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ABSTRACT	20	
Mitigating	 the	 threat	 of	 insecticide	 resistance	 in	 African	 malaria	 vector	21	
populations	requires	comprehensive	information	about	where	resistance	occurs,	22	
to	what	degree,	and	how	this	has	changed	over	time.	Estimating	these	trends	is	23	
complicated	 by	 the	 sparse,	 heterogeneous	 distribution	 of	 observations	 of	24	
resistance	 phenotypes	 in	 field	 populations.	 We	 use	 6423	 observations	 of	 the	25	
prevalence	 of	 resistance	 to	 the	 most	 important	 vector	 control	 insecticides	 to	26	
inform	a	Bayesian	geostatistical	ensemble	modelling	approach,	generating	fine-27	
scale	 predictive	 maps	 of	 resistance	 phenotypes	 in	 mosquitoes	 from	 the	28	
Anopheles	gambiae	complex	across	Africa.	Our	models	are	informed	by	a	suite	of	29	
111	predictor	 variables	describing	potential	 drivers	of	 selection	 for	 resistance.	30	
Our	maps	show	alarming	increases	in	the	prevalence	of	resistance	to	pyrethroids	31	
and	 DDT	 across	 Sub-Saharan	 Africa	 from	 2005-2017	 as	 well	 as	 substantial	32	
spatial	variation	in	resistance	trends.		33	
	34	
INTRODUCTION	35	
Insecticide	 resistance	 in	 African	 malaria	 vector	 populations	 has	 serious	36	
consequences	 for	 malaria	 prevention.	 Long-lasting	 insecticide-treated	 bednets	37	
(LLINs)	have	 achieved	 substantial	 reductions	 in	malaria	prevalence	 thus	 far	 in	38	
Africa1,	but	the	number	of	insecticides	currently	available	for	use	in	LLINs	is	very	39	
limited.	Until	recently,	pyrethroids	were	the	only	class	approved	for	use	in	LLINs	40	
and	recently	launched	new	generation	nets	still	use	pyrethroids	in	combination	41	
with	either	an	insect	growth	regulator,	a	pyrrole,	or	a	synergist	that	inhibits	the	42	
primary	metabolic	mechanism	of	pyrethroid	resistance	within	mosquitoes2,	3.	A	43	
wider	 range	 of	 options	 is	 available	 for	 indoor	 residual	 spraying	 (IRS),	 but	44	
pyrethroids	are	less	expensive	than	many	alternatives	and	are	still	used	for	IRS	45	
in	malaria-endemic	Sub-Saharan	African	countries4,	5.		46	
	47	
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Although	 there	 is	evidence	 that	pyrethroid	resistance	 in	African	malaria	vector	48	
populations	is	increasing6,	7,	the	wide	array	of	field	studies	that	are	available	do	49	
not	 provide	 a	 spatially-comprehensive	 time	 series	 of	 resistance	 trends8.	50	
Quantifying	these	trends	will	improve	our	understanding	of	the	historical	spread	51	
of	 resistance	 and	 assist	 in	 designing	 insecticide	 resistance	 management	52	
strategies9.	 Comprehensive	 spatiotemporal	 analyses	 of	 resistance	 are	 also	53	
necessary	 to	 facilitate	 its	 inclusion	 in	 epidemiological	 models	 of	 malaria	 that	54	
inform	decision-making	at	national	and	global	levels9.		Efforts	to	estimate	trends	55	
in	insecticide	resistance	are	impeded	by	limitations	associated	with	the	available	56	
observations	 of	 resistance	 phenotypes	 in	 field	 mosquito	 populations.	57	
Observations	 from	 standardized	 susceptibility	 tests,	 which	 indicate	 the	58	
prevalence	 of	 phenotypic	 resistance	 in	 field	 populations,	 cover	 a	 wide	59	
geographic	area	and	span	several	decades8,	10.	 	However,	the	spatial	coverage	of	60	
this	data	is	sparse	and	heterogeneous,	and	resistance	has	rarely	been	monitored	61	
consistently	 over	 time,	 meaning	 that	 very	 few	 time	 series	 are	 available9.	62	
Moreover,	 these	 susceptibility	 tests	 have	 a	 large	 measurement	 error,	 and	63	
replication	is	required	to	robustly	estimate	resistance	phenotypes.	64	
	65	
Our	 capacity	 to	understand	and	predict	 insecticide	 resistance	 can	benefit	 from	66	
considering	the	variables	that	may	influence	selection	for	resistance.		Sources	of	67	
insecticides	 in	 the	 environment	 include	 the	 application	 of	 insecticide-based	68	
vector	 control	 interventions	 for	 public	 health,	 such	 as	 LLINs	 and	 IRS,	 and	 the	69	
application	 of	 agricultural	 insecticides,	 which	 include	 the	 same	 insecticide	70	
classes	 as	 those	 used	 in	 vector	 control11.	 Several	 studies	 have	 demonstrated	 a	71	
local	 increase	 in	 insecticide	 resistance	 in	 field	mosquito	 populations	 following	72	
the	implementation	of	LLINs,	IRS,	or	both12,	13,	14,	15,	16	although	in	other	locations	73	
evidence	of	higher	resistance	after	the	introduction	these	interventions	was	not	74	
found12,	 17.	 Associations	 between	 agricultural	 pesticide	 use	 and	 insecticide	75	
resistance	 have	 also	 been	 found11,	 18,	 and	 there	 is	 evidence	 that	 pesticide	76	
contamination	 of	water	 bodies	 is	 a	 source	 of	 selection	 pressure	 for	 resistance	77	
acting	 on	 mosquito	 larvae19.	 Relationships	 between	 resistance	 and	 drivers	 of	78	
selection	 will,	 however,	 vary	 geographically	 depending	 on	 population	79	
structure20,	 21.	 Genetic	 mechanisms	 of	 resistance	 also	 differ	 across	 mosquito	80	
species15,	20,	and	even	closely-related	mosquito	species	have	different	ecological	81	
niches22,	 23,	 as	 well	 as	 different	 blood	 feeding	 behaviour	 and	 preferences,	82	
meaning	that	they	are	likely	to	experience	differences	in	insecticide	exposure	24.		83	
	84	
To	develop	predictive	models	of	 insecticide	resistance	 in	 field	populations	 that	85	
can	represent	variable,	nonlinear	interactions	with	environmental,	biological	and	86	
genetic	 variables,	 we	 utilise	 an	 ensemble	 modelling	 approach.	 The	 approach	87	
exploits	the	multi-faceted	strengths	of	different	modelling	methodologies,	using	88	
machine-learning	methods	to	extract	predictive	power	from	a	set	of	covariates,	89	
