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Modes of expression causality

In Supplementary Figure 28, we depict 9 different causality scenarios between SNPs, gene expression levels,
and complex trait. Scenarios A-D constitute the main causality scenarios described in the main manuscript
text; scenarios E-I describe additional causality scenarios. We provide a description of each scenario and its
contribution to estimates of h2med.

A. Mediation

Here, the SNP affects the expression levels of the gene in cis, which then affect the complex trait. This is
the desired scenario, since it is consistent with the hypothesis that SNPs exert their effects on complex traits
via modulating gene expression levels. The presence of mediation will result in nonzero estimates of h2med.

B. Pleiotropy

Here, the SNP independently affects the expression of the gene in cis and the complex trait. Under the
assumption that the magnitude of pleiotropic effects is uncorrelated with the magnitude of eQTL effects (see
“Model assumptions”), the presence of pleiotropy will not contribute to estimates of h2med.

C. Linkage

Here, the SNP that affects gene expression in cis is in LD with another SNP that independently affects the
trait. Under the assumption that the magnitude of linkage effects is uncorrelated with the magnitude of
eQTL effects (see “Model assumptions”), the presence of linkage will not contribute to estimates of h2med.

D. Reverse mediation

Here, the SNP directly affects the complex trait, which then affects the expression levels of the gene in
cis. Although this scenario can in theory contribute to nonzero estimates of h2med, the contribution will be
negligible given that genetic effects on a complex (i.e. polygenic) trait are much smaller than genetic effects
on gene expression (see “Reverse mediation”).

E. Mediation in unobserved cell type/context

Here, the SNP affects the expression levels of the gene in the causal cell type/context for the complex trait,
which then affects the complex trait. In practice, we only have access to assayed expression levels. Estimates
of h2med using assayed expression levels will be nonzero if the assayed expression levels are correlated with
expression levels in causal cell types/contexts (see “Assayed vs. total underlying h2med”).

F. Trans mediation

Here, the SNP affects the expression levels of the gene in trans, which then affects the complex trait. If trans-
eQTL effect sizes are uncorrelated with cis-eQTL effect sizes, this scenario will not contribute to estimates
of h2med. Note that this scenario refers to purely trans effects that are not mediated in cis at any point. An
alternative scenario is cis-by-trans mediation (see below), which is subsumed by scenario A.
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G. Cis-by-trans mediation

Here, the SNP affects the expression levels of gene 1 in cis, gene 1 affects gene 2 in trans, and gene 2 affects
the complex trait. Although the SNP acts as a trans-eQTL for gene 2, its effects are mediated in cis at some
point, so this scenario is subsumed by scenario A (i.e. mediation).

H. Mediation by unobserved cis intermediary

Here, the SNP affects an unobserved intermediary in cis, which then has pleiotropic effects on a gene’s
expression levels and the complex trait. The intermediary can be the expression levels/splicing/activity of
another gene, and can also refer to any other molecular process. Note that this scenario refers specifically to
cis intermediaries; the distinction between cis intermediaries and trans intermediaries is that SNP effect sizes
on known molecular phenotypes are much larger in cis than in trans1–3. In scenario H, it is not appropriate
to assume that eQTL effect sizes and pleiotropic effect sizes are independent, as they are both affected by
a common intermediary. Thus, this scenario can contribute to nonzero estimates of h2med. Because this
scenario does not strictly speaking involve mediation through the gene’s expression levels, its contribution
to h2med might be viewed as spurious.

However, there are several reasons why scenario H’s potential contribution to h2med is likely not of major
concern. First, if the intermediary represents the expression levels of another gene, then scenario H’s con-
tribution to h2med is justifiable given that mediation is actually occurring through the expression levels of
the intermediary. Second, because we perform regression using all SNPs in the genome, scenario H must be
pervasive across most loci in the genome in order for it to have a substantial impact on estimates of h2med.
Third, if the intermediary does not refer to the expression levels of a gene (e.g. it represents splicing or
coding changes in a gene, or it represents some unknown molecular process), we argue that the contribution
of the non-causal gene to h2med is still of biological interest due to the fact that the gene’s expression levels
are correlated with a truly causal intermediary.

Should the third scenario be pervasive across the genome and have a substantial contribution toward
h2med, we can amend our definition of h2med in order to accommodate it. In “Definition of h2med,” we refer to
our estimate of h2med as the heritability mediated and/or “tagged” by assayed expression levels, and we state
that “tagging” occurs due to assayed expression levels acting as a proxy to expression levels in causal cell
types/contexts. We can extend this definition of h2med so that tagging also refers to assayed expression levels
acting as a proxy to unobserved intermediaries other than expression levels. We believe that this extended
definition of h2med is of equal biological interest to a definition of h2med that excludes tagging of unobserved
intermediaries other than expression levels.

I. Mediation by unobserved trans intermediary

Here, the SNP affects an unobserved intermediary in trans, with then has pleiotropic effects on gene expres-
sion levels in cis and the complex trait. The only difference between scenario I and scenario H is that here
the intermediary is affected in trans rather than in cis. Because trans-effects on molecular phenotypes are
much smaller than cis-effects, the contribution of scenario I to nonzero h2med will be much smaller than the
contribution of scenario H (see “Reverse mediation” for related intuition).

Reverse mediation

In our generative model, we do not model the effects of reverse mediation, which we define as the scenario
in which a SNP influences the complex trait independently of the SNP’s effects on the expression of a gene,
and the complex trait itself then influences the expression of the gene. Such a scenario will induce a genetic
correlation between the gene’s expression and the complex trait and could potentially bias our estimates
of h2med. However, we posit that the bias (if present at all) is negligible for the following reasons. (1)
Because we use an external expression panel to estimate eQTL effect sizes, the complex trait of interest
must be represented in the expression panel samples in order for its effects on expression to be present in
our analyses4,5. Thus, we can rule out the possibility of reverse mediation influencing our results for any
disease phenotypes. (2) Assuming that the complex trait of interest is represented in the expression panel
samples, the total bias in estimates of h2med caused by reverse mediation is guaranteed to be very small
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under the assumption that SNP effect sizes on a trait are much smaller than eQTL effect sizes5, which is
true for polygenic traits. To illustrate this point, it is useful to think of h2med in terms of the covariance
between eQTL effect sizes β and total SNP effect sizes ω (for simplicity, we assume that each gene has only
one eQTL):

h2med =

G∑
i

Cov(βi, ωi)
2/V ar(βi)

Assuming that Cov(βi, ωi) for SNP i is nonzero due to proper mediation, we have the following expression
for Cov(βi, ωi)

2
med:

ωi = βiαi + γi

Cov(βi, ωi)
2
med = α2

iV ar(βi)
2

A typical trait has h2med = 0.1 and V ar(βi) = 0.05, so a realistic value for α2
i is

h2
med

GV ar(βi)
= 0.1

20000·0.05 =

0.0001 (we assume here that all genes are causal; the proportion of causal genes will not affect the points
conveyed by these calculations so long as the number of causal SNPs is at least as large as the number of
causal genes; see below). Thus, we have Cov(βi, ωi)

2
med ≈ 0.0001 · 0.052 = 2.5× 10−7. On the other hand, if

we assume that Cov(βi, ωi) for SNP i is nonzero due to reverse mediation, we have the following expression
for Cov(βi, ωi)

2
revmed:

βi = θi

M∑
j

ωj + βi(SNP )

Cov(βi, ωi)
2
revmed = θ2i V ar(ωi)

2

Here, θi represents the effect size of the complex trait on the expression of gene i and βi(SNP ) represents
the direct effect size of SNP i on gene i without the effects of reverse mediation. The upper limit for θ2i is
β2
i /h

2, which occurs if βi(SNP ) = 0. Thus, we can rewrite the above as

Cov(βi, ωi)
2
revmed ≤ β2

i /h
2V ar(ωi)

2

A typical complex trait has h2 = 0.5. If we assume that the number of causal SNPs is at least as large as
the number of causal genes, we have V ar(ωi) ≤ h2/G = 2.5 × 10−5. Thus, we have Cov(βi, ωi)

2
revmed ≤

0.05/0.5 · (2.5 × 10−5)2 = 6.25 × 10−11. The reason why Cov(βi, ωi)
2
revmed is orders of magnitude smaller

than Cov(βi, ωi)
2
med is that Cov(βi, ωi)

2
revmed involves the product of the square of the squared per-SNP

effect on complex trait and the squared SNP effect on gene expression, while Cov(βi, ωi)
2
med involves the

product of the squared per-gene effect on complex trait and the square of the squared SNP effect on gene
expression. Because individual SNP effects on gene expression are much larger than individual SNP/gene
effects on a polygenic trait, squaring the latter causes the overall magnitude of Cov(βi, ωi)

2 to be much
smaller than squaring the former.

