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ABSTRACT 

Microtubules (MTs) perform important cellular functions including migration, 

intracellular trafficking, and chromosome segregation. The centrosome, comprised of 

two centrioles surrounded by the pericentriolar material (PCM), is the cell’s central MT 

organizing center. The PCM proteins, including -tubulin and Pericentrin, promote MT 

nucleation and organization. Centrosomes in cancer cells are commonly numerically 

amplified. However, the question of how amplification of centrosomes alters the MT 

organization capacity is not well-studied. We developed a quantitative image-processing 

and machine learning-aided approach for the automated analysis of MT organization. 

We designed a convolutional neural network-based approach for detecting centrosomes 

and an automated pipeline for analyzing MT organization around centrosomes, 

encapsulated in a semi-automatic graphical tool. Using this tool, we analyzed the spatial 

distribution of PCM proteins, the growing ends of MTs and the total MT density in breast 

cancer cells. We find that breast cancer cells with supernumerary centrosomes not only 

have increased PCM protein but also exhibit expansion in PCM size. Moreover, 

centrosome amplified cells have a greater MT density and more growing MT ends near 

centrosomes than unamplified cells. The semi-automated approach developed here 

enables facile, unbiased and quantitative measurements of centrosome aberrations. We 

show that these aberrations increase MT nucleation and promote changes to MT 

density and the spatial distribution of MTs around amplified centrosomes. 
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INTRODUCTION 

Microtubules (MTs) are cytoskeletal polymers that perform biological functions 

essential for life. The interphase MT array is required for cell migration, intracellular 

trafficking, and cell polarization while the mitotic MT array organizes the bipolar spindle 

and promotes faithful chromosome segregation (Desai and Mitchison, 1997; Hyman and 

Karsenti, 1996; Inoue’ and Salmon, 1995). Consisting of polar tubulin subunits, MT 

polymers have a dynamic plus end and a less dynamic minus end (Allen and Borisy, 

1974; Bergen and Borisy, 1980; Desai and Mitchison, 1997; Walker et al., 1988). In 

cycling cells, minus ends are generally focused at the cell’s MT organizing center or 

centrosome where MTs are nucleated and anchored (Brinkley, 1985). Centrosomes 

consist of a pair of centrioles surrounded by the pericentriolar material (PCM). 

Pericentrin and CDK5RAP2 scaffold the recruitment of the -tubulin ring complex (-

TuRC) which nucleates MTs (Dictenberg et al., 2002; Fong et al., 2007; Farache et al., 

2018, Stearns and Kirschner, 1994; Moritz et al., 1995; Zheng et al., 1995). During the 

G1 phase of the cell cycle, cells have one centrosome and two centrioles. Centriole 

duplication occurs in S-phase resulting in two centrosomes, each with two centrioles 

(Hinchcliffe and Sluder, 2001; Piel et al., 2000; Vorobjev and Chentsov, 1982). 

Concurrent to the centriole duplication cycle, PCM organization occurs as a toroid 

around mature centrioles during interphase, and expands into a more amorphous 

structure in preparation for mitosis (Fu and Glover, 2012; Lawo et al., 2012; Mennella et 

al., 2012; Mennella et al., 2014; Sonnen et al., 2012; Woodruff et al., 2014; Woodruff et 

al., 2015). Centrosome duplication doubles the MT nucleation capacity during 
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interphase (Salaycik, 2005). Therefore, the number of centrosomes and expansion of 

the PCM promotes the MT architecture of the cell. 

Defects in centrosome number control commonly occurs in cancer cells resulting 

in centrosome amplification (CA) (D’Assoro et al., 2002; Denu et al., 2016; Ganapathi 

Sankaran et al., 2019; Guo et al., 2007; Lopes et al., 2018; Marteil et al., 2018; 

Salisbury et al., 2004; Schneeweiss et al., 2003). We and others previously quantified 

the changes in centriole number in cancer cells but, to date, how the PCM changes with 

more centrioles remains largely unknown. Moreover, how CA affects the cell’s MT 

organization during interphase is not known. This is important as breast cancer 

therapeutics that target MTs, including Taxol, have been used for decades (Pazdur et 

al., 1993; Schiff and Horwitz, 2006). This highlights the need for quantitative studies of 

MT organization in normal and breast cancer cells. 

Tracking individual MTs within cells is complicated by high MT densities. 

However, MT organization and dynamics can be measured by quantifying the 

distribution of fluorescently labeled MTs and/or MT-plus end binding proteins, such as 

the End-Binding Protein 3 (EB3), which localizes to growing MT-ends (Roth et al., 2019; 

Semenova and Rodionov, 2007; Stepanova et al., 2003; Straube and Merdes, 2007). 

Counting EB3 foci, or “comets”, is time-consuming and requires quantitative 

computational approaches (Applegate et al., 2011). Moreover, these tools require 

extensive manual annotation and the detection of centrosomes. Automation of this 

analysis requires the automated detection of centrosomes, the identification of EB3 

comets around detected centrosomes and the analysis of EB3 comet distributions. 
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Similar approaches are also required to quantify the distribution of MTs surrounding 

centrosomes. 

In this study, we establish a semi-automatic analysis pipeline that automatically 

detects centrosomes using machine learning while allowing for user-defined correction 

of errors. Machine learning is a class of techniques where a computational model is 

``trained’’ to emulate the annotations of an expert. The problem of detecting 

centrosomes introduces additional challenges to extant machine learning pipelines:  the 

number of training annotations is too small to train existing machine learning models, 

and the large size of the image files makes existing models run slowly. Here, we 

introduce a new pipeline that tackles these challenges so that training is efficient and 

the run time is quick. The identification of centrosomes by machine learning is then 

coupled to automated analysis pipelines for the PCM, MTs and EB3 comets around the 

identified centrosomes. Finally, the entire pipeline is encapsulated into a new graphical 

tool that allows users to visualize and correct errors that might be performed by the 

automated analysis.  

This semi-automated image analysis pipeline was used to investigate centriole 

and centrosome frequency, PCM size and MT distributions in normal and breast cancer 

cells with amplified centrosomes. We discovered that breast cancer cells with amplified 

centrosomes exhibit increased PCM protein levels and PCM size. Moreover, cells with 

amplified centrosomes have elevated MT density and MT growth near centrosomes. In 

summary, centrosome amplification increases MT nucleation and promotes changes to 

MT density and spatial distribution of MTs around amplified centrosomes in breast 

cancer cells.  
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RESULTS 

Machine learning for centrosome detection and cell segmentation 

Our first step in creating an automated analysis pipeline for centrosomes and 

MTs was to automate the task of centrosome detection using machine learning. 

