation461

datasets and better evaluate Mask R-CNN model on our limited datasets (24 in total), we performed462

a stratified three-fold cross-validation. The reason we used a stratified three-fold cross-validation463

rather than a normal three-fold cross-validation is that we want our model train and validate on464

each type of datasets. We partitioned datasets into three groups so that arbitrary type of data (L1,465

TEG, HPC) is partitioned equally into three groups without repetition (Figure 2 train/val column466

shows one group of the partition). During cross-validation two groups were used as training sets467

while the remaining one as validation set. The cross-validation process was repeated three times468

with each group used exactly once as validation set.469

For each run of the cross-validation process, we trained a single network and tested it on both470

training and validation sets. We then computed the mean and standard deviation of the F1 score471

for different types of datasets with training and validation sets treated separately.472
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Spike matching473

In order to validate fidelity of spike extraction algorithm, we needed to match spikes extracted474

from voltage imaging and electrophysiology datasets. Let v1, v2, ..., vn be the spike time extracted475

from voltage imaging traces, and s1, s2, ..., sm be the spike times from electrophysiology ground truth,476

where n and m are the total number of spikes respectively. We formulate the problem as a linear477

sum assignment problem. Let D be a distance matrix where D[i, j] is the cost of matching spikes vi478

and sj . When the difference of spike-times is larger than a threshold t, we assign a large distance479

valueM :480

D[i, j] =
{

‖vi − sj‖, if ‖vi − sj‖ < t
M, otherwise

. (11)

Let X be the Boolean matrix where X[i, j] = 1 if vi and sj are matched and 0 otherwise. Each481

spike can be matched at most once, i.e. at most one element for each row (or column) of X can be482

one. The optimal assignment has the cost:483

min
∑

i

∑

j
Di,jXi,j (12)

We solve this optimization problem using the Hungarian algorithm implemented in the Scipy484

package and delete matched spikes whose costs are equal to M. After identifying matches and485

mismatches, we proceeded similarly to what explained above to extract the F1 score. We define TP,486

FP, FN, TN similar to Equation 9:487

TP = number of matched spikes
FP = number of spikes in VolPy but not in GT
FN = number of spikes in GT but not in VolPy
TN = 0

(13)

Then we calculated F1 score same as Equation 10.488
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Description of Supplemental Movies562

Video 1. Example of voltage imaging data on mouse neocortex data. Left: Raw data. Right: Local correlation563

video.564

Description of Supplemental Images565

Algorithmic Details566

In the following section we present the pseudocode for several of the routines introduced and used567

by VolPy. Note that the pseudocode descriptions do not aim to present a complete picture and may568

refer to other work for some of the steps.569

Algorithm 1 SPIKEPURSUIT
Require: Input data matrix M , binary matrix for region of interest R, number of background
principal components nb, rest of parameters

1: Rc = DILATION(R, params)
2: xmin, xmax, ymin, ymax = FINDBORDER(Rc) ⊳ Find border of context region
3: Y =M[∶, xmin ∶ xmax, ymin ∶ ymax] ⊳ Extract pixels in context region
4: R = R[xmin ∶ xmax, ymin ∶ ymax]
5: p = FIND(R == 1) ⊳ Pixels for ROI
6: Rb = DILATION(R, params)
7: pb = FIND(Rb == 0) ⊳ Pixels for background region
8: Yℎ ← HIGHPASSFILTER(Y , params)
9: if w is None then
10: t0 = MEAN(Yℎ[∶,p]) ⊳Mean of movie across all pixels in ROI
11: else
12: t0 = WEIGHTEDAVERAGE(Yℎ,w) ⊳Weighted average of movie
13: end if
14: Yb = Yℎ[∶,pb] ⊳ Background signal
15: Ub = SVD(Yb, nb) ⊳ Find top nb background components
16: � = RIDGEREGRESSION(Ub, t, �b)
17: t ← t0 − Ub� ⊳ Remove background components
18: t, s, r, z ← DENOISESPIKES(t, params) ⊳ Compute optimized trace, spike times, reconstructed
signal, temporal template t, s, r, z