Relationship between MESC and stratified LD score regression

MESC is similar in form to stratified LD score regression (S-LDSC), which aims to estimate total heritability
partitioned across SNP categories from summary statistics6,7. In particular, the τ coefficient estimated by
S-LDSC is directly related to the π coefficient we obtain from MESC in equation (20) (in Methods). In
S-LDSC, the variance of total effect size of SNP k on the trait (ωk) is modeled as follows:

V ar(ωk) =
∑
c

ac(k)τc

where ac refers to a continuous-valued SNP annotation. Meanwhile, in MESC, V ar(ωk) is modeled as follows:

V ar(ωk) =
∑
d

πd
∑
i∈D

β2
ik +

∑
c:k∈C

τnonmedc
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We label τnonmedc as so in order to distinguish it from τc used in S-LDSC. Here, note that we can treat
the value

∑
i∈D β

2
ik as a continuous SNP annotation ac, which means that the expression scores Lk;d used

in equation (20) are equivalent to LD scores with continuous annotation ac(k) =
∑
i∈D β

2
ik. Thus, πd as

defined above and in equation (20) is equivalent to τc as defined in S-LDSC for the SNP annotation that
corresponds to

∑
i∈D β

2
ik.

The main implication for this equivalence between MESC and S-LDSC is that significantly nonzero πd as
estimated by MESC can be interpreted as significantly nonzero τc from S-LDSC. There is considerable interest
in identifying SNP annotations with significantly nonzero τc conditional on the baselineLD model and other
SNP annotations6–12, since this means that the SNP annotation is informative for explaining trait heritability
beyond the set of comprehensive but non-trait-specific SNP annotations contained in the baselineLD model
(as well any additional SNP annotations included in overall model). When using MESC, we also include
all SNP annotations in the baselineLD model in our analyses, albeit for a different purpose than in studies
using S-LDSC; our reason for including the baselineLD model is to account for correlations between the
magnitude of non-mediated effect sizes and eQTL effect sizes (see “Model assumptions”). Nevertheless, we
can still interpret significantly nonzero πd for a given gene category D as implying that the SNP annotation
corresponding to the eQTL effect sizes of all SNPs on genes in D is informative for explaining trait heritability
beyond the baselineLD model.

Relationship between MESC and Mendelian randomization

In this section, we describe the motivation behind the regression procedure carried out in MESC and compare
it to Mendelian randomization (MR). Our goal is to estimate h2med, where h2med =

∑G
i

∑M
j β2

ijα
2
i . One

way we could estimate h2med would be to first estimate α2
i for each individual gene, then multiply α2

i by
the cis-heritability of the gene and sum up this quantity across all genes to obtain h2med. In principle,
we could estimate αi for each individual gene i using some type of MR approach, where the exposure of
interest is the expression level of gene i, and the outcome is the trait. However, typical MR approaches
are problematic for this aim. In the presence of non-mediated effects of genetic variants on the trait, MR
is highly underpowered to estimate αi with a small number of genetic instruments13,14. This is a common
scenario if we use gene expression as the exposure, since many genes have only a few detectable cis-eQTLs
for their expression15. Alternatively, we could consider a MR approach with multiple genetic variants, which
in principle can distinguish mediated from non-mediated effects so long as the InSIDE (instrument strength
independent of direct effect) assumption holds14 (Note that the InSIDE assumption is essentially the same
as the pleiotropy-eQTL independence assumption we describe in “Model assumptions”). However, this
approach is highly underpowered in the common scenario that genes have only a few detectable cis-eQTLs13,
and this approach cannot be applied to genes with only one cis-eQTL. In summary, we cannot use typical
MR approaches to estimate h2med due to the sparse cis-genetic architecture of gene expression.

Unlike MR approaches, MESC is able to estimate h2med in the presence of sparsity of eQTLs for individual
genes by estimating gene-trait effects across many genes. To illustrate this, we contrast MESC and MR
with multiple genetic variants (see Supplementary Figure 31 for an illustration). MR with multiple genetic
variants essentially involves regressing SNP-trait effects on eQTL effects for a single gene. The slope from
this regression will be the effect of the gene on the trait given that the InSIDE assumption is satisfied.
Meanwhile, MESC essentially involves regressing squared SNP-trait effects on squared eQTL effects summed
across a set of genes. The slope from this regression will be the average squared effect of all genes in the
gene set on the trait given that both the pleiotropy-eQTL independence assumption (which is effectively the
InSIDE assumption extended across eQTLs for all genes in the gene set) and an additional assumption are
satisfied. This additional assumption is that eQTL effect sizes are independent of gene-trait effect sizes across
genes (see “Model assumptions”). We can then calculate h2med with our average gene-trait effect estimate
using an equivalent definition of h2med that models β and α as random variables (See “Definition of h2med”).
Thus, MESC can still reliably estimate h2med if individual genes have one or a small number of eQTLs, since
it essentially aggregates information about gene-trait effects across many genes.

In summary, MESC can be conceptualized as an analogue to MR that models exposure effects as random
and jointly estimates the average squared effect of multiple exposures on an outcome.
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Use of eQTL summary statistics in MESC

We can use summary statistics from eQTL studies to estimate h2med(Dd) since expression score Lk;d is equiva-

lent to the sum of marginal OLS estimates of eQTL effect sizes for SNP k on genes in Dd (
∑
i∈Dd

β̂2
ik(sumstat))

modulo an error term that depends on |Dd| and the sample size of the eQTL study. This error term will be
captured by the intercept during regression. To illustrate this, we model the expression of gene i for Nexp
expression panel samples as follows:

yi(exp) = Xβi + εi(exp)

where yi(exp) is an Nexp-vector of gene expression measurements (standardized to mean 0 and variance 1),
X is an Nexp ×M genotype for M SNPs (standardized to mean 0 and variance 1), βi is an M -vector of
eQTL effect sizes, and εi(exp) is an Nexp-vector of environmental effects. Under this model, we have

E

[∑
i∈Dd

β̂2
ik(sumstat)

]
=
∑
i∈Dd

 M∑
j

r̂2jkβ
2
ij +

E[ε2i(exp)]

Nexp


=
∑
i∈Dd

M∑
j

r̂2jkβ
2
ij +

∑
i∈Dd

1− E[h2cis]

Nexp

=
∑
i∈Dd

M∑
j

r2jkβ
2
ij +

|Dd|E[h2cis]

Nexp
+
|Dd|(1− E[h2cis])

Nexp

= Lk;d +
|Dd|
Nexp

Thus, we can use the following alternate form of equation (20) (in Methods) to perform regression:

E[χ2
k] = N

∑
c

τc`k;c +N
∑
d

πd
∑
i∈Dd

β̂2
ik(sumstat) + 1 +

Nh2med;causal
NexpE[h2cis]

MESC with assayed expression scores

In this section, we show that when we carry out the regression procedure described in “MESC with summary
statistics” using expression scores in assayed tissues T rather than in causal cell types/contexts, we obtain
an estimate of h2med;assayed(T ).

Let β represent cis-eQTL effect sizes in causal cell types/contexts for the trait, and β′ represent cis-eQTL
effect sizes in assayed tissues T . For simplicity, assume no sampling noise and non-mediated effects in GWAS
χ2 statistics. Upon regressing GWAS χ2 statistics on expression scores in assayed tissues (see equation (17)),
we have

α′2 ≈ 1

G

G∑
i

Cov(χ2,
∑M
j r2jβ

′2
ij)

V ar(
∑M
j r2jβ

′2
ij)

≈ 1

G

G∑
i

Cov(
∑M
j r2jα

2
iβ

2
ij ,
∑M
j r2jβ

′2
ij)

V ar(
∑M
j r2jβ

′2
ij)

≈ E[α2]
1

G

G∑
i

`2Cov(β2
i , β
′2
i )

`2V ar(β′2i )

≈ E[α2]
1

G

G∑
i

Cov(β2
i , β
′2
i )

V ar(β′2i )

Here, `2 = V ar(
∑M
j r2j ). The third and fourth line follow given that r2 is independent of α, β, and β′. See

“MESC with assayed eQTL effect sizes” for the remainder of the derivation.