and	then	allowing	a	Bayesian	geostatistical	Gaussian	process	to	model	the	auto-90	
correlated	residual	variation25.	Bayesian	geostatistical	models	provide	a	 robust	91	
model	 of	 residual	 autocorrelation	 that	 can	 be	 applied	 to	 spatiotemporal	 data	92	
with	a	heterogeneous	sampling	distribution26.	Their	application	to	observations	93	
from	 insecticide	 susceptibility	 tests	 conducted	over	a	 range	of	 locations	across	94	
Africa	has	previously	demonstrated	broad-scale	associations	between	resistance	95	
to	different	types	pyrethroids,	as	well	as	the	organochlorine	DDT27.	The	models	96	
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developed	 in	 this	study	exploit	 these	associations	 in	resistance	across	different	97	
insecticides	to	improve	resistance	predictions	for	individual	insecticide	types.	98	
 99	
Using	 a	 database	 containing	 the	 results	 of	 standard	 insecticide	 susceptibility	100	
tests	performed	on	mosquito	samples	collected	throughout	Africa8,	we	extracted	101	
the	 results	 of	 6423	 tests	 conducted	 on	 samples	 from	 the	 Anopheles	 gambiae	102	
species	complex,	which	are	among	the	most	 important	African	malaria	vectors.	103	
We	 used	 this	 data	 set	 in	 our	 model	 ensemble	 to	 quantify	 variation	 in	 the	104	
prevalence	of	resistance	to	pyrethroids	and	DDT	over	the	period	2005-2017	by	105	
developing	 a	 series	 of	 predictive	maps.	Our	models	 are	 informed	by	 a	 suite	 of	106	
potential	 explanatory	 variables	 describing	 the	 coverage	 of	 insecticide-based	107	
vector	control	 interventions,	agriculture	and	other	 types	of	 land	cover,	climate,	108	
processes	determining	the	environmental	fate	of	pesticides,	and	the	distribution	109	
of	 the	sibling	species	 that	make	up	 the	An.	gambiae	complex.	Our	 results	 show	110	
dramatic	 changes	 in	 insecticide	 resistance	 phenotypes	 in	 malaria	 vector	111	
populations	across	Africa	over	a	thirteen-year	period,	and	identify	variables	that	112	
were	important	in	shaping	these	predictions.	113	
	114	
RESULTS	115	
	116	
Spatiotemporal	trends	in	the	prevalence	of	insecticide	resistance	117	
	118	
Pyrethroid	resistance	119	
We	 investigated	 spatiotemporal	 trends	 in	 the	 prevalence	 of	 phenotypic	120	
resistance	 in	 the	 An.	 gambiae	 complex	 to	 four	 pyrethroids:	 deltamethrin,	121	
permethrin,	 lambda-cyhalothrin	 and	 alpha-cypermethrin.	 Due	 to	 the	 lack	 of	122	
observations	 from	 central	 Africa,	 we	 partitioned	 the	 data	 into	 two	 separate	123	
spatial	regions	covering	western	and	eastern	parts	of	the	continent,	and	analysed	124	
each	 data	 subset	 independently	 by	 fitting	 separate	 models	 (see	 Methods).	 In	125	
west	Africa,	predicted	mean	prevalence	of	resistance	to	all	pyrethroids	increased	126	
dramatically	over	the	period	2005-2017	(Figs.	1,	2	and	Supplementary	Figs.	1,	2	127	
&	3).	Predicted	mean	proportional	mortality	to	deltamethrin	was	below	0.9	(the	128	
WHO	threshold	for	confirmed	resistance)	across	15%	(95%	credible	interval	(CI)	129	
=	13-17%)	of	 the	west	region	 in	2005,	and	across	98%	(CI=96.6-98.7%)	of	 the	130	
region	in	2017	(Fig.	2	and	see	Supplementary	Fig.	8	for	the	trends	for	individual	131	
countries).	 These	 changes	 in	 resistance	 were	 spatially	 heterogeneous	 (Fig.	 1).	132	
Increases	 in	 resistance	 to	 deltamethrin	 over	 the	 period,	 in	 terms	 of	 the	133	
reductions	 in	 the	 predicted	 mean	 proportional	 mortality,	 were	 greatest	 in	134	
northern	Liberia	(Fig.	1D,	line	A),	central	Cote	d’Ivoire	(Fig.	1D,	line	B),	the	area	135	
surrounding	the	border	between	Burkina	Faso,	Cote	d’Ivoire	and	Ghana	(Fig.	1D,	136	
line	C),	southern	Ghana	(Fig.	1D,	line	D),	and	northern	Gabon	(Fig.	1D,	line	E).	In	137	
these	regions,	 resistance	 to	deltamethrin	 in	2017	was	particularly	high	(with	a	138	
mean	proportional	mortality	below	0.3	(CI	<0.4).		139	
	140	
In	 east	 Africa,	 the	 prevalence	 of	 pyrethroid	 resistance	 also	 increased	 over	 the	141	
period	2005-2017,	albeit	at	a	 lesser	rate	than	that	in	the	west	region	(Figs.	1	&	142	
2).	Predicted	mean	proportional	mortality	to	deltamethrin	was	below	0.9	across	143	
9%	(CI=3-17%)	of	 the	east	region	in	2005	and	across	45%	(CI=38-51%)	of	the	144	
region	in	2017	(Fig.	2	and	see	Supplementary	Fig.	8	for	the	trends	for	individual	145	
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countries).	 The	 greatest	 increases	 in	 pyrethroid	 resistance	 over	 the	 period	146	
occurred	in	the	northern	part	of	the	region,	in	the	area	from	central	Ethopia	(Fig.	147	
1D,	line	F)	westward	across	most	of	South	Sudan	(Fig.	1D,	line	G),	and	extending	148	
into	 southern	 Sudan	 (Fig.	 1D,	 line	 H)	 and	 northern	 Uganda	 (Fig.	 1D,	 line	 I).	149	
Across	most	of	this	area,	mean	mortality	to	deltamethrin	in	2017	was	below	0.5	150	
(CI	<	0.75).	Resistance	to	deltamethrin	increased	to	a	lesser	extent	in	central	and	151	
southern	 Uganda,	 western	 Kenya,	 eastern	 Ethopia	 and	 coastal	 Tanzania,	 with	152	
predicted	mean	mortalities	of	between	0.6-0.8	 in	 these	areas	 in	2017.	 In	areas	153	
further	 south,	 differences	 in	 predicted	 resistance	 over	 the	 time	 period	 were	154	
relatively	 slight,	with	mean	mortalities	 changing	 by	 less	 than	 0.15	 from	2005-155	
2017	 within	 Malawi,	 Mozambique,	 Zimbabwe,	 and	 those	 parts	 of	 Zambia,	156	
Botswana	 and	 South	 Africa	 that	 were	 included	 in	 the	 model.	 Similar	157	
spatiotemporal	 trends	 across	 the	west	 and	 east	 regions	 occurred	 in	 predicted	158	
mean	 resistance	 to	 permethrin,	 lambda-cyhalothrin	 and	 alpha-cypermethrin	159	
(Supplementary	Figs.	1,	2	&	3).	160	
	161	