Centrosome foci can be difficult to detect because of large variations in the signal-to-

noise ratio. In preliminary experiments, we found that simple image processing 

techniques that rely on consistent signal-to-noise ratios often failed to detect these foci 

accurately. An alternative algorithm for detecting centrosomes was designed by 

adapting existing object detection protocols using computer vision (Liu et al., 2016). 

This prior work uses convolutional networks1 to assign a score to every location in the 

image. The score output at a particular location is interpreted as the probability of a 

centrosome at that location. The convolutional network is “trained” on a dataset 

consisting of images with annotated locations of centrosomes.  

We found that using prior out-of-the-box convolutional network architectures used in 

computer vision presented two major challenges. First, these models require millions of 

training images that are not pertinent to biological samples (He and Sun, 2014). This is 

because the convolutional network has a large number of parameters; with more 

parameters, more data are required to optimize these parameters. Second, these 

architectures are designed to run on small images (typical sizes are 224 x 224 pixels) 

and so are very slow when run on large fluorescence microscopy images (typically 

greater than 1000 x 1000 pixels).  

 
1 Convolutional networks: Convolutional networks are machine learning models comprised of sequences of convolution operations 
interspersed with subsampling operations. The filters of these convolutions are automatically estimated by the learning algorithm 
based on a training dataset consisting of pairs of images and the desired outputs. 
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To address these challenges, we designed a new convolutional network 

architecture that requires less training data, memory and time to run (Figure 1A). The 

input to the network is a 3-dimensional fluorescence image stack where each XY 

coordinate is projected to their maximum pixel intensity. The mean and standard 

deviation of the fluorescence intensity across all pixels is calculated, and the mean is 

subtracted from each pixel and divided by the standard deviation. Subtracting the mean 

makes the result invariant to changes in brightness in the original image (or more 

precisely, the addition of a constant to the intensity of all pixels). Analogously, dividing 

by the standard deviation makes the result invariant to changes in contrast (or more 

precisely multiplication of the intensity of all pixels by a constant). The result is thus 

brightness- and contrast-normalized.  

The network then uses this normalized intensity image to compute four images 

(corresponding to four scores per pixel; Figure 1A, panels 2-5). Two of these images 

are the fluorescence intensity for centriole (Figure 1A, panel 3) and PCM markers 

(Figure 1A, panel 4); we use these because co-localization of high-intensity foci in these 

channels likely indicates centrosomes. By themselves, these channels might be noisy 

and produce spurious foci. We obtained two more images by running a small, fast 4-

layer fully convolutional network on each individual channel (Figure 1A, panels 2 and 5). 

The network reduces the resolution by a factor of 8, but also reduces noise and 

removes spurious foci. Reducing resolution has two benefits. First, it makes the network 

much faster. Second, because the convolution operations used by the network operate  

on fixed-size image patches, at a lower resolution these patches correspond to a larger 

fraction of the image, thus allowing the network to look at a larger part of the image to 
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make decisions for each pixel. All outputs are up-sampled using nearest-neighbor 

interpolation to the size of the original image and converted to a score between 0 and 1 

using the sigmoid6 function (f(x) = 1/(1+e-x)) before being multiplied together, resulting in 

a final accurate score for each pixel corresponding to the likelihood of finding a 

centrosome at that location (Figure 1A, panel 6). The full model has fewer than 10,000 

parameters and is very efficient (fewer than 7 gigaflops, compared to 35 gigaflops for a 

standard object detection approach; Liu et al., 2016). 

Centrosomes were identified as local maxima in this output (circles in Figure 1A, 

panel 7). More precisely, pixels in the output were considered sequentially in decreasing 

order of scores. The highest scoring pixel was declared as a centrosome, and 

subsequent, lower scoring pixels were declared centrosomes only if no previously 

declared centrosome was fewer than r=5 pixels (0.65 m) away (this is called non-max 

suppression;(Viola and Jones, 2011)). This produces a ranked list of putative 

centrosome detections, and the user can choose where to threshold this list. The full 

centrosome detection pipeline is shown in Figure 1A and example detections are shown 

in Figure 1B. 

To train the model, we annotated centrosomes on a small dataset of 10 images 

and used these as training images to train the convolutional networks. To evaluate this 

centrosome detection approach and make sure that it was indeed detecting 

centrosomes correctly, we annotated another image that the network did not see during 

training. We then marked detected foci as correct if they were within 5 pixels (0.65 m) 

of a centrosome, and as spurious otherwise. If multiple foci were detected where there 

was only one centrosome, all but one of the foci were considered spurious. We then 
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measured the precision (the fraction of detected foci that were deemed correct) and the 

recall (the fraction of centrosomes that were detected). An ideal algorithm would detect 

all and only correct centrosomes, achieving precision and recall of 100%. We plotted 

how precision varies with recall as the score threshold for declaring a centrosome is 

reduced (Figure 1C). While not perfect, the centrosome detector maintained a precision 

of 75% even at high recall (>75 %). Note that the recall is not 100% because of some 

detections erroneously suppressed by the non-max suppression procedure. 

We next evaluated the ability of the centrosome detector to accurately localize 

the centrosome (Figure 1D). As above, detected foci were marked correct if they were 

within a threshold distance of a centrosome. We varied this distance threshold and at 

each distance threshold, we computed the average precision, or the precision averaged 

over multiple values of recall. We find that the centrosome identification maintains a 

high average precision even for stringent thresholds (a distance of 5 pixels corresponds 

to 0.65 m), indicating that the detector accurately localizes centrosomes. Finally, we 

asked how resilient the centrosome detection is to noise. We artificially added Gaussian 

noise to the image and computed the precision versus recall curve for the centrosomes 

identified on a noisy image (Figure 1E). Even with noise more than 16 times the 

standard deviation of the original image, centrosomes were consistently detected. 

However, note that the assumption of Gaussian noise may not correspond to the noise 

observed in real microscopy images. 

Next, the analysis requires that individual cells are separately analyzed. To group 

the detected centrosomes into each individual cell, we created a pipeline for segmenting 

the cells in the image (Figure 1F). In the first step, a convolutional network identifies all 
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pixels that fall inside a cell. This convolutional network is trained using a small dataset 

where the cells have been annotated by hand. The output of this network can be 

interpreted as a probability p(x) for each pixel x that indicates whether it falls inside a 

cell. The next step is to group the pixels with a high p(x) into separate cells. To do this, 

local peaks were identified in this output as markers for possible cells and a random 

walk segmenter (Grady, 2006) was used to segment the cell pixels by assigning each 

cell pixel to one of the markers. However, the random walk segmenter can over-

segment and subdivide a single cell into multiple cells. We, therefore, estimate the 

strength of the boundary between the cells using the convolutional network output. We 

define this boundary strength as ∑ (1 − 𝑝(𝑥௜))/𝑛
௡
௜ୀଵ , where the summation is over all 

pixels on the cell boundary (Figure S1A). A user-defined threshold was used to merge 

cells that are separated by weak boundaries. We qualitatively compared the result of 

the semi-automatic segmentation approach to a human-annotated cell. Although the 

machine-generated segmentation does not accurately track cell boundaries, it is able to 

identify all the cells and capture the bulk of the interior of the cell especially in the 

vicinity of the centrosome (Figure 1G).  