5



Stratified MESC derivation

Starting from equation (14):

E[χ2
k | R,B] = N

M∑
j

E[γ2j | R,B]r̂2jk +N

G∑
i

E[α2
i | R,B]

M∑
j

r̂2jkβ
2
ij +NE[(ε′)2] (7.1)

= N

M∑
j

 ∑
c:j∈Cc

τc | R,B

 r̂2jk +N

G∑
i

( ∑
d:i∈Dd

πd | R,B

)
M∑
j

r̂2jkβ
2
ij +NE[(ε′)2] (7.2)

E[χ2
k] = N

∑
c

τc
∑
j∈Cc

r̂2jk +N
∑
d

πd
∑
i∈Dd

M∑
j

r̂2jkβ
2
ij +NE[(ε′)2] (7.3)

In order for (7.3) to be true, we must make the following assumptions:

• Within each gene category Dd, πd is uncorrelated with the magnitude of eQTL effect sizes

• Within each SNP category Cc, τc is uncorrelated with the magnitude of eQTL effect sizes

• πd is uncorrelated with the LD scores of eQTLs that affect genes in Dd

• τc is uncorrelated with the LD scores of SNPs in Cc

Since E[r̂2jk] ≈ r2jk + 1
N , we have

E[χ2
k] = N

∑
c

τc
∑
j∈Cc

(
r2jk +

1

N

)
+N

∑
d

πd
∑
i∈Dd

M∑
j

(
r2jkβ

2
ij +

β2
ij

N

)
+NE[(ε′)2]

= N
∑
c

τc
∑
j∈Cc

r2jk +
∑
c

∑
j∈Cc

τc +N
∑
d

πd
∑
i∈Dd

M∑
j

r2jkβ
2
ij +

∑
d

∑
i∈Dd

M∑
j

(
πd|Dd|E[h2cis(Dd)]

)
+NE[(ε′)2]

= N
∑
c

τc
∑
j∈Cc

r2jk + h2nonmed;causal +N
∑
d

πd
∑
i∈Dd

M∑
j

r2jkβ
2
ij + h2med;causal + 1− h2nonmed;causal − h2med;causal

= N
∑
c

τc
∑
j∈Cc

r2jk +N
∑
d

πd
∑
i∈Dd

M∑
j

r2jkβ
2
ij + 1

Letting `k;c =
∑
j∈Cc

r2jk and Lk;d =
∑
i∈Dd

∑M
j r2jkβ

2
ij , we arrive at our main equation for stratified MESC:

E[χ2
k] = N

∑
c

τc`k;c +N
∑
d

πdLk;d + 1

Impact of systemic differences in eQTL effect size magnitude between assayed
vs. causal tissues

According to equation (13), we have

α′2 = r2g(T )E[α2]
1

G

G∑
i

√
V ar(β2

i )

V ar(β′2i )
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There are reasonable scenarios in which V ar(β2
i ) can be systemically larger or smaller than V ar(β′

2
i ) across

all genes (e.g. if causal genes for the trait are primarily influenced by cell type-specific eQTLs that are
weaker/absent in assayed tissues). This will cause α′2 6= r2g(T )E[α2]. However, because we multiply α′2 by
GE[h′2cis] to obtain h2med;assayed(T), we will still have h2med;assayed(T ) = r2g(T )h2med;causal.

To illustrate this, consider a scenario where β′2 is both correlated with β2 and scaled by a factor c relative
to β2. (13) thus becomes

α′2 = r2g(T )E[α2]
1

G

G∑
i

√
V ar(β2

i )

V ar(cβ2
i )

=
1

c
r2g(T )E[α2]

Note that scaling β′2 by c will not change the average squared correlation r2g(T ) between β′2 and β. We
then have

h2med;assayed(T ) = GE[β′2]
1

c
r2g(T )E[α2]

= GE[cβ2]
1

c
r2g(T )E[α2]

= r2g(T )h2med;causal

Comparing different methods of estimating expression scores

In this set of simulations, we evaluated the prediction accuracy and bias of different methods of estimating
expression scores from simulated expression data with varying numbers of samples (Methods). Note that
this set of simulations does not involve complex trait phenotypes; see Figure 2a and Supplementary Figure
1 for simulation results involving complex trait phenotypes.

In total, we compared five different methods of estimating expression scores Lk for SNP k. Here, G
represents genes within 1 Mb of SNP k, while M represents SNPs within 1 Mb of SNP k:

1. eQTL summary statistics. L̂k =
∑G
i β̂

2
ik(sumstat), where β̂2

ik(sumstat) represents the squared eQTL
summary statistic of SNP k for gene i.

2. LASSO. L̂k =
∑G
i

∑M
j r2jkβ̂

2
ij(LASSO), where r2jk represents the squared correlation between SNP j

and SNP k, and β̂2
ij(LASSO) represents squared causal eQTL effect sizes of SNP j on gene i estimated

by LASSO16.

3. LASSO with REML correction. L̂k =
∑G
i

∑M
j r2jkciβ̂

2
ij(LASSO). This method is identical to LASSO

except that we scale β̂2
ij(LASSO) by a factor ci. We define ci = ĥ2cis;i/

∑M
j β̂2

ij(LASSO), where ĥ2cis;i is the
expression cis-heritability of gene i predicted by REML. This approach is the same as the one described
in “Estimation of expression scores.” For computational ease, we did not actually use REML to predict
expression cis-heritability for each gene in each simulation, but rather we took the true expression cis-
heritability of the gene and added a realistic amount of noise in order to simulate REML prediction
error.

4. BLUP. L̂k =
∑G
i

∑M
j r2jkβ̂

2
ij(BLUP ). Here, β̂2

ij(BLUP ) represents squared causal eQTL effect sizes of

SNP j on gene i estimated by best linear unbiased predictor (BLUP)17.

5. BLUP with REML correction. L̂k =
∑G
i

∑M
j r2jkciβ̂

2
ij(BLUP ). Same as LASSO with REML correction,

but using BLUP rather than LASSO.

We report mean prediction accuracy (in terms of R2 between predicted and true expression scores) and
bias (in terms of the slope from regressing predicted expression scores on true expression scores) with mean
standard errors over 100 independent simulations. Across all expression panel sample sizes, we obtained
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the best prediction R2 when using LASSO with REML correction (Supplementary Figure 2). The superior
prediction R2 of LASSO compared to other methods can be attributed to the fact that LASSO enforces a
sparsity prior on effect sizes, which matches the sparse nature of cis-eQTL effect sizes. However, LASSO also
produces biased estimates of effect sizes, which is why we need to scale the effects to match the expression
cis-heritability estimated by REML (which is unbiased) to obtain unbiased estimates of expression scores.
LASSO with REML correction gave us approximately unbiased estimates of expression scores at large enough
sample sizes (>500). For OLS summary statistics, we observed unbiased estimates of expression scores at all
sample sizes but inferior prediction R2 to LASSO with REML correction. The remainder of the estimation
methods were biased at all sample sizes and had comparable prediction R2 to OLS summary statistics. We
observed concordant results when varying the number of eQTLs per gene (Supplementary Figure 2a-c), eQTL
window size (Supplementary Figure 2d), and REML prediction error (Supplementary Figure 2f). Prediction
R2 and bias across all methods varied when changing the mean cis-heritability of expression, though the
relative performance of the five methods compared to each other remained consistent across different mean
cis-heritability values (Supplementary Figure 2e).

Notably, we observed poor prediction R2 of all methods for expression data sets of size 100-200, which
is comparable to the size of most individual tissue expression panel data sets. This result suggests that we
cannot reliably predict expression scores using available individual tissue expression panel data sets. In real
data, this result is corroborated by the fact that we obtain low estimates of h2med/h

2
g across all traits when

using individual tissue expression panel data sets to estimate expression scores (Figure 5b).

Rare vs. common variant h2
med

In all our analyses, we restrict the regression SNPs used by MESC to only Hapmap3 SNPs18. Because
Hapmap3 SNPs essentially only tag common variants, by restricting to Hapmap3 SNPs we estimate the pro-
portion of common disease heritability mediated by the cis-genetic component of gene expression (h2med(common)/h

2
common)

(see following section for simulation results). We define h2med(common) as
∑
j∈C

∑
i β

2
ijα

2
i (given standardized

genotypes and phenotypes), where C represents the set of all SNPs with minor allele frequency (MAF)
> 0.05, βij represents the cis-eQTL effect size of SNP j on gene i, and αi represents the effect size of
gene i on disease. This quantity differs from the total disease heritability mediated by gene expression
(h2med(common) + h2med(rare)), where h2med(rare) is defined in the same manner as h2med(common) but C is re-

placed with the set of all SNPs with MAF < 0.05. We do not aim to estimate h2med(rare) because doing so
requires eQTL effect size estimates for rare variants, which cannot be reliably obtained from current expres-
sion panel data sets. Even if we had the data to estimate h2med(rare) (i.e. many thousands of whole-genome

sequencing expression samples), there are several reasons why we would expect the proportion of total disease
heritability mediated by gene expression (h2med(common) + h2med(rare))/(h

2
common + h2rare) to be either similar

or smaller than the quantity h2med(common)/h
2
common that we estimate:

1. Most SNP heritability is explained by common variants19,20. Thus, we can expect the quantity
(h2med(common) + h2med(rare))/(h

2
common + h2rare) to depend mostly on h2med(common) and h2common.

2. Rare variant heritability has a much larger enrichment in coding regions than common variant heri-
tability21, suggesting that the effects of rare variants on disease tend to be mediated by protein-coding
changes rather than changes in gene expression. Protein-coding changes are not reflected in h2med, so
we would expect that h2med(rare)/h

2
rare < h2med(common)/h

2
common.