	162	
Figure	1.	Predicted	mean	proportional	mortality	to	deltamethrin	across	the	west	163	
and	east	regions.	A.	2005;	B.	2010;	C.	2015;	D.	2017.	164	
	165	
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	166	
Figure	 2.	 The	 proportion	 of	 the	 area	 with	 a	 predicted	 mean	 mortality	 to	167	
deltamethrin	of	 less	than	0.9,	 for	the	west	region	(red	line)	and	the	east	region	168	
(blue	line).	Red	and	blue	shaded	areas	indicate	the	95%	credible	interval	of	the	169	
predicted	proportion	of	pixels	for	the	west	and	east	regions,	respectively.	170	
	171	
DDT	resistance	172	
Predicted	mean	resistance	to	DDT	at	the	start	of	the	period	(in	2005)	was	more	173	
widespread	 in	 comparison	 to	 pyrethroid	 resistance,	 and	 also	 increased	174	
throughout	the	region	from	2005-2017	(Fig.	3	&	4).	In	the	west	region,	predicted	175	
mean	proportional	mortality	to	DDT	was	below	0.9	across	53%	(CI	=	47-59%)	of	176	
the	west	 region	 in	2005,	 and	across	97%	(CI=92.7-99%)	of	 the	 region	 in	2017	177	
(Fig.	4).	Increases	in	resistance	to	DDT	over	the	period	were	greatest	in	the	area	178	
surrounding	 the	border	between	Liberia	and	Guinea	 (Fig.	3D,	 line	A),	 southern	179	
Mali	(Fig.	3D,	line	B),	and	central	Burkina	Faso	(Fig.	3D,	line	C).	The	east	region	180	
showed	a	weaker	increase	in	predicted	mean	resistance	to	DDT	over	the	period	181	
2005-2017	 in	comparison	to	that	occurring	 in	 the	west	region.	Predicted	mean	182	
proportional	 mortality	 was	 below	 0.9	 across	 32%	 (CI=21-44%)	 of	 the	 east	183	
region	 in	 2005,	 and	 across	 45%	 (CI=39-51%)	 in	 2017.	 Increases	 in	 DDT	184	
resistance	over	the	period	were	greatest	in	central	South	Sudan	(Fig.	3D,	line	D).		185	
	186	
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	187	
Figure	3.	Predicted	mean	proportional	mortality	to	DDT	across	the	west	and	east	188	
regions.	A.	2005;	B.	2010;	C.	2015;	D.	2017.	189	
	190	