Together, these results suggest that our centrosome detection and cell 

segmentation approach can increase the speed and accuracy of analyses but may 

require manual intervention when predictions are incorrect.  
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Evaluation of PCM and MT organization using machine learning aided image 

processing 

Once centrosomes and cell boundaries have been detected, we designed 

automated image processing algorithms to analyze the spatial distribution of 

centrosomal PCM proteins, MTs and EB3 comets at and around the centroid of 

centrosomes (Figure 2A-D). This analysis routine can be automatically run on cells with 

detected centrosomes. These image processing routines and the machine learning-

aided detection of centrosomes and cells described above were encapsulated into a 

semi-automatic graphical tool for analysis. 

Below we first describe the image processing algorithms for the analyses of 

centrosomal proteins, MTs, and EB3 comets. We then describe the semi-automatic 

graphical tool that encompasses both these image processing algorithms and the 

machine learning aided detection of centrosomes and cells. 

 

PCM and MT Intensity Analyses 

To quantify PCM and MT intensity in concentric rings at and around 

centrosomes, images were projected to their maxima and the centroid of the identified 

centrosomes was algorithmically computed. Next, the distance of each pixel from the 

centrosome centroid in two dimensions was calculated (Figure 2A top panel). For each 

radius from inner r1 to rn where n is the user-defined number of radii used in the 

analysis, the tool computes the total fluorescence intensity (In) of the pixels between the 

concentric radii. The difference in total intensity (In+1 – In) between the n-th and (n+1)-th 

regions provides the fluorescence intensity in the n-th concentric ring (Figure 2A middle 
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panel, 2B top panel; n-th: orange and (n+1)-th: blue concentric ring). To correct for the 

total area of each ring the intensity is normalized to the number of pixels within each 

ring. 

Only pixels that fall within the cell boundary are quantified. To define the cell boundary 

for the MT intensity computation, a low threshold was used on the 𝛼 −tubulin 

fluorescence channel; this was motivated by the fact that tubulin fluorescence extends 

throughout the cell area (Figure 2B bottom panel). In case such a channel is not 

available, one can also use the cell body estimated by the cell segmentation algorithm 

as a rough estimate. For the PCM density computation, smaller radii (in steps of 0.13 

m) and a smaller total diameter was used so that the analysis region was always 

inside the cell (cells with centrosomes very close to edge of the cell/ edge of the image 

were not analyzed).Therefore, we did not need to account for the cell area (Figure 2A).  

In each case, once the pixels within the cell were defined (i.e. cellular area) then, for 

each radius from inner r1 to rn the tool computes the differential area (An+1 – An) between 

the n-th and (n+1)-th regions. Dividing the differential intensity by the differential cell 

area provided the density (Figure 2B). Altogether, this generated an analysis routine to 

measure the spatial distribution of MTs and PCM fluorescence per unit area. 

 

EB3 Foci Analysis 

To quantify the distribution of MT nucleation and growth from centrosomes, we 

designed a similar algorithm to measure the distribution of EB3 foci on images from 

fixed cells (Figure 2C). The algorithm detects EB3 comets by utilizing a median filtering2 

 
2 Median filter: A median filter replaces each pixel by the median value of its neighbors. This is especially useful for removing salt-
and-pepper noise, where the noise takes the form of some pixels having very high or very low values of intensity. 
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step to remove noise in the form of stray pixels with high fluorescence intensity. Then, 

to identify pixels with greater intensity than their neighbors, high-pass filtering was 

performed where a blurred version of the image (obtained by convolving3 the image with 

the box filter4) was subtracted from the image. Thresholding this differential image 

provided a binary image that identified pixels corresponding to EB3 comets. Finally, 

each connected component5 in this binary image was considered an EB3 comet (Figure 

2C). 

Analyzing the distribution of EB3 comets in concentric rings as described above 

requires additional considerations since EB3 comets can straddle multiple rings. For 

each EB3 comet, we identified the pixel on the comet farthest from the centroid of the 

centrosomes. Then, for each radius (rn), we counted the EB3 comets for which this pixel 

fell within a distance of rn from the centroid of centrosomes. The differential EB3 counts 

were then computed in the nth ring as the difference in comet counts (En – En+1) and 

divided by the differential cell area to obtain the EB3 density (Figure 2C right panel).  

 

A semi-automatic graphical tool for MT, PCM and EB3 analyses 
 

We encapsulated the centrosome detection, cell segmentation, and MT/PCM and 

EB3 analysis algorithms described above into a single tool with a graphical user 

 
 
2 Convolution: The convolution operation takes an image and a filter and produces a new image. The filter is represented as a 2D 
matrix of size k x k. The convolution operation then takes k x k neighborhoods in the image, multiplies it element-wise with the filter, 
and sums up the result to produce the output value for the center pixel. 
 
 
4 Box filter: A k x k box filter is a filter filled with a constant value of 1/k2. Convolving with this filter replaces every pixel by the 
average of its neighbors in a k x k neighborhood. 
 
5 Connected component analysis: Given a binary image, connected component analysis identifies contiguous regions of the 
image which have a `True’ value. This analysis is done by interpreting the image as a graph where True pixels are nodes and there 
are edges between every pair of neighboring pixels. Connected components in this graph correspond to contiguous regions in the 
image. 
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interface (Figure 3A). This graphical user interface does not include the “training” of the 

machine learning-based centrosome detector, which is trained separately and used for 

all subsequent analyses.  

To ensure performance, this is a semi-automatic tool that allows for manual 

intervention. In particular, the user can choose thresholds for centrosome detection and 

cell segmentation and visualize the machine’s outputs. The user can correct these 

outputs by removing spurious foci, including centrosomes that the algorithm missed, 

adding cell boundaries that were not detected and merging cells that have been 

mistakenly marked as two separate cells. The tool also allows the user to control 

various aspects of the analysis itself, such as the radii for spatial analysis, the 

thresholds for identifying EB3 comets, and the thresholds for determining the cell area. 

Finally, this tool can be easily generalized to analyze the distribution of any protein 

around centrosomes or any other user-identified foci.  