Role of singletons in h2med

A recent study22 has shown that a substantial proportion of total expression cis-heritability (around 20%)
in an expression panel of 360 individuals is explained by singletons with MAF < 0.0001 (i.e. singletons that
are not observed in large genome reference panels). However, as mentioned above, rare variant effects do
not contribute to h2med(common) since they are not tagged by Hapmap3 SNPs. Furthermore, even if we had
the data to estimate eQTL effect sizes for singletons, there is evidence that singletons contribute very little
or nothing to disease heritability, as a recent study23 has shown that virtually all narrow-sense heritability
for height and BMI can be explained by SNPs with MAF > 0.0001 (which excludes the class of ultra-rare
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SNPs defined as singletons in Hernandez et al.). In light of this result, we would not expect singleton effects
on expression to substantially mediate any disease heritability.

Simulations under frequency-dependent genetic architectures

To evaluate the bias of MESC in estimating h2med(common) in the presence of frequency-dependent genetic

architectures (including rare and low-frequency variants), we conducted simulations in which both eQTL and
GWAS per-allele effect size magnitude were inversely proportional to minor allele frequency, consistent with
purifying selection acting on gene expression22,24 and complex trait19,20. We conducted our simulations using
real genotypes imputed to include rare and low-frequency variants from UK Biobank25 (NGWAS = 100,000;
M = 1,539,668 SNPs from chromosome 1). We simulated cis-eQTLs for G = 1000 genes with variance of
per-allele effect sizes proportional to [pi(1− pi)]]α, where p is the minor allele frequency of SNP i and α is a
parameter ranging from −0.33 (corresponding to 5% of heritability explained by rare variants with MAF <
0.01 in our data set) to −1.33 (corresponding to 50% heritability explained by rare variants). We simulated
frequency dependent non-mediated SNP effect sizes in a similar fashion as eQTL effect sizes. Finally, we
simulated gene effect sizes on complex trait corresponding to h2med(common)/h

2
common = 0.2 and h2 = 0.5.

From these effect sizes, we simulated GWAS summary statistics, as well as eQTL summary statistics using
a separate set of genotypes (NeQTL = 10,000).

We applied MESC to these summary statistics while performing the regression using only Hapmap3 SNPs
(consistent with what we do in practice). In order to capture dependence between LD scores and GWAS effect
sizes (which constitutes a model violation and leads to biased h2g estimates if uncorrected26,27), we stratified
regression SNPs by 10 MAF bins, which has been shown to adequately account for this dependence7,27. In all
simulations, we obtained unbiased/slightly conservative estimates of h2med(common)/h

2
common across diverse

values of α, including scenarios in which α for non-mediated effect sizes was different than α for eQTL effect
sizes (Supplementary Figure 5). Thus, MESC is robust to frequency-dependent genetic architectures for
both gene expression and disease.

Role of tissue specificity in explaining low heritability genes

Because we define the h2cis of a gene by averaging individual-tissue h2cis estimates across all tissues, a gene
with low meta-tissue h2cis can reflect two different scenarios: the gene has low individual-tissue h2cis across
many tissues, or the gene has high individual-tissue h2cis in only one or a small number of tissues (i.e. the
gene has tissue-specific eQTLs). To investigate the potential role of tissue-specific eQTLs in explaining low
meta-tissue h2cis, we obtained three quantities for each gene: (1) the number of tissues in which the gene had
a significantly nonzero h2cis (p < 0.05), (2) the max h2cis of the gene across all tissues, and (3) the average
h2cis of the gene across the tissues for which h2cis was significantly nonzero. If the number of tissues in which
the gene has truly nonzero h2cis (an indicator of the tissue specificity of the gene) is the primary factor in
determining the magnitude of the meta-tissue h2cis, we would expect that (1) be proportional to the magnitude
of the meta-tissue h2cis, while (2) and (3) not be proportional to the magnitude of the meta-tissue h2cis. We
observed that (1) was indeed proportional to the magnitude of the meta-tissue h2cis (Supplementary Figure
20a); however, (2) and (3) were also proportional to the magnitude of the meta-tissue h2cis (Supplementary
Fig 20b,c), suggesting that statistical power due to the magnitude of h2cis, rather than tissue specificity, was
primarily responsible for the fact that (1) was proportional to the meta-tissue h2cis. In summary, these results
suggest that low h2cis genes are not primarily genes with highly tissue-specific eQTLs, though we cannot rule
out the possibility of tissue-specific eQTLs having some contribution to low h2cis genes.

Impact of adding window around gene set to model

When estimating the h2med enrichment of a given gene set, we stratify SNPs by the baselineLD model v2.0 in
order to account for correlations between eQTL effects and non-mediated effects, and we stratify genes within
the gene set into three bins to account for correlations between eQTL effects and gene effects. In addition
to the 72 baselineLD model SNP annotations, we might consider adding an additional annotation that
corresponds to all SNPs within a certain genomic distance (e.g. 100 Kb) of genes in the gene category. By
including this annotation, we impose a stricter standard for identifying h2med enrichment of the gene category.
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To illustrate this, consider a scenario in which GWAS signal tends to physically localize around genes in a
given gene set, but that none of the GWAS signal is actually mediated by the expression levels of those genes.
Because cis-eQTLs also (by definition) physically localize around those genes, by chance we will observe that
eQTLs for those genes will have larger GWAS effect sizes compared to the genomic background, in which
case we will likely spuriously identify the gene set as having significant h2med enrichment. By including a 100
Kb window around each gene, we require that eQTL effect size magnitude is correlated with GWAS effect
size magnitude within the 100 Kb windows to detect significant h2med enrichment, which will not occur if the
GWAS signal is not mediated by the expression levels of the genes. In summary, including a SNP annotation
corresponding to a window around each gene can eliminate false positive h2med enrichment estimates that
arise due to localization of GWAS signal around genes that is not mediated by gene expression.

In practice, we chose to include a 100 Kb window around genes, given precedence in the literature9,12,28,29.
These studies report large heritability enrichment of a window of this size around many functional gene sets.
When including this annotation for each gene set, we observed that the h2med enrichment estimate for the gene
set was very similar for most gene sets (Supplementary Figure 23), demonstrating that the h2med enrichment
of these gene sets was not due to coincidental overlap between non-mediated effects and eQTL effects near
these genes. Given this result, we did not include the window around genes in any of our subsequent analyses,
nor in any of the results we report in the manuscript.

Comparing MESC to other gene set enrichment methods

MESC can be used to prioritize disease-relevant gene sets using the h2med enrichment of a gene set, defined
as (proportion of h2med in gene set) / (proportion of genes in gene set). Larger h2med enrichment of the
gene set suggests that the expression of genes in the gene set have larger causal effects on disease. Many
other methods exist that also aim to prioritize causal gene sets using GWAS data30–36. MESC primarily
differs from these other methods in that (1) it utilizes eQTL data, and (2) it specifically estimates causal
effects of gene expression on disease, under a generative model for disease that connects SNP effects on gene
expression to gene effects on disease. On the other hand, other popular methods for gene set enrichment
analysis (e.g. MAGMA, DEPICT) are not based on eQTL data and do not model gene effects on disease.
Instead, these methods prioritize gene sets under the assumption that causal genes should have more GWAS
signal in close genomic proximity to them, which may not be true in some cases37,38. Thus, the two qualities
above can make MESC desirable as a discovery tool, especially since eQTLs have been useful in elucidating
the mechanistic basis of disease in many other settings4,5, 13,39–49.

However, there are also scenarios in which MESC will miss gene sets that play a causal role in disease.
In particular, MESC focuses only on genes whose expression levels mediate the effects of GWAS hits, to
the extent that can be detected in existing eQTL studies such as GTEx. SNP effects on disease might be
mediated by mechanisms other than gene expression levels (e.g. protein-coding changes), or they may be
mediated by gene expression levels in specific cell types or contexts that are not captured by existing eQTL
studies. Moreover, a key drawback of MESC is that it produces large standard errors for small gene sets and
thus can only be applied to large gene sets with more than 200 genes, whereas other methods can analyze
gene sets of any size. Thus, we propose MESC as a complementary approach rather than replacement for
other pathway enrichment methods.