	191	
Figure	4.	The	proportion	of	the	area	with	a	predicted	mean	mortality	to	DDT	of	192	
less	than	0.9,	 for	the	west	region	(red	line)	and	the	east	region	(blue	 line).	Red	193	
and	 blue	 shaded	 areas	 indicate	 the	 95%	 credible	 interval	 of	 the	 predicted	194	
proportion	of	pixels	for	the	west	and	east	regions,	respectively.	195	
	196	
Assessing	prediction	accuracy	197	
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We	performed	10-fold	out-of-sample	validation	on	the	model	ensemble	to	assess	198	
the	 accuracy	 of	 predicted	 mean	 prevalence	 of	 resistance.	 Across	 all	 bioassay	199	
observations	for	pyrethroid	insecticides,	we	obtained	a	root	mean	square	error	200	
(RMSE)	 28	 of	 0.179	 across	 the	 out-of-sample	 predictions	 of	mean	 proportional	201	
mortality	for	the	west	and	east	regions	combined	(Supplementary	Fig.	5).	Across	202	
all	 DDT	 bioassay	 observations,	 the	 corresponding	 out-of-sample	 RMSE	 was	203	
0.167.	 The	 individual	 model	 constituents	 of	 our	 ensemble	 included	 three	204	
machine-learning	models:	an	extreme	gradient	boosting	model	(XGB),	a	random	205	
forest	 model	 (RF)	 and	 a	 boosted	 generalized	 additive	 model	 (BGAM).	 We	206	
compared	 the	 out-of-sample	 RMSE	 obtained	 by	 the	 model	 ensemble	 to	 that	207	
obtained	 by	 each	 constituent	machine-learning	model,	 and	 confirmed	 that	 the	208	
prediction	error	of	the	Gaussian	process	meta-model	was	lower	than	that	of	each	209	
constituent	model	(Supplementary	Tables	2	&	3).	Of	the	three	machine-learning	210	
models,	XGB	had	the	 lowest	out-of-sample	prediction	error	followed	by	RF	and	211	
then	BGAM.	The	fitted	mean	model	weights	given	by	the	Gaussian	process	meta-212	
model	 were	 higher	 for	 models	 with	 lower	 out-of-sample	 prediction	 error	213	
(Supplementary	Table	4).		214	
	215	
We	also	performed	10-fold	out-of-sample	validation	to	assess	the	accuracy	of	the	216	
credible	 intervals	of	 the	posterior	distributions	of	predicted	mean	mortality	 to	217	
pyrethroids.	 The	 coverage	 of	 the	 predicted	 credible	 intervals	was	 found	 to	 be	218	
accurate	when	the	measurement	error	associated	with	the	data,	estimated	by	the	219	
Bayesian	 geostatistical	 model29,	 was	 accounted	 for	 (Supplementary	 Fig.	 6).		220	
Prediction	error	is	heterogeneous	across	space	and	time,	with	the	95%	credible	221	
intervals	of	predicted	mean	mortality	being	higher	 in	 the	east	compared	to	 the	222	
west	 region	 (Figs.	 4	 &	 Supplementary	 Fig.	 7),	 and	 particularly	 high	 credible	223	
intervals	 in	 the	 north	 western	 part	 of	 the	 east	 region.	 This	 reflects	 the	 more	224	
sparse	distribution	of	bioassay	sampling	locations	in	the	east	region,	particularly	225	
in	South	Sudan	and	much	of	southern	Sudan	(see	Methods).	226	
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	227	
Figure	5.	The	prediction	error	(95%	credible	interval)	associated	with	predicted	228	
mean	mortality	to	deltamethrin.	229	
	230	
Influential	predictor	variables	231	
Our	 models	 used	 over	 100	 potential	 explanatory	 variables	 (see	 the	 Methods	232	
section),	and	our	results	show	which	of	these	variables	were	most	influential	to	233	
the	 predictions	 of	 mean	 prevalence	 of	 resistance.	 We	 obtained	 measures	 of	234	
variable	 importance	 for	each	of	 the	 three	constituent	machine-learning	models	235	
(XGB,	RF	and	BGAM).	Variable	importance	measures	describe	the	influence	of	a	236	
variable	on	model	predictions	relative	to	the	other	predictor	variables,	but	they	237	
can	 be	 hard	 to	 interpret	 when	 predictor	 variables	 are	 correlated	 (see	238	
Supplementary	 Note	 6),	 and	 do	 not	 identify	 causal	 relationships	 (see	 the	239	
Methods	 and	 Discussion).	 For	 each	 model,	 the	 importance	 of	 each	 variable	 is	240	
expressed	as	a	fraction	of	the	total	importance	across	all	predictor	variables.	In	241	
ranking	variable	importance,	we	weighted	the	importance	of	each	variable	given	242	
by	each	model	by	the	model’s	weight	obtained	from	the	Gaussian	process	meta-243	
model	for	pyrethroids	(Supplementary	Table	4).	This	increasingly	weights	those	244	
variables	 that	were	more	 important	 to	models	 that	performed	better	 and	 thus	245	
made	 a	 higher	 relative	 contribution	 to	 the	 predictions	made	 by	 the	 ensemble	246	
(Fig.	 6).	 Thus	 the	 variable	 importance	 values	 given	 by	 XGB	 and	 RF	 are	 up	247	
weighted	 relative	 to	 those	 given	 by	 BGAM.	 The	 original	 variable	 importance	248	
values	produced	by	each	model	are	given	in	Supplementary	Tables	5	and	6	and	a	249	
description	of	each	predictor	variable	is	given	in	Supplementary	Table	9.			250	
	251	
For	 the	 west	 region,	 variables	 describing	 the	 coverage	 of	 insecticide-treated	252	
bednets	 (ITNs)	had	 the	highest	 importance	value	 for	each	of	 the	 three	models.	253	
For	 the	 XGB	 and	 RF,	 the	 three-year	 lag	 of	 ITN	 coverage	 had	 the	 highest	254	
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importance	 value.	 For	 BGAM,	 non-lagged	 ITN	 coverage	 had	 the	 highest	255	
importance	value	and	the	three-year	lag	of	ITN	coverage	had	the	second	highest	256	
importance	 value	 (Fig.	 6,	 Supplementary	 Table	 5	 and	 Supplementary	 Note	 6).	257	
Outside	 the	 top	 two,	 variables	 describing	 climate	 processes,	 and	 the	 area	 of	258	
harvested	crops,	are	highly	ranked	(within	the	top	20	most	important	variables)	259	
for	all	three	models	(Fig.	6,	Supplementary	Table	5	and	Supplementary	Note	6).	260	
For	the	east	region,	variables	describing	ITN	coverage	and	rainfall	were	ranked	261	
in	 the	 top	 ten	 most	 important	 variables	 for	 all	 three	 models	 (Fig.	 6	 and	262	
Supplementary	 Table	 6).	More	 broadly,	 variables	 describing	 climate	 processes	263	
were	 highly	 ranked	 by	 all	 three	models.	 Our	 ability	 to	 quantitatively	 compare	264	
differences	 in	 importance	 across	 our	 set	 of	 predictor	 variables	 is,	 however,	265	
inhibited	 by	 differences	 in	 the	 definition	 of	 variable	 importance	 used	 in	 the	266	
different	machine	learning	approaches	that	we	have	employed	(see	Methods).		267	
	268	