With this tool, analysis is performed with the following steps. First, the image, 

centrosome detection model and cell segmentation model are loaded (Figure 3A; step 

1). Second, the centrosome detection and cell segmentation models run (run Machine 

Learning (ML) models; Figure 3A; step 2). This will automatically detect centrosomes 

and cell boundaries and present these as an overlay on the original image (Figure 3B). 

In case of an error in the cell segmentation, the segmentation can be corrected by 

adding additional cell boundaries or merging wrongly segmented cells. One can also 

remove cells from further analysis (Figure 3C; step 3). The tool also allows for the 

removal of spurious detections or the inclusion of missed centrosomes (Figure 3D; step 

4). The tool automatically characterizes cells as being centrosome-amplified based on 
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the number of detected centrosomes (cells with greater than two centrosomes), with 

amplified cells highlighted by a thick outline. This automated labeling can also be 

corrected if needed (Figure 3A; step 5). Finally, once the centrosomes have been 

finalized, the type of analysis is chosen (Figure 3A; step 6). The analysis is 

automatically performed and the results are saved in a tabular format. 

The tool also allows for corrections (i.e., removal of spurious detections and 

identification of missed centrosomes) to be saved for future training of the centrosome 

detection model. The training can be performed using a separate command-line utility 

that is packaged with the tool.  

In summary, we have generated a new tool with a graphical interface that allows 

users to analyze the spatial distribution of centrosomal proteins and MTs around 

centrosomes (https://bharath272.github.io/centrosome-analysis/). The tool performs 

automated analyses but also allows for user interventions and training of the underlying 

machine learning models. 

 

Semi-automatic machine learning algorithm detects PCM defects in breast cancer cells. 

To test whether PCM levels are elevated in breast cancer cells with amplified 

centrosomes, the above-described algorithm was used to quantify the levels and 

distribution of PCM proteins in normal and breast cancer cells (MCF10A and MDA-231, 

respectively).  

Analyses were first performed using manual annotation of centrosomes. The 

levels and distribution of PCM proteins (-tubulin and Pericentrin) were quantified at 

centrosomes with normal or amplified numbers. Approximately 23% of MDA-231 breast 
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cancer cells (MDA-231) have CA while only 5% of normal-like breast cells (MCF10A) 

have CA (Ganapathi Sankaran et al., 2019). The relative intensities of -tubulin and 

Pericentrin were quantified per unit area in normal compared to amplified centrosomes 

(Figure 4). Centrosomal -tubulin was elevated by approximately 40% at amplified 

centrosomes compared to non-amplified centrosomes in both MCF10A and MDA-231 

cells (Figures 4A and 4B). The relative -tubulin intensity diminishes by at least 70% 

outside the pericentriolar space (between 1.0 to 2.0 m) similar to the non-amplified 

centrosomes (Figure 4B). This suggests that while the PCM protein levels are elevated 

at the core centrosome, -tubulin remains constrained to the pericentriolar space of the 

amplified centrosomes. Consistent with the increase in -tubulin intensity, Pericentrin 

protein is also elevated in breast cancer cells with amplified centrosomes (Figure 4C 

and 4D). However, unlike -tubulin, the Pericentrin protein intensity at the amplified 

centrosomes does not diminish as rapidly outside the core pericentriolar space when 

compared to non-amplified centrosomes. 

To quantify the differences in how -tubulin and Pericentrin diminish outside the 

pericentriolar cloud, we estimated the first derivative or slope of -tubulin and Pericentrin 

fluorescence intensities outside the core pericentriolar space (Figure 4E). The slope of 

-tubulin intensity at amplified centrosomes is more negative in comparison to the slope 

of Pericentrin intensity at amplified centrosomes. -tubulin fluorescence intensity 

diminishes quickly outside the core pericentriolar space at amplified centrosomes in 

comparison to Pericentrin fluorescence intensity. Moreover, this suggests that the 

increase in centrioles at amplified centrosomes modulates the organization of specific 

pericentriolar proteins. 
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We next utilized the semi-automatic machine learning algorithm to quantify the 

pericentriolar defects at amplified centrosomes that were described using manual 

annotation and quantification above. The semi-automatic graphical tool annotated cells 

with greater than two centrosomes as amplified.  However, if the cells were mis-

annotated as non-amplified, then the annotations were manually edited to amplified 

centrosomes. The tool corroborated the results from the manual quantification: higher -

tubulin levels relative to non-amplified centrosomes were reported by the semi-

automated analysis (Figure 4B and 4F). While the -tubulin intensity is elevated, the 

distribution remains encompassed within the pericentriolar space (60% of total 

fluorescence intensity) of the amplified centrosomes. Pericentrin is also elevated in 

breast cancer cells with CA (Figure 4D and 4G). Furthermore, Pericentrin expands the 

pericentriolar space of amplified centrosomes (Figure 4H). These results show that the 

semi-automatic machine learning algorithm detects the same centrosome organization 

defects found at amplified centrosomes as found by the more laborious manual 

annotation and quantification. 

 

Increased MTs from amplified centrosomes 

The increase in -tubulin at amplified centrosomes suggests that MTs may also 

be elevated around centrosomes. To test whether cells with amplified centrosomes 

have increased MTs, we measured the MT fluorescence intensity per unit area using 

the algorithm. MT intensity is 30% greater in both MCF10A and MDA-231 cells with 

amplified centrosomes compared to cells without CA (Figure 5A and 5B). Overall, these 
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data suggest that centrosome amplified breast cancer cells have an increase in 

centrosome-associated -tubulin that promotes MT nucleation to increase the MT 

density. 

To test whether amplified centrosomes increase the number of growing MT ends, 

we created stably expressing tetracycline-inducible mNeon-EB3 MCF10A and MDA-231 

cell lines. Tetracycline was added for 48 hours to express mNeon-EB3 and the number 

of EB3 comets per unit area was measured using the EB3 density feature in the 

graphical interface (Figure 5C-H). A 20% and 40% increase in the EB3 density was 

observed at amplified centrosomes relative to the non-amplified centrosomes in 

MCF10A and MDA-231 cells, respectively. This suggests that amplified centrosomes 

nucleate more MT ends compared to non-amplified centrosomes. Furthermore, the 

density of EB3 foci is elevated closer to centrosomes in comparison to the cell periphery 

in both MCF10A and MDA-231 cells (Figure 5E and 5H). This is consistent with the 

elevated MT density that is observed closer to centrosomes relative to the cell periphery 

(Figure 5B). Taken together, the data suggest that the MT nucleation is enriched at 

amplified centrosomes in comparison to the non-amplified centrosomes of MCF10A and 

MDA-231 cells. 
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DISCUSSION 

A semi-automatic graphical tool for centrosome detection and analysis of MT 

organization 

We designed a semi-automatic graphical tool that can significantly speed and aid 

in removing bias in the analysis of centrosomes and MTs as it removes the need for the 

user to manually identify centrosomes or EB3 comets. Because of limitations in the 

amount of training the machine learning algorithm can realistically incorporate, we found 

that user correction of the algorithm’s predictions was crucial to ensure the correctness 

of the analysis.  These corrections can be used to further train the underlying model, 

allowing the model to improve with use. However, in our experiments, we did not 

perform such retraining so as to keep the model fixed during analysis. Furthermore, 

retraining provides flexibility to the tool, allowing it to be used for different experiments. 