To compare MESC to other pathway enrichment methods, we applied MAGMA33 and DEPICT32 to
the same GWAS summary statistics for 26 traits with nominally significant h2med. We analyzed a total of
501 gene sets, which represent the intersection of gene sets we analyzed using MESC in our study and gene
sets built into the DEPICT software. We ran MAGMA with default parameters. DEPICT requires that
we specify a p-value threshold for defining significant GWAS loci; however, the recommended thresholds of
1 × 10−5 and 5 × 10−8 caused DEPICT to exceed its maximum number of loci for many traits. Thus, for
each trait, we set the p-value threshold to the maximum of the following values that did not cause DEPICT
to exceed its maximum number of loci: 1 × 10−5, 5 × 10−8, 5 × 10−15, 5 × 10−20, 5 × 10−25, 5 × 10−30,
5× 10−35, 5× 10−40, 5× 10−45, 5× 10−50. We then compared gene sets identified as significantly enriched
by MAGMA and DEPICT to gene sets with significant h2med enrichment (see Supplementary Table 9 for all
estimates). Out of 13,206 total trait-gene set pairs, MESC identified 106 with significant h2med enrichment
(FDR < 0.05 while correcting for 13,206 × 3 = 39,078 hypotheses), compared to 85 for MAGMA and 957
for DEPICT (Supplementary Figure 27a). We observed correlated enrichment p-values across the three
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methods (MESC vs. MAGMA R2 = 0.14, MESC vs. DEPICT R2 = 0.20, MAGMA vs. DEPICT R2 =
0.10) (Supplementary Figure 27b). Of the 106 significant trait-gene sets pairs identified by MESC, 32 were
not detected as significant by either MAGMA or DEPICT (Supplementary Figure 27c), including biologically
plausible trait-gene sets pairs such as “phospholipid metabolic process” for high-density lipoprotein level and
“synapse part” for schizophrenia. These results demonstrate that MESC produces broadly concordant gene
set enrichment estimates as the other methods, while also capturing unique signal that is present in only
eQTL data.

Impact of environmental noise in gene expression measurements on expression-
mediated heritability estimates

In this section, we show that the level of environmental noise in gene expression measurements (which differs
across assays and affects both standardized eQTL effect sizes and the magnitude of expression cis-heritability,
h2cis) does not impact our estimates of expression-mediated heritability h2med. In other words, h2med depends
on only the genetic component of gene expression levels. One consequence of this fact is that the magnitude
of h2med does not a priori depend on the magnitude of h2cis. For example, mean h2cis can be very low in a
given gene expression data set due to e.g. large stochastic fluctuations in gene expression levels or other
sources of technical noise specific to the data set, while estimated h2med from this gene expression data set
can in principle be very high (i.e. close to total SNP heritability h2g).

To understand this intuitively, one can think of the units in which all SNP effect sizes operate. Recall
our model for the effect size of SNP j on complex trait:

ωj =
∑
i

βijαi + γj

where ωj represents the total effect size of SNP j on the complex trait, βij represents the effect size of
SNP j on the expression levels of gene i, αi represents the effect size of gene i on the complex trait, and
γi represents the non-mediated effect size of SNP j on the complex trait. When complex trait and gene
expression levels are standardized to zero mean and unit variance, βij is expressed in terms of additive
increase in standardized expression levels per unit increase in standardized genotype (which we abbreviate

as std(expr)
std(geno) ), while αi is expressed in terms of additive increase in standardized phenotype per unit increase

of standardized expression levels (which we abbreviate as std(pheno)
std(expr) ). When we multiply α2

i by
∑
i β

2
ij , we

obtain a quantity corresponding to the heritability mediated by gene expression levels for SNP j in units of(
std(expr)
std(geno)

)2 (
std(pheno)
std(expr)

)2
=
(

std(pheno)
std(geno)

)2
.

Because std(expr) cancels out in this above product, the units in which gene expression levels are repre-
sented does not actually affect our final estimate of the heritability mediated by gene expression levels for
SNP j (provided that both αi and βij use the same units of expression). To elaborate, when we regress ω2

j on∑
i β

2
ij , we obtain an estimate of E[α2] in units of

(
std(pheno)
std(expr)

)2
. To obtain an estimate of per-SNP expression-

mediated heritability, we then multiply E[α2] by E
[∑

i β
2
ij

]
(or equivalently E[h2cis]), which is in units of(

std(expr)
std(geno)

)2
. Suppose we were to scale

∑
i β

2
ij by an arbitrary factor c, in which case our estimate of E[α2]

would be in units of
(

std(pheno)
c·std(expr)

)2
and E

[
c
∑
i β

2
ij

]
would be in units of

(
c·std(expr)
std(geno)

)2
. When multiplying

E[α2] by E
[
c
∑
i β

2
ij

]
, the product would be expressed in units of

(
c·std(expr)
std(geno)

)2 (
std(pheno)
c·std(expr)

)2
=
(

std(pheno)
std(geno)

)2
and would thus be unchanged compared to before. This is essentially the same argument as made in the
section “Impact of systemic differences in eQTL effect size magnitude between assayed vs. causal tissues”
(Supplementary Note), in which we show that true differences in eQTL effect size magnitude agnostic of
environmental noise in expression assays also do not affect our estimates of expression-mediated heritability.

Adding environmental noise to gene expression levels has the effect of scaling both squared standardized
eQTL effect sizes and h2cis by a constant factor, which we have shown above does not affect estimates of
h2med. To illustrate this, consider the following generative model for the expression levels of gene i, in which
genotypes are standardized to zero mean and unit variance but gene expression levels are not standardized:
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yi(exp) = Xβi + εi(exp)

where yi(exp) is a vector of non-standardized gene expression levels for gene i, X is a matrix of standardized
genotypes, βi is a vector of non-standardized cis-eQTL effect sizes for gene i, and εi(exp) is a vector of
environmental effects. In order to standardize cis-eQTL effect sizes (so that

∑
β2
i(std) = h2cis), we divide

all non-standardized cis-eQTL effect sizes βi by
√∑

β2
i + V ar(εi(exp)) to obtain βi(std). Now, note that

adjusting the variance of the noise term εi(exp) is akin to scaling both h2cis and β2
i(std) by the same constant

factor. For example, let V ar(εi(exp)) be the original environmental variance, and let V ar(ε′i(exp)) be the new

environmental variance. Both original h2cis and β2
i(std) are multiplied by the factor

∑
β2
i +V ar(εi(exp))∑
β2
i +V ar(ε

′
i(exp)

)
to obtain

the new h2cis and β2
i(std).

In summary, we show that the level of environmental noise in gene expression panels (due to e.g. stochastic
fluctuations in gene expression levels or other sources of assay noise) does not impact our estimates of h2med.

Prospects for estimating disease heritability mediated by trans-eQTLs

In all our analyses, we aim to estimate disease heritability mediated by gene expression in cis, rather than the
full genetic component of gene expression that includes trans effects. In theory, we can also estimate disease
heritability mediated by gene expression in trans using MESC, where we would simply replace cis-eQTL
effect sizes with trans-eQTL effect sizes in all our analyses. However, trans-eQTLs are much more difficult
to estimate than cis-eQTLs due to their much smaller effect sizes, impacting resulting estimates of h2med. In
this section, we show that h2med estimates produced by MESC are bounded by the average genetic prediction
r2 of gene expression multiplied by true h2med, so r2 < 1 results in downward bias in estimated h2med (note
that here r2 refers to the prediction accuracy of the only the genetic component of gene expression, which
does not include environmental effects). For gene expression in cis, this downward bias is minimal at current
sample sizes (see simulation result in Figure 2a), as we can obtain a prediction r2 close to 1 for cis-eQTLs4

(also see simulation in Supplementary Figure 2). However, for gene expression in trans, this downward bias
becomes problematic at current sample sizes, since trans-eQTLs are highly polygenic and thus more difficult
to estimate3,15,50. In order to obtain a reliable estimate of disease heritability mediated by trans-eQTLs, we
would ideally want a genetic prediction r2 of 0.8 or greater (comparable to the prediction r2 of cis-eQTLs
from currently available gene expression data sets), which we show requires expression panels on the order of
1,000,000 or more samples (see below). Note that these sample sizes are comparable to those needed for very
accurate polygenic disease risk prediction. We also show that the expected prediction r2 of trans-eQTLs
from the largest gene expression data set (eQTLGen50, N = 31,684) is only 0.026, which is far too low to
yield meaningful estimates of h2med. Thus, estimating disease heritability mediated by trans-eQTLs using
MESC is not feasible with currently available gene expression data sets.

Relationship between genetic prediction r2 of gene expression and magnitude of estimated
h2med

Let β represent eQTL effect sizes (either cis or trans) in causal cell types/contexts for the trait, let β′

represent eQTL effect sizes in assayed tissues T , and let β̂′ = β′+ ε represent estimated eQTL effect sizes in
assayed tissues T , where ε is a noise term. We assume that ε is independent of β′. Upon regressing squared

GWAS effects sizes ω2 on squared estimated eQTL effect sizes
∑G
i β̂
′2
i , the estimate of the coefficient α̂′2 is:
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α̂′2 ≈ E[α2]
1

G

G∑
i

Cov(β2
i , β̂
′
i
2)

V ar(β̂′i
2)

≈ E[α2]
1

G

G∑
i

Cov(β2
i , β
′2
i + ε2i )

V ar(β̂′i
2)

≈ E[α2]
1

G

G∑
i

Cov(β2
i , β
′2
i )

V ar(β̂′i
2)

The first line follows from the same derivation as “MESC with eQTL effect sizes in non-causal tissues.”