	269	
Figure	6.	Weighted	variable	importance	of	predictor	variables	given	by	the	three	270	
machine-learning	models	 included	 in	 the	model	ensemble	 for	 the	west	 (A)	and	271	
east	(B)	regions.	Stacked	bars	show	the	relative	variable	importance	given	by	the	272	
extreme	gradient	boosting	model	 (blue),	 the	 random	 forest	model	 (green)	 and	273	
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the	boosted	generalized	additive	model	(grey),	weighted	by	the	fitted	weight	for	274	
each	model	given	by	the	Gaussian	process	meta-model	(see	text).	Variables	are	275	
ranked	by	the	total	height	of	 the	stacked	bars	across	the	three	models,	and	the	276	
top	20	variables	 are	 shown.	Definitions	of	 each	predictor	 variable	 are	 given	 in	277	
Supplementary	 Table	 9.	 Variable	 name	 suffixes	 (-1),	 (-2)	 and	 (-3)	 denote	 time	278	
lags	 of	 1,	 2	 and	 3	 years,	 respectively.	 One,	 two	 and	 three	 asterisks	 denote	 the	279	
first,	second	and	third	principal	component,	respectively,	for	variables	available	280	
on	a	monthly	time	step	(see	Methods).	281	
	282	
DISCUSSION	283	
Here,	we	have	quantified	spatial	and	temporal	trends	in	insecticide	resistance	in	284	
the	 An.	 gambiae	 species	 complex	 in	 east	 and	 west	 Africa,	 showing	 marked	285	
increases	the	prevalence	of	resistance	to	pyrethroids	and	DDT	in	recent	years,	as	286	
well	as	geographic	expansion.	These	results	highlight	the	urgency	of	identifying	287	
and	 implementing	 effective	 resistance	 management	 strategies.	 Our	 predictive	288	
maps	 of	mean	prevalence	 of	 resistance	 are	 available	 to	 visualise	 alongside	 the	289	
latest	 susceptibility	 test	 data	 on	 the	 IR	 mapper	 website	290	
(http://www.irmapper.com),	 and	 can	 guide	 decisions	 about	 resistance	291	
management	 at	 regional	 and	 local	 levels.	 	 In	 making	 recommendations,	 our	292	
results	will	need	to	be	considered	 in	combination	with	(i)	data	 from	resistance	293	
monitoring	of	 field	 samples,	 including	other	malaria	vector	 species	 such	as	An.	294	
funestus;	 (ii)	data	on	the	presence	of	underlying	mechanisms	of	resistance,	and	295	
(iii)	 analyses	 of	 the	 expected	 impacts	 of	 resistance	management	 strategies	 on	296	
malaria	 prevalence9,	 30.	 Decision-making	 frameworks	 also	 need	 to	 explicitly	297	
incorporate	 predictive	 uncertainty,	 which	 is	 facilitated	 by	 our	 out-of-sample	298	
validation	results	and	our	mapped	Bayesian	credible	 intervals.	Our	predictions	299	
are	 not	 a	 substitute	 for	 ongoing	 resistance	 monitoring	 requirements,	 but	300	
highlight	 areas	 with	 particularly	 high	 levels	 of	 predictive	 uncertainty,	 such	 as	301	
parts	 of	 South	 Sudan,	 southern	 Sudan	 and	 the	 Democratic	 Republic	 of	 Congo	302	
(Fig.	5D).	In	these	areas,	field	sampling	to	measure	resistance	is	the	only	means	303	
of	informing	resistance	management	decisions.	304	
	305	
Our	 results	 show	 substantial	 variation	 in	 resistance	 trends	 between	 east	 and	306	
west	 Africa,	 and	 within	 these	 two	 regions.	 Interestingly,	 ITN	 coverage	 was	307	
identified	as	a	relatively	influential	predictor	in	our	models,	which	is	consistent	308	
with	other	studies	that	have	found	significant,	but	spatially	variable,	increases	in	309	
pyrethroid	 resistance	 associated	with	 the	 introduction	 of	 ITNs	 12.	 However,	 in	310	
several	 areas	 of	 the	 central	 and	 southern	 parts	 of	 east	 Africa,	 such	 as	 west	311	
Tanzania,	ITN	coverage	has	been	relatively	high	(>50%)	from	2012-2017	31	but	312	
predicted	pyrethroid	resistance	in	2017	is	relatively	low	(Fig.	1D).	This	may	be	313	
influenced	by	the	locations	where	resistance	mechanisms	first	emerged,	patterns	314	
of	 subsequent	 gene	 flow	 including	 restricted	 flow	across	 the	Rift	Valley32,	33,	34,	315	
and	differences	among	 the	sibling	 species	within	 the	An.	gambiae	complex15,	20.	316	
For	example,	the	distribution	of	An.	arabiensis	extends	further	south	than	other	317	
species	 in	 the	 complex	 23	 and	 this	 species	 is	 known	 to	 be	 more	 plastic	 in	 its	318	
feeding	 behaviour,	 biting	 outdoors	 and	 feeding	 on	 cattle33.	 Thus	 it	 is	 possible	319	
that	 selection	 for	 resistance	 in	 this	 species	 lags	 behind	 other	members	 of	 the	320	
complex35,	 36,	 37.	 Our	 predictions	 of	 the	 prevalence	 of	 resistance	 are	 based	 on	321	
susceptibility	 tests	 that	often	do	not	 identify	 the	sibling	species	composition	of	322	
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the	An.	gambiae	complex	sample	that	was	tested.	Our	analysis	only	includes	test	323	
results	 that	 are	 representative	 of	 the	 original	 sample	 collected8,	 27,	 and	 our	324	
predictions	 cannot	 directly	 represent	 variation	 in	 the	 prevalence	 of	 resistance	325	
due	to	variation	in	the	composition	of	sibling	species	23,	38.	Routine	identification	326	
of	 the	 composition	 of	 sibling	 species	 in	 tested	 samples,	 and	 the	 provision	 of	327	
species-specific	 mortality	 values,	 would	 improve	 the	 capacity	 of	 susceptibility	328	
test	data	to	inform	prediction	of	resistance.		329	
	330	
The	coverage	of	pyrethroid	IRS	was	not	amongst	the	most	influential	predictors	331	
in	our	models,	but	only	a	small	 fraction	of	 the	areas	that	we	modelled	(<5%	of	332	
the	west	region	and	<15%	of	the	east	region)	received	pyrethroid	IRS	between	333	
2005-2017	4.	Thus	our	results	do	not	imply	that	IRS	is	not	important	in	driving	334	
the	 selection	 of	 resistance.	 IRS	 can,	 however,	 be	 a	 useful	 tool	 to	 prevent	 the	335	
spread	 of	 resistance	 and	 mitigate	 its	 effects,	 because	 the	 number	 of	 options	336	
available	for	IRS	mean	chemical	classes	can	be	rotated	through	time,	applied	in	a	337	
mosaic	in	space,	or	combined	for	use	in	the	same	place	and	time	9.		338	
	339	
It	 is	 also	 important	 to	note	 that	while	 our	models	 included	over	100	potential	340	
predictor	variables	that	may	influence	selection	for	resistance,	it	is	unlikely	that	341	
we	 have	 captured	 the	 full	 set	 of	 causal	 variables	 underlying	 selection.	 In	342	
particular,	data	on	the	quantities	of	 insecticides	used	 in	agriculture,	and	where	343	
they	were	 applied,	was	not	 available	 39.	 Such	 information	would	better	 inform	344	
models	 of	 predictive	 relationships	 between	 resistance	 and	 agricultural	345	
insecticide	 use.	 Further,	 more	 extensive	 data	 on	 the	 presence	 of	 resistance	346	
mechanisms,	 including	 a	 wider	 coverage	 of	 Vgsc	allele	 frequencies,	 as	 well	 as	347	
metabolic	 resistance	 markers	 40,	 in	 field	 populations	 would	 potentially	 aid	 in	348	
predicting	 and	 interpreting	 resistance	 trends.	 The	 similarity	 in	 predicted	349	
spatiotemporal	patterns	in	resistance	across	the	four	pyrethroids	and	DDT	(e.g.	350	
Figs.	1	&	3)	suggests	common	underlying	resistance	mechanisms	27.	351	
	352	
While	our	analysis	 focuses	on	pyrethroids,	 insecticides	 from	other	classes	such	353	
as	 carbamates	 and	 organophosphates	 are	 being	 increasingly	 used	 in	 IRS	354	
interventions	 4.	 The	 number	 of	 available	 susceptibility	 test	 results	 for	355	
insecticides	from	these	classes	is	relatively	low	8,	and	spatiotemporal	analyses	of	356	
resistance	 would	 benefit	 greatly	 from	 increasing	 the	 frequency	 and	 spatial	357	
coverage	of	sampling	and	testing.	Susceptibility	test	data	is	also	more	limited	for	358	
An.	funestus,	a	major	malaria	vector	in	Africa	that	is	widespread	and	among	the	359	
dominant	vector	species41.		360	
	361	
In	summary,	our	results	provide	an	Africa-wide	perspective	on	recent	trends	in	362	
pyrethroid	 and	 DDT	 resistance	 in	 An.	 gambiae	 complex	 malaria	 vectors,	363	
demonstrating	 increasingly	 high	 prevalence	 of	 resistance	 to	 the	 main	364	
insecticides	used	in	malaria	control.	The	rapid	spread	of	resistance	across	large	365	
parts	of	the	Sub-Saharan	Africa	signals	an	urgent	need	to	quantify	the	efficacy	of	366	