Training scripts and models are publicly available to the research community 

(https://bharath272.github.io/centrosome-analysis/).  

While correcting the output from the algorithm, we found several common modes of 

error. First, unlike internet images where machine-learning technologies are routinely 

used, the dynamic range of fluorescence images can vary significantly, and naïve 

training of convolutional networks does not generalize across such variations. We 

addressed this by normalizing each image independently to have zero mean and unit 

variance. Second, we found that while the algorithm often correctly identified the rough 

location of the centrosomes, it often did not correctly estimate their number. We thus 

had to correct its predictions as to which cells exhibited CA. Accurate counting has not 

been addressed in the computer vision literature and deserves further attention 
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(Chattopadhyay et al., 2017). Finally, we found that the algorithm often merged nearby 

cells or estimated their boundary incorrectly. These issues reveal challenges that must 

be addressed by future computer vision research. Nevertheless, our results show that 

existing techniques can provide a significant degree of automation and improvement to 

the limited efficiency and biases associated with manual annotation. 

 

PCM proteins and their organization around amplified centrosomes in breast cancer 

Taxol/Paclitaxel, Taxotere, and Cabazitaxel are MT stabilizing drugs that have 

been used in chemotherapy for the treatment of cancers (Ho and Mackey, 2014; Pazdur 

et al., 1993; Schiff and Horwitz, 2006). Taxol and other MT stabilizing drugs lead to 

mitotic arrest. However, the proportion of cells lost by mitotic arrest does not explain the 

efficacy of taxol as a chemotherapy agent. The alternate hypothesis that taxol affects 

interphase breast cancer cells has not been well studied (Weaver, 2014). Specifically, it 

is unclear whether these MT stabilizing drugs  differentially impacts underlying 

differences in the interphase centrosomes and MTs of normal compared to transformed 

breast cells (Weaver, 2014). To understand the differences in interphase centrosomes 

and MTs of breast cancer cells, we investigated the levels and the distribution of 

centrosome PCM proteins and MTs using our semi-automatic machine learning-aided 

approach. We find that amplified centrosomes in interphase breast cancer cells not only 

have elevated -tubulin and Pericentrin but Pericentrin also has an expanded 

distribution. This suggests that there are more PCM sites that promote MT nucleation 

and MTs that are organized around amplified centrosomes. This may disrupt MT-related 

processes like cellular motility, signaling, and MT-dependent transport (Caviston and 
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Holzbaur, 2006; Desai and Mitchison, 1997; Hyman and Karsenti, 1996; Inoue’ and 

Salmon, 1995). Furthermore, expansion of the PCM may interfere with the MT-motor-

dependent trafficking (Galati et al., 2018; Nanjundappa et al., 2019).  This altered MT-

motor-dependent trafficking may affect drug transport and sensitivity to MT stabilizing 

drugs. Taken together, the centrosome amplified population with increased MT 

organization may have a role in taxol toxicity/chemo-resistance. 

 

The interphase MT network is altered in centrosome amplified breast cancer cells 

In addition to the increased PCM, the density of MTs is elevated in MCF10A and 

MDA-231 cells with amplified centrosomes compared to non-amplified centrosomes. 

The increased MT organization could be attributed to cell cycle differences since S 

phase cells have elevated microtubule density relative to G1 phase cells (Salaycik, 

2005). However, the pool of non-amplified centrosomes includes interphase cells with 

both one (likely G1 phase) or two (likely S phase) centrosomes. Hence, cell cycle 

differences likely do not explain the increase in MT organization observed in the 

centrosome amplified cell population. The increase in microtubule nucleation from 

additional PCM sites is a more likely explanation for the increase in MT density that is 

observed with centrosome amplification. Finally, whether the cytoplasmic α/β-tubulin 

concentrations are elevated in these cells to promote increased MT assembly is not 

known. Nevertheless, our studies suggest that amplified centrosomes promote an 

increased MT network in interphase breast cancer cells. 

We investigated whether the number of growing MTs, as judged by EB3 density, 

is increased in breast cancer cells with amplified centrosomes. Indeed, the EB3 density 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 3, 2020. ; https://doi.org/10.1101/2020.01.03.894071doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.03.894071


is elevated in centrosome amplified breast cancer cells relative to the cells without 

centrosome amplification (Figure 5C-D). Furthermore, EB3 density decreases towards 

the cell periphery of centrosome amplified MDA-231 cells relative to centrosome 

amplified MCF10A cells. This is consistent with the observation that MT density 

decreases towards the cell periphery of centrosome amplified MDA-231 cells. In 

contrast, MT density in MCF10A cells with amplified centrosomes is greater at the cell 

periphery (Figure 5B). The increased MT density from MCF10A amplified centrosomes 

at the cell periphery might be explained either by the presence of longer and more 

stable MTs or by increased nucleation and branching of the MT network (Goshima et 

al., 2008; Ishihara et al., 2014; Petry et al., 2013). It remains unclear why MCF10A and 

MDA-231 cells exhibit these unique profiles in MT growth and density. An increase in 

MT density and EB3 comets around amplified centrosomes reflect differences in MTs 

between non-amplified and amplified interphase breast cancer cells. Such altered 

cytoskeletal architecture could lead to changes to intracellular trafficking and disrupt 

important cellular processes including ciliogenesis, cell migration and cell polarization 

(Bouchet and Akhmanova, 2017; Caviston and Holzbaur, 2006; Siegrist and Doe, 

2007).  