As before, we define r2g(T ) = 1
G

∑G
i

Cov(β2
i ,β

′
i
2)√

V ar(β2
i )V ar(β

′2
i )

as the average squared genetic correlation between

expression in assayed tissues T vs. in causal cell types/contexts. Given this definition, we have:

α̂′2 ≈ r2g(T )E[α2]
1

G

G∑
i

√
V ar(β2

i )V ar(β′2i )

V ar(β̂′i
2)

We can establish an upper bound for α̂′2 in terms of the genetic prediction accuracy of expression. Let

r2pred(T ) = 1
G

∑G
i

Cov(β̂′
i
2,β′

i
2)√

V ar(β̂′
i
2)V ar(β′2

i )
represent the average squared genetic prediction accuracy of expres-

sion across genes in tissues T . Note that

√
V ar(β2

i )V ar(β
′2
i )

V ar(β̂′
i
2)

≤ Cov(β̂′
i
2,β′

i
2)√

V ar(β̂′
i
2)V ar(β′2

i )
under the assumption that

V ar(β2
i ) ≈ V ar(β′

2
i ). To illustrate this, see that the numerators of both sides of the inequality are equiv-

alent: Cov(β̂′i
2, β′i

2
) = Cov(β′

2
i + ε2i , β

′
i
2
) = Cov(β′

2
i , β
′
i
2
) = V ar(β′

2
i ) ≈ V ar(β2

i ) on the left side, and√
V ar(β2

i )V ar(β′2i ) ≈
√
V ar(β2

i )V ar(β2
i ) ≈ V ar(β2

i ) on the right side. However, in the denominators,

V ar(β̂′i
2) ≥

√
V ar(β̂′i

2)V ar(β′2i ), since V ar(β̂′i
2) ≥ V ar(β′2i ). Thus, we have:

α̂′2 ≤ r2pred(T )r2g(T )E[α2]

We can multiply α̂′2 by GE[h′2cis] to obtain an estimate of h2med;assayed(T ) that has the following property:

ĥ2med;assayed(T ) ≤ r2pred(T )h2med;assayed(T )

Expected genetic prediction r2 of gene expression in trans

Unlike cis-eQTLs, trans-eQTLs are known to be polygenic. Thus, we can invoke the following equation
that relates sample size to polygenic prediction accuracy for gene expression in trans using the best linear
unbiased predictor (BLUP)51,52:

r2pred;trans(T ) =
1

G

G∑
i

h2i;trans

h2i;trans + M
N (1− r2pred;trans(T ))

≈ N

M

1

G

G∑
i

h2i;trans

where h2i;trans is the expression trans-heritability of gene i, M is the effective number of independent SNPs

(approximately 60,00053), and N is expression panel sample size. The largest expression panel available to
date is from eQTLGen50, with N = 31,684 in blood. The average h2trans of expression is around 0.053,4, 54.
Thus, we can expect r2pred;trans(T ) trained on eQTLGen data to be around 31,684·0.05

60,000 = 0.026, which is far

too low to yield meaningful estimates of h2med. In order to obtain r2pred;trans(T ) of 0.8 (comparable to the

prediction r2 of gene expression in cis from current expression panels), we would need 0.8·60,000
0.05 = 960,000

samples.
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Choice of 10 traits for display in Figure 5

Starting with the full set of 26 traits with h2med/h
2
g greater than 0 with nominal significance (p < 0.05), we

pruned genetically correlated traits as follows. First, we selected the pair of traits with the greatest genetic
correlation (estimated using cross-trait LD score regression55). Between the pair of selected traits, we then
retained the trait with the larger h2g z-score (estimated using stratified LD score regression6). We repeated
this procedure until 10 traits were left.

Simulation: Supplementary Figure 2

We selected a 20 Mb region on chromosome 1 (base pair coordinates 60,000,000 to 80,000,000), which
contained 8,604 SNPs. 100 genes were simulated within this region, with the average cis-heritability across
all genes set at h2cis = 0.05 or 0.01. For each gene, we simulated 1, 5, or 10 cis-eQTLs with locations
randomly selected within a random 1 Mb or 10 Kb window within the overall 20 Mb region. For simulations
with one eQTL per gene, the effect size for the eQTL was drawn from N (0, h2cis). For simulations with
more than one eQTL per gene, one eQTL was randomly selected to explain 80% of the total heritability
of the gene and had an effect size drawn from N (0, 0.8h2cis). The remaining eQTLs had effect sizes drawn

from N (0, 0.2h2cis/(NeQTL − 1)), where NeQTL is the total number of eQTLs per gene. Expression values
were simulated for each gene using an additive generative model with previously simulated effect sizes and
environmental noise drawn from N (0, 1 − h2cis). LASSO and BLUP prediction of eQTL effect sizes was
performed using all SNPs within 1Mb of each simulated gene. To simulate REML prediction error in
expression heritability estimates, we added noise drawn from N (0, 0.012) to the true heritability values,
which is consistent with the average standard error of GCTA estimates of expression cis-heritability across
all GTEx samples (Supplementary Figure 32).

Simulation: Supplementary Figure 3

All effect sizes and complex trait phenotypes were simulated in the same manner as Figure 2a. We simulated
expression phenotypes for 1, 5, or 10 tissues with 200 samples per tissue using the same eQTL effect sizes
used to generate complex trait phenotypes. We estimated expression scores in each individual tissue. We
meta-analyzed expression scores across tissues by averaging the causal squared LASSO-predicted eQTL effect
sizes across all tissues for each gene (after scaling the effect sizes to the estimated expression cis-heritability).
We then used these averaged causal eQTL effect sizes to compute expression scores by multiplying them
by the element-wise squared LD matrix. This meta-analysis procedure is the same as the one described in
“Meta-analysis of expression scores” in Methods.

Simulation: Supplementary Figure 5

For all simulations, we set h2cis = 0.05, h2med = 0.1, and h2 = 0.5. For each of 1000 genes, we randomly selected
5 SNPs within a random 1 Mb window to act as cis-eQTLs with effect sizes drawn fromN (0, [pi(1−pi)]αeQTL),
where pi is the MAF of the given SNP i. To avoid extreme effect sizes for singletons or doubletons, effect
sizes for SNPs with MAF < 0.01 were drawn from N (0, [0.01(1−0.01)]αeQTL). αeQTL was set to either -0.33,
-0.60, -0.99, or -1.33. Finally, we scaled the effect sizes of the cis-eQTLs so that the sum of their squared
effects equalled h2cis. Expression phenotypes were simulated for each gene with environmental noise drawn

from N (0, 1− h2cis).
Similarly, we simulated non-mediated effect sizes for each SNP from N (0, [pi(1 − pi)]αGWAS ), or from

N (0, [0.01(1 − 0.01)]αGWAS ) for SNPs with MAF < 0.01. αGWAS was set to any of the same four values
αeQTL could take on (without necessarily being equal to αeQTL). We then scaled these effect sizes so
that the sum of the squared effects equalled h2 − h2med. We simulated gene-trait effect sizes for each gene

from N (0, (h2med/(Gh
2
cis)). Complex trait phenotypes were simulated with environmental noise drawn from

N (0, 1− h2g).
Expression scores were estimated by computing eQTL summary statistics from the simulated expres-

sion panel. In-sample LD scores were computed for all 1,539,668 SNPs from the 100,000 GWAS samples.
Regression was performed using only Hapmap3 SNPs.

14



Simulation: Supplementary Figure 6

We set the overall h2med/h
2
g = 0.4. We simulated a gene category containing 200 random genes from the

1000 total genes. For the null scenario, we drew gene-trait effect sizes for all genes, including genes in the
gene category, from N (0, h2med/(Gh

2
cis)). For the enriched scenario, we simulated gene-trait effect sizes so

that h2med within the gene category was 2x the h2med of genes outside of the category. eQTL effect sizes,
non-mediated SNP effect sizes, expression phenotypes, and complex trait phenotypes were simulated in the
same manner as in Figure 2a.

Simulation: Supplementary Figure 8

We set h2cis = 0.05. We simulated 1 eQTL per gene with effect size drawn from N (0, h2cis). To simulate 10x
enrichment of eQTLs in coding, TSS, and conserved regions, we selected eQTL locations so that 10x more
eQTLs per SNP were located in the three SNP categories than the remainder of the genome. We simulated
non-mediated effect sizes so that the heritability enrichment of the three SNP categories was 10x. Gene-trait
effect sizes, expression phenotypes, and complex trait phenotypes were simulated in the same manner as in
Figure 2a.
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50 Võsa, U. et al. Unraveling the polygenic architecture of complex traits using blood eQTL metaanalysis.
bioRxiv 447367, DOI: 10.1101/447367 (2018).