different	 resistance	 management	 strategies,	 and	 to	 understand	 the	 impact	 of	367	
resistance	on	malaria	transmission	and	control.	Our	maps	show	marked	broad-368	
scale	 spatial	 heterogeneity	 in	 resistance,	 motivating	 the	 implementation	 and	369	
assessment	 of	 a	 wide	 range	 of	 strategies	 that	 target	 different	 insecticide	370	
resistance	and	malaria	transmission	settings.				371	
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	372	
METHODS	373	
	374	
Data	375	
	376	
Insecticide	resistance	bioassay	data	377	
Insecticide	resistance	bioassay	data	were	obtained	from	a	published	database	8,	378	
which	 is	 an	 updated	 version	 of	 the	 data	 used	 in	Hancock	 et	 al.27	 that	 includes	379	
samples	 tested	 up	 until	 the	 end	 of	 2017.	 The	 data	 record	 the	 number	 of	380	
mosquitoes	in	the	sample	and	the	proportional	sample	mortality	resulting	from	381	
the	bioassay,	as	well	as	variables	describing	 the	mosquitoes	 tested,	 the	sample	382	
collection	 site,	 and	 the	 bioassay	 conditions	 and	 protocol.	 We	 used	 this	383	
information	 to	 select	 a	 subset	 of	 records	 for	 inclusion	 in	 our	 study	384	
(Supplementary	 Note	 7).	 In	 summary,	 we	 include	 bioassay	 results	 where	385	
standard	WHO	susceptibility	tests	or	CDC	bottle	bioassays	using	either	one	of	the	386	
four	pyrethroid	types	(deltamethrin,	permethrin,	lambda-cyhalothrin	and	alpha-387	
cypermethrin)	or	the	organochlorine	DDT	were	performed	on	mosquito	samples	388	
belonging	to	the	An.	gambiae	species	complex.	We	include	results	from	bioassays	389	
conducted	 over	 the	 period	 2005-2017.	 Due	 to	 spatial	 heterogeneity	 in	 the	390	
sampling	distribution	we	confine	our	analysis	 to	samples	collected	from	within	391	
two	 separate	 geographic	 (west	 and	 east)	 regions	 of	 Sub-Saharan	 Africa	 (see	392	
Supplementray	 Fig.	 11	 and	 Supplementary	 Note	 7).	 	We	 excluded	Madagascar	393	
from	 our	 analysis,	 as	 our	 models	 of	 resistance	 on	 the	 mainland	 may	 not	394	
generalize	well	to	island	populations.	The	final	number	of	proportional	mortality	395	
observations	 across	 all	 insecticide	 types	was	6423	 across	 1466	 locations,	with	396	
3515	 and	 2908	 observations	 in	 the	 west	 region	 and	 east	 region,	 respectively	397	
(Supplementary	Tables	7	&	8).	398	
	399	
Voltage-gated	sodium	channel	(Vgsc)	allele	frequency	data	400	
The	Vgsc	is	 the	 target	 site	 for	both	pyrethroids	and	DDT	and	mutations	 in	 this	401	
channel	 confer	 resistance.	 Our	 analysis	 used	 data	 on	 the	 frequency	 of	 Vgsc	402	
mutations	 in	mosquito	 samples	 belonging	 to	 the	An.	 gambiae	species	 complex	403	
collected	from	within	the	west	and	east	regions	over	the	period	2005-20178,	27.	404	
These	data	record	the	combined	frequency	of	the	single	point	mutations	L1014F	405	
and	 L1014S	 with	 respect	 to	 the	 wild	 type	 allele	 L1014L,	 and	 comprise	 316	406	
observations	(215	observations	for	the	west	region	and	101	observations	for	the	407	
east	 regions;	 Supplementary	 Table	 7).	 As	 described	 below,	 we	 incorporated	408	
these	 data	 into	 machine	 learning	 models	 in	 order	 to	 inform	 prediction	 of	409	
phenotypic	 resistance	 to	 DDT	 and	 pyrethroids	 by	 exploiting	 the	 positive	410	
association	between	the	frequency	of	Vgsc	mutations	and	the	prevalence	of	these	411	
resistance	phenotypes27.		412	
	413	
Potential	predictor	variables	414	
Our	 set	 of	 predictors	 includes	 111	 variables	 describing	 environmental	415	
characteristics	that	could	potentially	be	related	to	the	development	and	spread	416	
of	 insecticide	 resistance	 in	 populations	 of	 Gambiae	 complex	 mosquito	 species	417	
(described	 in	 Supplementary	 Table	 9	 and	 Supplementary	 Note	 8).	 	 These	418	
variables	describe	the	coverage	of	insecticide-based	vector	control	interventions,	419	
agricultural	land	use42	43		and	the	environmental	fate	of	agricultural	insecticides	420	
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39,	 other	 types	 of	 land	 use42,	 44,	 45,	 46,	 climate42,	 47,	 48,	 and	 relative	 species	421	
abundance.	Our	vector	 control	 intervention	data	 includes	a	variable	estimating	422	
the	 yearly	 coverage	 of	 insecticide-treated	 bed	 nets	 (ITNs)31,	 49	 and	 a	 variable	423	
estimating	 the	 coverage	 of	 indoor	 residual	 spraying	 (IRS)	 with	 either	424	
pyrethroids	 or	 DDT	 year	 4.	 Relative	 species	 abundance	 is	 represented	 by	 a	425	
variable	estimating	the	abundance	of	An.	arabiensis	relative	to	the	abundance	of	426	
An.	gambiae	 and	An.	coluzzii	38.	 For	 all	 variables,	we	 obtained	 spatially	 explicit	427	
data	on	a	grid	with	a	2.5	arc-minute	resolution	(which	is	approximately	5	km	at	428	
the	equator)	covering	Sub-Saharan	Africa.		For	variables	for	which	temporal	data	429	
were	available	on	an	annual	resolution,	we	included	time-lagged	representations	430	
with	lags	of	0,	1,	2	and	3	years.		431	
	432	
Gaussian	process	stacked	generalization	ensemble	modelling	approach	433	
Stacked	 generalization	 is	 a	 method	 of	 combining	 an	 ensemble	 of	 models	 to	434	
produce	a	meta-model,	with	the	aim	of	achieving	better	predictive	performance	435	
than	 the	 individual	 model	 constituents50,	 51.	 Here	 we	 adopt	 a	 stacking	 design	436	
whereby	a	set	of	individual	models	that	make	up	the	first	layer,	referred	to	as	the	437	
level	0	models,	 feed	into	a	single	meta-model	on	the	second	layer,	referred	to	as	438	
the	level	1	model.	We	use	the	Gaussian	process	stacked	generalization	approach	439	
developed	by	Bhatt	et	al.25,	which	uses	Gaussian	process	regression	as	the	level	1	440	
model	that	combines	weighted	out-of-sample	predictions	from	a	set	of	multiple	441	
level	0	models	derived	 from	machine	 learning	methods.	The	approach	exploits	442	
the	 known	 strengths	 of	 these	 different	methodologies,	 using	machine	 learning	443	
methods	 to	 extract	 as	much	 predictive	 power	 from	 the	 covariates	 as	 possible,	444	
and	 then	 allowing	 the	 Gaussian	 process	 to	 model	 the	 spatiotemporal	 error	445	
covariance	structure,	aiming	to	further	improve	prediction.	Bhatt	et	al.	25	showed	446	
that,	 under	 the	 (restrictive)	 assumption	 that	 the	 true	 function	 is	 a	 part	 of	 the	447	
models	 function	 space,	 the	 use	 of	 the	 Gaussian	 process	 model	 of	 residual	448	
variation	 improves	 prediction	 accuracy	 compared	 to	 a	 standard	 constrained	449	
weighted	mean	across	the	ensemble	predictions.	450	
	451	
Machine	learning	models	452	
Our	 set	 of	 level	 0	models	 consists	 of	 three	different	 types	 of	machine	 learning	453	
model	 that	 predict	 insecticide	 resistance,	 using	 our	 bioassay	 mortality	454	
observations	 as	 the	 label	 and	 our	 suite	 of	 intervention,	 agriculture	 and	455	
environmental	 covariates	 as	 features.	 	 The	 machine	 learning	 approaches	456	
employed	include	extreme	gradient	boosting	(implemented	using	the	R	package	457	
xgboost),	random	forests	(implemented	using	the	R	package	randomForest),	and	458	
boosted	 generalized	 additive	 models	 (implemented	 using	 the	 R	 package	459	
mboost).	We	chose	these	methods	because	of	their	demonstrated	high	predictive	460	
performance,	 particularly	 in	 previous	 applications	 of	Gaussian	process	 stacked	461	
generalization	 to	 spatial	 processes25.	 The	 label	 for	 the	 level	 0	models	was	 the	462	
proportional	 mortality	 observations	 from	 bioassays	 conducted	 using	 the	 four	463	
pyrethroid	 types	 (deltamethrin,	 permethrin,	 lambda-cyhalothrin	 and	 alpha-464	
cypermethrin),	the	proportional	mortality	observations	for	bioassays	conducted	465	
using	 DDT,	 and	 the	 observations	 of	 the	 combined	 frequency	 of	 the	 Vgsc	466	
mutations	 L1014F	 and	 L1014S.	 We	 included	 in	 the	 label	 our	 data	 on	 the	467	
observed	combined	 frequency	of	Vgsc	mutations	 in	mosquito	 samples,	because	468	
these	observations	are	significantly	associated	with	the	prevalence	of	resistance	469	