19: for k = 1,… , K do
20: w = RIDGEREGRESSION(Yℎ, r, �w) ⊳ Calculate spatial filter
21: t ← WEIGHTEDAVERAGE(Yℎ,w)
22: � ← RIDGEREGRESSION(Ub, t, �b)
23: t ← t − Ub�
24: t, s, r, z ← DENOISESPIKES(t, params)
25: end for
26: return t, s
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Figure 8. Create manual annotations of voltage imaging datasets with ImageJ. We selected neurons based on
mean image (left), correlation image (mid-left) and local correlation movie (mid-right). Two annotators marked

the contours of neurons using ImageJ Cell Magic Wand tool plugin and saved selections in ROImanager (right).
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Algorithm 2 DENOISESPIKES
Require: Temporal trace t, window length �, max number of spikes picked nmax
1: t ← HIGHPASSFILTER(t)
2: p, s,q = LOCALMAXIMUM(t) ⊳ Compute peak heights p, spike time s and spike train q
3: h = GETTHRESH(p, nmax) ⊳ Only detect large spiking events
4: s ← s[p > h]

5: z = 1
n(s)

n(s)
∑

i=1
t[s[i] − � ∶ s[i] + �] ⊳ Compute temporal template

6: t ← WHITENEDMATCHEDFILTER(t, s, �)
7: p, s,q ← LOCALMAXIMUM(t)
8: h ← GETTHRESH(p,∞) ⊳ Detect all spikes that can be found
9: s ← s[p > h]
10: r = CONVOLVE(q, z) ⊳ Compute reconstructed signal r
11: return t, s, r, z

Algorithm 3 GETTHRESH
Require: peak heights p, max number of spikes picked nmax, norm number pnorm, min number of
spikes detected nmin, rest of parameters

1: x = LINSPACE(MIN(p),MAX(p), params) ⊳ Evenly spaced samples between min and max of peak
heights

2: f = KDE(p, x) ⊳ Estimate distribution of peak heights
3: � = MEDIAN(p)
4: j = FIND(x[i] < �, x[i + 1] > �)
5: fnoise[1 ∶ j] = f [1 ∶ j]
6: fnoise[j + 1 ∶ end] = f [j ∶ 1] ⊳ Approximate noise distribution
7: F = CUMSUM(f ) ⊳ Cumulative distribution
8: Fnoise = CUMSUM(fnoise)
9: F = F[end] − F
10: Fnoise = Fnoise[end] − Fnoise

11: g = Fpnorm − Fpnorm
noise

12: k = ARGMAX(g) ⊳ Adaptive thresholding
13: ℎ = x[k]
14: if SUM(p > ℎ) < nmin then ⊳ Too few spikes are found, adjust to nmin
15: ℎ = PERCENTILE(p, 100 ∗ (1 − nmin∕LEN(p)))
16: else if SUM(p > ℎ) > nmax then ⊳ Too many spikes are found, adjust to nmax
17: ℎ = PERCENTILE(p, 100 ∗ (1 − nmax∕LEN(p)))
18: end if
19: return ℎ

Algorithm 4WHITENEDMATCHEDFILTER
Require: Temporal trace t, spike train q, window length �
1: q′ = CONVOLVE(q,ONES(2� + 1))
2: tnoise = t[q′ < 0.5]
3: sn = SQRT(WELCH(tnoise)) ⊳ sn is scaling factor in frequency domain
4: t′ = IFFT(FFT(t)∕sn)

5: z = 1
ns

ns
∑

i=1
t′[s[i] − � ∶ s[i] + �] ⊳ Compute temporal template

6: t′ ← CONVOLVE(t′, FLIP(z)) ⊳ Template matching
7: return t′
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