17

10.1038/ncomms6890
10.1371/journal.pcbi.1004219
10.1038/nrg.2016.29
10.1093/nar/gky175
10.1038/s41467-018-06805-x
10.1038/nature13138
10.1056/NEJMoa1502214
10.1038/ng.3367
10.1038/ng.3538
10.1038/s41467-018-03621-1
10.7554/eLife.34408
10.1038/s41467-018-06302-1
10.1038/s41588-018-0132-x
10.1038/s41588-018-0090-3
10.1126/science.aat8127
10.1038/s41588-019-0364-4
10.1038/s41588-019-0409-8
10.1038/s41588-019-0409-8
10.1038/s41467-019-10936-0
10.1101/447367


51 Daetwyler, H. D., Villanueva, B. & Woolliams, J. A. Accuracy of Predicting the Genetic Risk of Disease
Using a Genome-Wide Approach. PLOS ONE 3, e3395, DOI: 10.1371/journal.pone.0003395 (2008).

52 Wray, N. R. et al. Pitfalls of predicting complex traits from SNPs. Nat. Rev. Genet. 14, 507–515, DOI:
10.1038/nrg3457 (2013).

53 Yang, J., Zaitlen, N. A., Goddard, M. E., Visscher, P. M. & Price, A. L. Advantages and pitfalls in the
application of mixed-model association methods. Nat. Genet. 46, 100–106, DOI: 10.1038/ng.2876 (2014).

54 Lloyd-Jones, L. R. et al. The Genetic Architecture of Gene Expression in Peripheral Blood. The Am. J.
Hum. Genet. 100, 228–237, DOI: 10.1016/j.ajhg.2016.12.008 (2017).

55 Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47,
1236–1241, DOI: 10.1038/ng.3406 (2015).

56 Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity in genome-
wide association studies. Nat. Genet. 47, 291–295, DOI: 10.1038/ng.3211 (2015).

18

10.1371/journal.pone.0003395
10.1038/nrg3457
10.1038/ng.2876
10.1016/j.ajhg.2016.12.008
10.1038/ng.3406
10.1038/ng.3211


Supplementary Figures

Supplementary Figure 1. Impact of different methods of estimating expression scores on
estimates of h2med/h

2
g. For this simulation, h2med/h

2
g = 0.4. All other simulation parameters were the same

as in Figure 2a. We exclude results for expression scores estimated using BLUP, since h2med/h
2
g estimates

obtained from these expression scores were severely upwardly biased (i.e. greater than 1 at all sample sizes).
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Supplementary Figure 2. Accuracy and bias of different methods of estimating expression
scores in various simulated cis-genetic architectures. Left: R2 between predicted and true expression
scores at different expression panel sample sizes. Right: Bias of predicted expression scores (slope from
regressing predicted expression scores on true expression scores). Default settings: 5 cis-eQTLs per gene,
cis-eQTLs randomly selected within 1 Mb window, mean expression cis-heritability = 0.05. (a-c) 5, 10, and
1 simulated cis-eQTL per gene respectively. (d) eQTLs randomly selected within 10 Kb window. (e) Mean
expression cis-heritability = 0.01. (f) LASSO with REML correction results for various levels of REML
noise. Error bars for all plots represent mean standard errors across 100 simulations. See Supplementary
Note for remaining details on this simulation.
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Supplementary Figure 3. h2med/h
2
g estimates from expression scores meta-analyzed across tis-

sues. We simulated expression phenotypes in multiple tissues, then estimated expression scores in individual
tissues and meta-analyzed expression scores across tissues. Error bars represent mean standard errors across
100 simulations. See Supplementary Note for remaining details on this simulation.

Supplementary Figure 4. h2med/h
2
g estimates when varying h2g. Simulation was performed in the

same manner as in Figure 2a (with expression panel size fixed at 1000). h2med/h
2
g was fixed at 0.2 for all

simulations. Error bars represent mean standard errors across 100 simulations.
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Supplementary Figure 5. h2med/h
2
g estimates under simulated frequency-dependent genetic ar-

chitectures. Error bars represent mean standard errors across 100 simulations. With h2med(common)/h
2
common

fixed at 0.2 and h2 fixed at 0.5, we simulated eQTL effect sizes with variance of per-allele effect sizes pro-
portional to [pi(1− pi)]αeQTL and non-mediated effect sizes with variance proportional to [pi(1− pi)]αGWAS .
We selected values of αeQTL and αGWAS to have the following property: α = −0.33: 5% of total heritabil-
ity explained by rare variants with MAF < 0.01; α = −0.60: 10% heritability explained by rare variants;
α = −0.99: 25% heritability explained by rare variants; α = −1.33: 50% heritability explained by rare
variants. (a) h2med(common)/h

2
common estimates with αeQTL = αGWAS , in which case the proportion of rare

h2med and rare h2 is the same (x-axis). (b) h2med(common)/h
2
common estimates with αeQTL 6= αGWAS . Left:

proportion of rare h2med is fixed at 0.1, while proportion of rare h2 is varied from 0.05 to 0.25. Right: propor-
tion of rare h2 is fixed at 0.1, while proportion of rare h2med is varied from 0.05 to 0.25. See Supplementary
Note for remaining details on this simulation.
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Supplementary Figure 6. Calibration of jackknife standard errors for h2med enrichment. We sim-
ulated a gene category without h2med enrichment (null) and a gene category with 2x h2med enrichment (causal).
Jackknife standard errors for h2med enrichment are compared to empirical standard errors of h2med enrichment
estimates across 1000 simulations. See Supplementary Note for remaining details on this simulation.

Supplementary Figure 7. Per-bin h2med/h
2
g estimates for simulation in Fig 3a. In the legend, the

number in parentheses indicates the average expression cis-heritability of genes in a given gene bin.
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Supplementary Figure 8. h2med/h
2
g estimates for simulation involving realistic violation to

pleiotropy-eQTL independence. h2med/h
2
g was varied from 0 to 0.6. Because the union of the three

SNP categories with eQTL effect size enrichment (coding regions, conserved regions, and transcription start
sites) comprises around 6% of the genome, the maximum value that h2med/h

2
g can be is 0.6 if we have the

condition that h2g enrichment of the three SNP categories is 10x. 100 simulations were performed. See
Supplementary Note for remaining details on this simulation.

Supplementary Figure 9. Same simulation parameters as Figure 3b, but all non-mediated effects and
eQTL effects localized in conserved regions and transcription start sites (TSS) respectively.
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Supplementary Figure 10. Null calibration and power of MESC and stratified LD-score re-
gression given pleiotropy-eQTL effect size independence. For various levels of h2med/h

2
g, this figure

reports the proportion of simulations which the null hypothesis that h2med/h
2
g = 0 is rejected by MESC, and

the proportion of simulations in which the null hypothesis of no h2g enrichment for the set of all eQTLs is
rejected by stratified LD-score regression (S-LDSC). All effect sizes, expression phenotypes, and complex
trait phenotypes were simulated in the same manner as Figure 2a. For stratified LD-score regression, we
defined the eQTL category as the set of all true eQTLs. 300 simulations were performed.
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Supplementary Figure 11. Relationship between h2med/h
2
g and h2g. h2med/h

2
g estimates were ob-

tained using all-tissue meta-analyzed expression scores. h2g estimates were obtained using stratified LD-score
regression. Error bars represent jackknife standard errors.

26



Supplementary Figure 12. Same as Figure 5a, but containing h2med/h
2
g estimates for all 42 traits from all

three types of expression scores: “All tissues” (expression scores meta-analyzed across all 48 GTEx tissues),
“Best tissue group” (expression scores meta-analyzed within 7 tissue groups), and “Best tissue” (expression
scores computed within individual tissues). Here, “best” refers to the tissue/tissue group resulting in the
highest estimates of h2med/h

2
g compared to all other tissues/tissue groups.
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Supplementary Figure 13. Relationship between individual tissue sample size and magnitude
of h2med/h

2
g. h2med/h

2
g estimates from expression scores estimated in each of 48 individual GTEx tissues

were meta-analyzed across 42 complex traits, then plotted against the number of samples in each tissue.
We use the following abbreviations: adipose visceral, adipose visceral omentum; brain ACC, brain anterior
cingulate cortex BA24; brain CBG, brain caudate basal ganglia; brain CH, brain cerebellar hemisphere;
brain FC, brain frontal cortex BA9; brain NABG, brain nucleus accumbens basal ganglia; brain PBG
brain putamen basal ganglia; cells CETL, cells EBV-transformed lymphocytes; cells TF, cells transformed
fibroblasts; esophagus–GJ, esophagus gastroesophageal junction; heart AA, heart atrial appendage; heart
LV, heart left ventricle; skin NSES, skin not sun exposed suprapubic; skin SELL, skin sun exposed lower leg;
small intestine, small intestine terminal ileum.
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Supplementary Figure 14. h2med/h
2
g estimates for 42 diseases and complex traits using data from

eQTLGen. We estimated expression scores for all SNPs using cis-eQTL summary statistics from eQTLGen
(N = 31,684 blood samples), then estimated h2med/h

2
g using GWAS summary statistics for the same 42 traits

analyzed in the main text. In line with our previous analyses using GTEx data, we stratified expression scores
by 5 expression cis-heritability bins. Expression cis-heritability estimates for eQTLGen data were obtained
using LD-score regression56. For sake of comparison, we also display h2med/h

2
g estimates obtained from

expression scores from GTEx all-tissue meta-analysis and GTEx whole blood only. (a) h2med/h
2
g estimates

for 42 individual traits, organized into blood/immune and non-blood/immune traits. (b) Results from a
meta-analyzed across traits. Note that low estimates of h2med/h

2
g for GTEx whole blood expression scores

are caused by the small sample size of the GTEx whole blood data set (N = 369).
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Supplementary Figure 15. h2med/h
2
g estimates without stratifying genes/SNPs. All estimates were

obtained using all-tissue meta-analyzed expression scores. (a) We estimated h2med/h
2
g for 42 traits without

stratifying genes by 5 expression cis-heritability and/or without stratifying SNPs by the baselineLD model.
(b) Estimates from a meta-analyzed across all 42 traits.
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Supplementary Figure 16. h2med/h
2
g estimates when varying number of expression cis-heritability

bins. All estimates were obtained using all-tissue meta-analyzed expression scores. (a) We estimated
h2med/h

2
g for 42 traits while stratifying genes by either 5 or 10 expression cis-heritability bins. (b) Estimates

from a meta-analyzed across all 42 traits.
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Supplementary Figure 17. h2med/h
2
g estimates when removing subsets of the baselineLD model.