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 6, 2020. ; https://doi.org/10.1101/2020.01.06.895656doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.06.895656
http://creativecommons.org/licenses/by/4.0/


	 14	

to	DDT	and	pyrethroids27,	and	can	therefore	inform	prediction	of	these	mortality	470	
values.	 Before	 performing	 parameter	 tuning	 on	 the	 level	 0	models	we	 applied	471	
two	 data	 transformations	 to	 the	 label,	 the	 empirical	 logit	 transformation	472	
followed	by	the	inverse	hyperbolic	sine	(IHS)	transformation52.		473	
The	 features	 used	 in	 the	 models	 included	 the	 111	 environmental	 predictor	474	
variables	together	with	the	one,	two	and	three	year	lags	for	those	variables	that	475	
vary	 temporally	 (on	 a	 yearly	 time	 step).	 A	 factor	 variable	 grouping	 the	 label	476	
according	to	the	type	of	observation	was	also	included	as	a	feature,	assigning	a	477	
different	group	 to	bioassay	observations	depending	on	 type	of	 insecticide	used	478	
and	whether	a	WHO	or	CDC	susceptibility	test	was	used.	This	factor	variable	also	479	
assigned	the	Vgsc	allele	frequency	observations	to	a	separate	group.	Finally,	the	480	
year	in	which	the	bioassay	and	allele	frequency	samples	were	collected	was	also	481	
included	as	a	feature.	482	
For	 each	 level	 0	model,	 parameter	 tuning	 was	 performed	 using	K-fold	 out-of-483	
sample	validation	based	on	 subdividing	 the	data	 into	K	training	and	validation	484	
subsets	(see	Supplementary	Note	7).	In	applying	the	extreme	gradient	boosting	485	
method	we	used	the	DART	boosting	methodology	to	avoid	overfitting53.			486	
	487	
Model	stacking	and	Gaussian	process	regression	488	
Let	 			gA(si ,t) 	denote	 the	 (empirical	 logit	 and	 IHS	 transformed)	 proportional	489	
mortality	record	 for	a	bioassay	using	 insecticide	 type	A	conducted	on	a	sample	490	
collected	 at	 geographic	 coordinates	 si	 and	 sampling	 time	 t.	 To	 implement	491	
Gaussian	 process	 stacked	 generalization,	 we	 model	 the	 transformed	492	
observations,	denoted				gA(si ,t) ,	using	a	Gaussian	process	regression	formulation:	493	
	494	