In summary, we built a semi-automated tool with a graphical interface that 

enables quantitative measurements of centrosome aberrations. Using this approach, we 

detect centrosome aberrations in cancer cells and show an increase in MT nucleation 

that promotes changes to MT density and the spatial distribution of MTs around 

centrosomes. This not only highlights the use of the machine learning-based 
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approaches for the facile detection of centrosomal aberrations but also reveals how it 

can be globally applied towards quantitative cell biological problems. 
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FIGURE LEGEND 
 
Figure 1: A machine learning algorithm for centrosome and cell detection. (A) Separate 

convolutional networks operating on centrin (centriole, red) and Pericentrin (PCM, 

green) fluorescence signals assign a score for each pixel indicating the likelihood that it 

is a centrosome (panels 2 and 5). These are passed through a sigmoid function (f(x) = 

1/(1+e-x)) and multiplied together with the intensities of the centrin and Pericentrin 

channels (panels 3 and 4), also after a sigmoid function, to produce a final score for 

each pixel (panel 5). Peaks in the final score are detected using non-max suppression 

and identified as centrosomes (panel 7). Scale bar represents 1 μm (B) Left panels, raw 

image of centrosomes stained for centrioles (centrin, red) and γ-tubulin (green). Right 

panels, detected centrosomes (white). Scale bar represents 1 μm. (C) Evaluation of the 

centrosome detection in terms of the fraction of centrosome detections that are deemed 

correct (precision) and the fraction of centrosomes detected (recall). The plot shows 

precision and recall as the selection criterion is made less conservative by reducing the 

threshold score at which a centrosome is detected. (D) Variation of average precision 

(averaged over multiple recall values) as the criterion for a correct detection is made 

more lenient. The x-axis is the maximum distance between a true and a predicted 

centrosome at which the predicted centrosome is still considered correct. (E) Precision 

and recall values for a noisy image compared to the original image. Scale bar 

represents 1 μm. (F) Pipeline for segmenting out individual cells. 1 original image, 2 

output of the neural network that identifies pixels that fall within cells, 3 boundary map 

obtained from the random walk segmenter with estimated boundary strength, 4 final 
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segmentation. Scale bar represents 10 μm. (G) Comparison between predicted cell 

segmentation and human-annotated cells. Scale bar represents 10 μm. 

 

Figure 2: Algorithms to quantify PCM and microtubule density around centrioles. (A) 

PCM density analysis. Top left panel, schematic of centriolar centroid (black circle) 

estimation from centrioles (cyan foci). Top right panel, centrosomes in MDA-231 cells 

stained for centrioles (centrin, red) and γ-tubulin (green). Middle left panel, schematic 

for analysis of PCM intensity. Middle right panel, the region around the centroid of the 

centrioles is divided into concentric rings, and the differential intensity (In+1-In) of 

pericentriolar material is calculated around centrosomes (right) in MDA-231 cells. 

Bottom left panel, schematic for analysis of differential area (An+1-An). Bottom right 

panel, centrosomes (right) in MDA-231 cells stained for centrioles (centrin, red) and γ-

tubulin (green). Scale bar represents 1 μm. (B) MT density analysis. Top left panel, 

schematic of analysis of differential MT intensity (In+1-In) for each ring. Top right panel, 

centrosomes in MDA-231 cells stained for centrioles (CEP192, red) and MTs (-tubulin, 

green). Bottom left panel, schematic (left) for analysis of differential area (An+1-An) 

around centrosomes (right) in MDA-231 cells. Bottom right panel, the image of 

thresholded MTs. Scale bar represents 5 μm. (C) EB3 density analysis. Left, the 

pipeline for detecting EB3 foci. 1 original image, 2 processed image after applying the 

median filter and subtracting a blurred version of the same image, blurred using a box 

filter. Pixels on EB3 foci have high intensity and all other pixels have been made close 

to 0 intensity. 3 thresholded binary image. Connected components in this image are 

considered as EB3 foci. Right, schematic of analysis of EB3 density for each ring. Top 
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left panel, schematic (left) for analysis of differential EB3 counts (En+1-En). Top right 

panel, centrosomes (right) in tet-induced mNeon-EB3 MCF10A cells stained for 

centrioles (centrin, green) and γ-tubulin (red). Bottom left panel, schematic for analysis 

of the differential area, Bottom right panel, the image of thresholded EB3 foci. Scale bar 

represents 5 μm. 

 

Figure 3: A semi-automatic graphical tool for performing PCM and MT density analysis 

 (A) Screenshot of graphical interface that encapsulates machine learning aided 

detection of centrosomes with image processing algorithms to analyze the spatial 

distribution of MT organization. The steps to perform the PCM and MT density analysis 

are shown in red boxes. Scale bar represents 10 μm. (B) Screenshot of an image in the 

graphical interface with centrosomes (red, cyan, and yellow foci) and cell boundaries 

(red, cyan, and yellow boundaries) detected. (C) Screenshot of the image in the 

graphical interface showing edited cell boundaries (red, green, magenta, white, cyan, 

and yellow boundaries). Scale bar represents 10 μm. (D) Left panel, screenshot of a 

spurious detection (green arrow) as a centrosome. Right panel, screenshot after 

removal of the spurious detection (green arrow) in the graphical interface. Scale bar 

represents 10 μm. 

 

Figure 4: Centrosome amplified breast cancer cells exhibit PCM defects. (A) Left panel, 

non-amplified and amplified centrosomes in MCF10A cells stained for centrioles 

(centrin, red) and γ-tubulin (green). Right panel, non-amplified and amplified 

centrosomes in MDA-231 cells stained for centrioles (centrin, red) and γ-tubulin (green) 
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Scale bars represent 1 μm. (B) Left panel, γ-tubulin fluorescence density in amplified 

(red) cells relative to non-amplified (black) MCF10A cells (p-value: 1.9*10-6). Right 

panel, γ-tubulin fluorescence density in amplified (red) cells relative to non-amplified 

(black) MDA-231 cells (p-value: 1.9*10-6). (C) Left panel, non-amplified and amplified 

centrosomes in MCF10A cells stained for centrioles (centrin, red) and Pericentrin 

(cyan). Right panel, non-amplified and amplified centrosomes in MDA-231 cells stained 

for centrioles (centrin, red) and Pericentrin (cyan). Scale bars represent 1 μm. (D) Left 

panel, Pericentrin fluorescence intensity in amplified (red) cells relative to non-amplified 

(black) MCF10A cells (p-value: 3.8*10-6). Right panel, Pericentrin fluorescence intensity 

in amplified (red) cells relative to non-amplified (black) MDA-231 cells (p-value: 1.9*10-

6). (E) The slope or first derivative of fluorescence intensities of γ-tubulin and Pericentrin 

at amplified centrosomes outside the core pericentriolar space (between 1.0 m to 2.0 

m). (F) Left panel, γ-tubulin fluorescence intensity in amplified (red) cells relative to 

non-amplified (black) MCF10A cells obtained using machine annotation (p-value: 

3.8*10-6). Right panel, γ-tubulin fluorescence intensity in amplified (red) cells relative to 

non-amplified (black) MDA-231 cells obtained using machine annotation (p-value: 