In total, the baselineLD model v2.0 we used in our main analyses contains 72 SNP annotations. We grouped
together related baselineLD annotations (typically consisting of a main annotation and the same annotation
with 100-500 bp flanking windows), producing the following 29 categories: Coding, Conserved, CTCF, DGF,
DHS, Enhancer, Fetal DHS, H3K27ac, H3K4me1, H3K4me3, H3K9ac, Intron, Promoter, Repressed, Super
Enhancer, TFBS, Transcribed, TSS, 3’ UTR, 5’ UTR, Weak Enhancer, GERP, Allele Age, LLD, Recombina-
tion Rate, Nucleotide Diversity, Background Selection Statistic, CpG Content, and ASMC. When removing
annotations, we remove all related annotations that fall into one of the 29 categories. Each data point
represents an h2med/h

2
g estimate meta-analyzed over 42 traits and estimated from GTEx all-tissue expression

scores. For the boxplot labelled “1 annotation removed,” we show h2med/h
2
g estimates when removing each

of the 29 individual categories. For the boxplots labelled “25%/50%/75% annotations removed,” we show
h2med/h

2
g estimates from 100 random subsets of the categories corresponding to the percentage of annotations

removed. Dotted line indicates the h2med/h
2
g estimate when using the full baselineLD model.

32



Supplementary Figure 18. Relationship between expression cis-heritability and metrics of gene
essentiality. For each gene, pLI (probability of loss-of-function intolerance) was obtained from Lek et al.
2016 Nature and shet (selection against protein-truncating variants) was obtained from Cassa et al. 2017
Nature Genetics.

Supplementary Figure 19. Relationship between expression cis-heritability and proportion
of expression cis-heritability explained by top cis-eQTL. Top cis-eQTL effect size is meta-analyzed
using fixed effects meta-analysis across all 48 GTEx tissues.
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Supplementary Figure 20. Relationship between expression cis-heritability and metrics of
tissue specificity. Meta-tissue h2cis (x-axis) is computed for each gene by averaging h2cis across all tissues.
x-axis labels indicate the average meta-tissue h2cis of genes within each decile. h2cis (y-axis) refers to estimates
within individual tissues. (a) Relationship between meta-tissue h2cis deciles and the number of tissues with
significantly nonzero h2cis (p < 0.05) for each gene. (b) Relationship between meta-tissue h2cis deciles and
the max h2cis across tissues for each gene. (c) Relationship between meta-tissue h2cis deciles and the average
h2cis across tissues with significantly nonzero h2cis (p < 0.05) for each gene.
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Supplementary Figure 21. Relationship between expression cis-heritability and expression
levels. (a) Expression levels represent the median log(RPKM) expression across individuals, which are then
averaged across tissues. (b) A gene is expressed in a tissue if RPKM > 0.3 in that tissue.
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Supplementary Figure 22. Relationship between gene set size and log10 h2med enrichment
standard error. Each point represent a gene set-complex trait pair. Points highlighted in red indicate gene
set-complex trait pairs with FDR < 0.05 (after accounting for 21,502 hypotheses tested). Blue line indicates
the LOESS best fit line.

Supplementary Figure 23. h2med enrichment estimates with 100 Kb window around genes. (Left)
h2med enrichment estimates for all 21,502 trait-gene sets pairs analyzed in the main text when including a
SNP annotation corresponding to 100 Kb windows around each gene in each gene set. (Right) Same as left,
but showing h2med enrichment p-values.
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Supplementary Figure 24. h2med enrichment estimates for all 10 broadly essential gene sets
across all 26 complex traits.
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Supplementary Figure 25. h2med enrichment estimates for 97 pathway-specific gene sets across
all 26 complex traits. 97 pathway-specific gene sets represent all pathway-specific gene sets (out of 780
total) with FDR-significant h2med enrichment in at least one of the 26 complex traits. For sake of display, we
grouped together related traits and gene sets.

38



Supplementary Figure 26. Same as Figure 7b, but including h2med enrichment estimates for all 26 traits
and with individual GTEx tissues labelled.
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Supplementary Figure 27. Comparison between gene set enrichment estimates from MESC,
MAGMA, and DEPICT. (a) Venn diagram showing the overlap between significantly enriched trait-gene
set pairs (FDR < 0.05) identified by the three methods. (b) Scatterplots of -log10 enrichment p-values from
MESC vs. MAGMA (left), MESC vs. DEPICT (middle), and MAGMA vs. DEPICT (right). Each point
represents a trait-gene set pair. (c) List of all 32 gene sets-complex traits pairs detected as significant by
MESC (FDR q-value< 0.05) that are not detected as significant by MAGMA or DEPICT. See Supplementary
Table 9 for enrichment estimates for all gene set-complex traits pairs.

40



Supplementary Figure 28. Modes of expression causality. See “Modes of expression causality” for
a description of each scenario and its contribution to estimates of h2med.
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Supplementary Figure 29. Illustration of impact of violations to gene-eQTL effect size inde-
pendence on estimates of E[α2]. See “Model assumptions” for context for this figure. In the figure,
we depict a scenario where the magnitude of α is negatively correlated with the magnitude of β. (a) If we
perform the regression using all genes, the slope from the regression will be downwardly biased relative to the
true E[α2]. (b) If we stratify the regression across genes by the magnitude of their expression cis-heritability,
we can obtain approximately unbiased estimates of E[α2

D] for each gene category D.

Supplementary Figure 30. Illustration of impact of violations to pleiotropy-eQTL effect size
independence on estimates of E[α2]. See “Model assumptions” for context for this figure. In the figure,
we depict a scenario where the magnitude of γ is positively correlated with the magnitude of β. (a) If we
perform the regression using all SNPs, the slope from the regression will be upwardly biased relative to the
true E[α2]. (b) If we stratify the regression across SNPs by the magnitude of their eQTL effect sizes, we
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can obtain an approximately unbiased estimate of E[α2].

Supplementary Figure 31. Comparison between Mendelian randomization with multiple ge-
netic variants and MESC.

Supplementary Figure 32. Standard errors of expression cis-heritability estimates across GTEx
tissues. Expression cis-heritability estimates are obtained for each gene in each of 48 GTEx tissues using
GCTA. Standard error represents the mean standard error of expression cis-heritability estimates for each
gene across all 48 tissues. Red line denotes the best quadratic fit.
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Supplementary Figure 33. GCTA estimates of heritability under simulated cis-eQTL genetic
architectures. We simulated cis-eQTLs for a gene by selecting x random SNPs within a random 1 Mb
window on chromosome 1 (restricting to Hapmap3 SNPs). One cis-eQTL was randomly selected to be
the lead eQTL with effect size drawn from N (0, 0.8h2cis). The remaining x − 1 cis-eQTLs had effect sizes
drawn from N (0, 0.2h2cis/(x− 1)). Expression phenotypes for the gene were simulated for 1000 individuals
(genotypes randomly selected from UK Biobank) with environmental noise drawn fromN (0, 1−h2cis). GCTA
was used to predict h2cis from the expression phenotypes and genotypes within the 1 Mb window. Error bars
represent mean standard errors across 100 simulations.
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Supplementary Figure 34. h2med/h
2
g estimates with varying SE(h2cis) as a function of h2cis. Simula-

tion was performed in the same manner as in Figure 2a (with expression panel size fixed at 1000). Standard
error for h2cis was simulated from either N (0, 0.012) (consistent the mean of empirical SE(h2cis) estimates
across all GTEx samples) or from N (0, (0.0079+0.22h2cis−0.03(h2cis)

2)2) (consistent with the best quadratic
fit line relating empirical h2cis to SE(h2cis) estimates across all GTEx samples, see Supplementary Figure 32).
Error bars represent mean standard errors across 100 simulations.
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