			gA(si ,t)=wAMsi ,t
A + fA(si ,t)+eA 		 	 	 	 (1)	495	

		496	
where	 wA	 is	 a	 constant	 vector,				Msi ,t

A 	is	 a	 design	 matrix,				fA(s,t) 	is	 a	 Gaussian	497	

process	modelled	by	a	spatiotemporal	Gaussian	Markov	random	field	(GMRF)54,	498	
and	 eA	 is	 Gaussian	 white	 noise			N(0,σ A

2 ) .	 We	 define	 a	 Bayesian	 hierarchical	499	
formulation	 for	 the	 model	 (eqn	 1)	 using	 a	 vector	 of	 prior	 probability	500	
distributions	 for	 the	 hyperparameters	 			θA = wA ,ψ A ,σ A

⎡⎣ ⎤⎦ 	where	 	ψ A 	are	 the	501	
parameters	of	fA(s,t)	(see	Supplementary	Note	6).	To	fit	the	model,	the	elements	502	
of	 the	design	matrix				Msi ,t

A are	set	 to	 the	out-of-sample	predictions	of	 the	 level	0	503	

models	derived	from	K-fold	cross-validation	i.e.				 Mi ,p
A = !gA ,p(si ,t) ,	where				 !gA ,p(si ,t) 	504	

is	the	prediction	of	the	iith	withheld	(transformed)	observation			gA(si ,t) 	given	by	505	
the	pth	level	0	model.	Validation	folds	were	randomly	selected	from	the	full	data	506	
set.	 Posterior	 distributions	 of		θA 	and	 fA(s,t)	 are	 then	 estimated	 by	 fitting	 the	507	
model	(eqn	1)	using	the	R-INLA	package	(www.r-inla.org)55.	The	posterior	mean	508	
of	 the	 vector	wA	 contains	 the	 fitted	 weights	 for	 each	 model,	 representing	 the	509	
relative	 contribution	 of	 each	 model	 to	 the	 predictions	 made	 by	 the	 model	510	
ensemble.	 Our	 implementation	 of	 Gaussian	 process	 regression	 (eqn	 1)	511	
constrains	 each	 weight	 to	 be	 positive	 ( 		wp ≥0,∀p )56.	 	 Once	 the	 parameter	512	
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estimation	has	been	performed,	the	final	set	of	predictions,				ĝA(s,t) ,	given	by	the	513	

stacked	model	are	obtained	by	replacing	the	elements	of				Msi ,t
A with	the	in-sample	514	

predictions	of	 the	 l0	models	obtained	by	 fitting	each	of	 these	models	 to	 the	all	515	
the	data	(all	the	labels	and	the	corresponding	sets	of	features)25	(Supplementary	516	
Notes	6	&	7).		517	
	518	
Posterior	validation	519	
We	 performed	 posterior	 validation	 of	 the	 stacked	 model	 using	 10-fold	 out	 of	520	
sample	cross-validation	(withholding	each	validation	fold	 from	both	the	 level	0	521	
and	 level	 1	 models).	 We	 used	 these	 out-of-sample	 predictions	 to	 assess	 the	522	
accuracy	of	 the	predicted	means	of	 the	observations	as	well	 as	 their	predicted	523	
credible	 intervals	 (Supplementary	 Note	 7).	We	 also	 assessed	 the	 suitability	 of	524	
our	assumed	data	generating	process	using	probability	integral	transform	(PIT)	525	
histograms	on	out-of-sample	data	(Supplementary	Note	3).	526	
	527	
Predictor	variable	importance	528	
We	calculated	measures	of	the	importance	of	each	predictor	variable	for	each	of	529	
the	 machine	 learning	 models	 used	 in	 our	 model	 ensemble.	 For	 the	 extreme	530	
gradient	boosting	model	we	used	the	gain	measure	calculated	for	each	variable	531	
using	 the	 xgboost	 package57,	 which	 is	 the	 fractional	 total	 reduction	 in	 the	532	
training	 error	 gained	 across	 all	 of	 that	 variable’s	 splits.	 For	 the	 random	 forest	533	
model	 we	 use	 the	 permutation	 importance	 measure	 calculated	 using	 the	534	
randomForest	package58,	which	 is	 the	 fractional	change	 in	 the	out-of-bag	error	535	
when	the	variable	is	randomly	permuted.	In	the	case	of	the	boosted	generalized	536	
additive	model,	we	use	the	mboost	package59	to	calculate	variable	importance	as	537	
the	total	reduction	in	the	training	error	across	all	boosting	iterations	where	that	538	
variable	 was	 chosen	 as	 the	 base	 learner.	 For	 each	 model,	 we	 express	 the	539	
importance	 of	 a	 single	 variable	 as	 a	 fraction	 of	 the	 total	 importance	 across	 all	540	
predictor	variables	in	that	model.	541	
	542	
DATA	AVAILABILITY	543	
The	predictive	maps	of	the	mean	prevalence	of	resistance	are	available	to	544	
download	from	Figshare	(https://figshare.com/s/00b829f256694ed3c632)	and	will	545	
be	available	to	visualise	on	the	Malaria	Atlas	Project	website	546	
(https://map.ox.ac.uk/explorer/#).	The	susceptibility	test	data	is	available	to	547	
download	(https://doi.org/10.1101/582510	8).	Sets	of	susceptibility	test	data	548	
and	predictor	variable	data	in	the	form	used	by	the	statistical	modelling	analyses	549	
are	available	from	GitHub.	550	
	551	
CODE	AVAILABILITY	552	
R	 code	 for	 implementing	 the	 extreme	 gradient	 boosting,	 random	 forest,	 and	553	
boosted	 generalized	 additive	 models	 and	 the	 R-INLA	 geostatistical	 models	 is	554	
available	on	GitHub.	555	
	556	
	557	
	558	
	559	
	560	
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