3.8*10-6). (G) Left panel, Pericentrin fluorescence intensity in amplified (red) cells 

relative to non-amplified (black) MCF10A cells obtained using machine annotation (p-

value: 3.8*10-6). Right panel, Pericentrin fluorescence intensity in amplified (red) cells 

relative to non-amplified (black) MDA-231 cells obtained using machine annotation (p-

value: 3.8*10-6). (H) The slope or first derivative of fluorescence intensities of γ-tubulin 

and Pericentrin at amplified centrosomes outside the core pericentriolar space (between 

1.0 m to 2.0 m). Mean±SEM. Wilcoxon test.  
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Figure 5: Centrosome amplified breast cancer cells exhibit increased MT density. (A) 

Left panel, non-amplified and amplified centrosomes in MCF10A cells stained for 

centrioles (CEP192, red) and MTs (-tubulin, green). Right panel, non-amplified and 

amplified centrosomes in MDA-231 cells stained for centrioles (CEP192, red) and MTs 

(-tubulin, green). Scale bars represent 10 μm. (B) Left panel, MT fluorescence 

intensity in amplified (red) MCF10A cells relative to non-amplified (black) cells (p-value; 

gray asterisk: 4*10-6, black asterisk: 3.4*10-6). Right panel, MT fluorescence intensity in 

amplified (red) MDA-231 cells relative to non-amplified (black) cells (p-value; gray 

asterisk: 8*10-6, black asterisk: 2*10-2, red asterisk; 9.3*10-3). (C) Non-amplified and 

amplified centrosomes in Tet-induced mNeon-EB3 MCF10A cells stained for centrioles 

(centrin, green) and γ-tubulin (red). Scale bars represent 5 μm. (D) Processed images 

of non-amplified Tet-induced mNeon-EB3 MCF10A cells utilized for the measurement of 

EB3 counts and area. (E) EB3 foci counts per unit area in non-amplified (black) and 

amplified (red) MCF10A cells (p-value: 3.1*10-2). (F) Non-amplified and amplified 

centrosomes in Tet-induced mNeon-EB3 MDA-231 cells stained for centrioles (centrin, 

green) and γ-tubulin (red). Scale bars represent 5 μm. (G) Processed images of 

amplified Tet-induced mNeon-EB3 MDA-231 cells utilized for the measurement of EB3 

counts and area. (H) EB3 counts per unit area in amplified (red) MDA-231 cells relative 

to non-amplified (black) cells (p-value: 3.1*10-2). Mean±SEM. Wilcoxon test and 

Students t-test (paired). 
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SUPPLEMENTAL FIGURE LEGEND 

Figure S1: Pipeline for estimating boundary strength based on the convolutional 

network output, p(x). The random walk segmenter over-segments cells (top right). We 

identify the boundary between the predicted cells (bottom left) and estimate the strength 

of the boundary (bottom) using 1-p(x) (bottom right). 
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MATERIALS AND METHODS 

Cell Culture 

 Breast cancer cell lines MCF10A and MDA-MB-231 (MDA-231) were obtained 

from the University of Colorado Cancer Center Tissue Culture Core. Mammalian tissue 

culture lines were all grown at 37°C with 5% CO2. MCF10A cells were received at 

passage 51 and were grown in DMEM/F12 (Invitrogen #11330-032), 5% Horse Serum 

(Invitrogen #16050-122), 20 ng ml-1 EGF (Invitrogen #PHG0311), 0.5 mg ml-1 

Hydrocortisone (Sigma #H-0888), 100 ng ml-1 Cholera toxin (Sigma #C-8052), 10 μg ml-

1 Insulin (Sigma #I-1882) and 1% Pen/Strep (Invitrogen #15070-063). MDA-MB-231 

cells were received at passage 15 were grown in DMEM (Invitrogen #11965-092), 

Pen/Strep (Invitrogen #15070-063) and 10% FBS (FBS; Gemini Biosciences). Cell lines 

were authenticated at the sources and tested negative for mycoplasma using the 

MycoAlert mycoplasma detection kit through the University of Colorado Cancer Center 

Tissue Culture Core. Cells were passaged and sub-cultured using Trypsin (Invitrogen 

#150901-046) when cultures reached 60-80% confluency.  

Generation of Tetracycline Inducible mNeon-EB3-MCF10A and mNeon-EB3-MDA-231 

cells 

 The generation of the tetracycline-inducible mNeon-EB3 construct is 

described below.  The EB3-mNeon (C-terminal fusion) fragment was obtained through 

PCR with Phusion DNA polymerase of a pre-existing plasmid using primers that have 

Nhe1 and Xma1 sites appended to them. This was cloned into the tetracycline-inducible 

construct pcw57.1 using the enzymes Nhe1 and Age1. 
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Lentivirus harboring tetracycline-inducible mNeon-EB3-MCF10A and MDA-231 

were made by the transfection of 293FT cells. 293FT cells were plated in 6 cm dishes 

and allowed to reach 50%-70% confluency. Cells were then transfected with 

tetracycline-inducible EB3-mNeon constructs, and second-generation lentivirus 

packaging plasmids (pMD2.G and psPAX2) using Lipofectamine 2000 (Life 

Technologies # 11668019). 293FT media containing virus was harvested and MDA-231 

cells were infected for 24-48 hours in the presence of 10 μg ml−1 (26.7 μM) polybrene. 

After a 24-hour recovery, transduced cells were selected with puromycin at 2 μg ml−1 

(4.24 μM) and were flow-sorted to isolate and plate single cells into 96 well plates. Such 

clones were cultured in 50% filtered conditioned media with 50% fresh media. 

Tetracycline-inducible mNeon-EB3-MCF10A and MDA-231 cells were induced with 

tetracycline (Invitrogen #550205) at 2.5 μg ml−1 (5.63 μM). 

Transfections 

 MCF10A and MDA-231 cells at 50-80% confluence were transfected using 

Lipofectamine 2000 (Invitrogen # 11668019). Plasmid DNA and Plus reagent (Invitrogen 

# 11514015) were mixed at 1:1 and incubated for 5 minutes. This mixture was then 

combined with Lipofectamine at a1:3 ratio. Complexes were diluted in Opti-MEM 

(Invitrogen # 31985062). After a 4-hour incubation, the complexes were removed and 

the transfected cells were supplied with fresh media. 

Immunofluorescence 

 12 mm diameter coverslips were acid-washed and heated to 50°C in 100mM HCl 

for 16 hours. This was followed by washes with water, 50%, 70%, and 95% ethanol for 

30 minutes each. Coverslips were coated with Type-1 collagen (Sigma # C9791), air-
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dried for 20 minutes in the laminar hood and exposed to UV light for cross-linking of 

collagen for 20 minutes. Cells were cultured on collagen-coated coverslips to 55-70% 

confluence. For centrosome immunofluorescence, cells were fixed with 100% methanol 

at −20°C for 8 minutes. Fixed cells were washed with PBS/Mg (1x PBS, 1mM MgCl2), 

and then blocked with Knudsen Buffer (1x PBS, 0.5%BSA, 0.5% NP-40, 1mM MgCl2, 

1mM NaN3) for 1 hour. Cells were incubated overnight with primary antibodies diluted in 

Knudsen Buffer at 4oC. Coverslips were washed with PBS three times in 5-minute 

intervals. Secondary antibodies and Hoechst 33258 (10μg ml−1, Sigma #B2261) were 

diluted in Knudsen buffer and incubated for 1 hour at room temperature. Coverslips 

were mounted using Citifluor (Ted Pella) and sealed with clear nail polish. Antibodies 

used for immunofluorescence are - centrin (1:2,000; 20H5; Abcam), --tubulin 

(1:1000; DQ-19; Sigma), --tubulin (1:500; DM1A; Sigma). Alexa-fluor secondary 

antibodies were diluted to 1:1,000 for all experiments (Molecular Probes).  

Microscopy 

  The fluorescence imaging utilized for Figures is identical to those described in 

Dahl et al, 2015. Briefly, images were acquired using a Nikon TiE (Nikon Instruments, 

Inc.) inverted microscope stand equipped with a 100X PlanApo DIC, NA 1.4 objective. 

Images were captured using an Andor iXon EMCCD 888E camera or an Andor Xyla 4.2 

CMOS camera (Andor Technologies). Images in Figure 4A-B were acquired using a 

Swept Field Confocal system (Prairie Technologies / Nikon Instruments) on a Nikon Ti 

inverted microscope stand equipped with a 100X Plan Apo , NA 1.45 objective. Images 

were captured with an Andor Clara CCD camera (Andor Technologies).  
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 Nikon NIS Elements imaging software was used for image acquisition. Image 

acquisition times were constant within a given experiment and ranged from 50 to 400 

msec, depending on the experiment. All images were acquired at approximately 25ºC. 

Images presented in most of the figures are maximum-intensity projections of the 

complete z-stacks. Exceptions include certain mitotic images that are constructed 

from selected z-planes to clearly distinguish kinetochores and lagging chromosomes.  

Centriole and centrosome number counts 

 Cells were scored as amplified, non-amplified and under duplicated based on 

centrin and γ-tubulin staining (Dahl et al., 2015). Cells with greater than two γ-tubulin 

and four centrin foci were scored as amplified centrosomes. Non-amplified centrosomes 

have both one or two γ-tubulin and two or four centrin foci.  

Computational tools 

The semi-automatic graphical user interface was created as a standalone python 

program. The training script was a separate program packaged with the graphical 

interface. The version of python used was 3.6, and it was used in conjunction with 

Anaconda as a package manager. The graphical user interface accepts TIFF files. The 

size that a pixel denotes can be input through the interface. The graphical user interface 

was created using the Tkinter Python library. The underlying machine learning models 

were built using the PyTorch library; we used version 0.4.1. The code also relies on the 

numpy library for matrix computations, the scipy library for a variety of signal processing 

routines, the matplotlib library for plotting and the tifffile library for reading and writing tiff 

images.  The training annotations were collected using a separate stand-alone program 

with a graphical user interface.  
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The centrosome detection model was trained using stochastic gradient descent with 

momentum. The parameters of the training procedure were as follows: learning rate: 

0.01, momentum: 0.9, weight decay: 0.0001, the total number of epochs: 100, batch 

size: 1. Because pixels on centrosomes are very few in number, the learning problem 

was found to be extremely imbalanced. To deal with this imbalance, the training loss on 

centrosomal pixels was increased by a factor of 1000. This is mathematically equivalent 

to statistically sampling centrosomal pixels 1000 times more often during the stochastic 

gradient descent procedure. Pixels within 5 pixels of a centrosome were ignored during 

training to avoid penalizing the algorithm for small deviations.  

The cell segmentation model was also trained with stochastic gradient descent 

with momentum. The parameters of the training procedure were as follows: learning 

rate: 0.01, momentum: 0.9, weight decay: 0.0001, the total number of epochs: 100, 

batch size: 1. The tolerance for the random walk segmenter was set to 0.01.  

The code is available here: https://bharath272.github.io/centrosome-analysis/ 

Also included with the code is a training script that can be used to train a new 

model based on the saved corrections from the graphical tool. This training script can 

be run from the terminal as follows: 

python train_foci_detector.py --trainfiles trainingset.csv --modelfile foci_model.pt 

Here, trainingset.csv must be a CSV (comma-separated values) file formatted as 

follows. Each row of this file consists of the path to the image (a TIFF file), and the path 

to the corresponding corrected annotation (a JSON file, saved from the graphical tool 

using the ``Save corrections'' feature), separated by a comma. Such a CSV can be 
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created using most spreadsheet software including Microsoft Excel.  Once run, the 

training script will save the resulting trained foci detector in the file foci_model.pt. 

 

Statistics and biological replicates 

 All center values represent means and error bars represent the standard error of 

the mean. All the experiments were performed using at least three independent 

biological replicates. The number of cells used in each immunofluorescence experiment 

is as follows: 3A and 3E: 40 cells per condition/80 cells per experiment. 3C and 3F:40 

cells per condition/80 cells per experiment. 4A: 30 cells per condition/ 60 cells 

experiment. 4B: 40 cells per experiment. 4C: 40 cells per experiment. Fischer’s exact 

test, Student’s two-tailed t-test, Mann-Whitney U-test, and Wilcoxon tests were used to 

assess statistical significance between means. Fischer’s test was utilized to examine 

the significance of contingency when data were classified into two or more categories. 

Student’s two-tailed unpaired t-test was used to examine significance between two 

normal distributions (equal variance assumed). Normality tests were performed both on 

the raw data and meta-data extracted from the replicates of raw data. Shapiro-Wilk 

normality test and D'Agostino-Pearson omnibus normality test was utilized to examine 

the normality of data. Shapiro-Wilk normality test was used when the number of 

samples was less than eight. When the number of samples was greater than eight, the 

D'Agostino-Pearson omnibus normality test was used. Mann-Whitney u-test was utilized 

to examine the significance of non-normal unpaired distributions. Wilcoxon test was 

used utilized to examine the significance of non-normal paired distributions. Results 

were considered statistically significant with p-values less than 0.05. P-values were 

denoted in the figure legends.   
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Figure 5
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