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Abstract 

Introduction: The human heart requires a complex ensemble of specialized cell types to perform its 

essential function. A greater knowledge of the intricate cellular milieu of the heart is critical to increase 

our understanding of cardiac homeostasis and pathology. As recent advances in low input RNA-

sequencing have allowed definitions of cellular transcriptomes at single cell resolution at scale, here we 

have applied these approaches to assess the cellular and transcriptional diversity of the non-failing 

human heart. 

Methods: Microfluidic encapsulation and barcoding was used to perform single nuclear RNA sequencing 

with samples from seven human donors, selected for their absence of overt cardiac disease. Individual 

nuclear transcriptomes were then clustered based upon transcriptional profiles of highly variable genes. 

These clusters were used as the basis for between-chamber and between-sex differential gene 

expression analyses and intersection with genetic and pharmacologic data 

Results: We sequenced the transcriptomes of 287,269 single cardiac nuclei, revealing a total of 9 major 

cell types and 20 subclusters of cell types within the human heart. Cellular subclasses include two 

distinct groups of resident macrophages, four endothelial subtypes, and two fibroblasts subsets. 

Comparisons of cellular transcriptomes by cardiac chamber or sex reveal diversity not only in 

cardiomyocyte transcriptional programs, but also in subtypes involved in extracellular matrix remodeling 

and vascularization. Using genetic association data, we identified strong enrichment for the role of cell 

subtypes in cardiac traits and diseases. Finally, intersection of our dataset with genes on cardiac clinical 

testing panels and the druggable genome reveals striking patterns of cellular specificity. 

Conclusions: Using large-scale single nuclei RNA sequencing, we have defined the transcriptional and 

cellular diversity in the normal human heart. Our identification of discrete cell subtypes and 

differentially expressed genes within the heart will ultimately facilitate the development of new 

therapeutics for cardiovascular diseases. 
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Introduction 

The heart is an organ that acts without rest, ceaselessly beating over 2 billion times in the average 
human lifetime. Given the heart’s central function as a pump, it is understandable that much of the 
cardiac research focus has been centered on the cell subtype most responsible for contractile 
functionality, the cardiomyocyte. However, cardiomyocytes do not function in isolation, instead 
contracting as part of a complex ensemble of specialized cell types including those responsible for tissue 
perfusion, remodeling of the interstitial space, and autonomic regulation. A greater understanding of 
the complex cellular milieu of the heart is critical to advance our understanding of cardiac homeostasis 
and pathology.  

Analysis of transcription of RNA species, a highly dynamic process, is one method for defining cell types 
and states. To date, transcriptional analyses of the human heart have largely been performed in bulk 
tissue RNA sequencing studies. While these studies have yielded important insight into regional and 
pathological differences in tissue-level expression, they are unable to resolve the cell types from which 
any differential expression occurs. Recent advances in single cell RNA sequencing, particularly 
technologies centered on microfluidic encapsulation and cellular barcoding [1,2] have made 
deconvolution of these expression profiles technologically feasible. Large efforts are currently underway 
to define the cellular diversity in all organ systems. Among these, the Human Cell Atlas (HCA) [3] and 
Human BioMolecular Atlas Program (HuBMAP, https://commonfund.nih.gov/hubmap) are of particular 
note in humans, while the Tabula Muris project [4] has provided valuable insight into the murine cell 
subtype transcriptome. Due to challenges with tissue availability and cellular isolation, there have been 
relatively few studies of the cardiac system to date. Some recent analyses of heart tissue from humans 
[5,6] and model systems [4,7] have recently been published, but are limited in scope. Thus, a 
comprehensive analysis of cell subtype expression profiles from the non-failing human heart has yet to 
be performed. The transcriptional map of the non-failing human heart at single-cell resolution, together 
with an understanding of its normal inter-individual variability, crucially serves as a baseline against 
which one can obtain equally high-resolution and quantitative maps of cardiac pathologies. 

In the presently described study, we perform single nuclear RNA-sequencing (snRNAseq) on 287,269 
nuclei derived from the four chambers of the normal human heart. We identified 9 major cell types and 
more than 20 cell subtypes. We observed marked differences in cell subtype transcription by chamber, 
laterality, and gender. We then intersected the snRNAseq data with the results from genome wide 
association studies to prioritize cell subtypes for cardiovascular disease risk and with the druggable 
genome to facilitate the identification of novel therapeutic targets for cardiovascular diseases. Finally, 
our data provides a methodological framework and large-scale resource available to the broader 
scientific community.  
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Results 

Single-nucleus RNA-sequencing of the human adult myocardium 

We obtained cardiac tissue samples from seven potential transplant donors, including four women and 
three men, without any clinical evidence of cardiac dysfunction (Table 1). Tissue samples taken from the 
lateral aspect of the four cardiac chambers were subjected to nuclear isolation and processing for single 
nucleus RNA-sequencing (10x Genomics 3’ Single Cell Solution v2). Each sample was processed in 
replicate, and the second sample underwent a modification in reverse transcription that significantly 
increased library complexity (Methods). In total, 56 libraries were generated which were then subjected 
to cell calling, background adjustment, quality control filtering and cell alignment (Methods). The 
workflow for filtration steps and resultant values of samples or cells passing QC at various phases are 
contained within Figure S1A.  

In total, 287,269 cells from 44 libraries were utilized in downstream analyses, including identification 
of cell types and states (Figure S1B, Table ST1). When constructing transcriptional maps of human 
donors, we used single-cell variational inference (scVI) batch correction to prevent cells from 
segregating by individual donors within cell type clusters (Figure S2A). Additionally, use of CellBender 
remove-background allowed for calling of cells with lower transcriptional complexity, especially in the 
context of the relatively complex cardiomyocyte nuclei (Figure S2B), while also removing the 
contamination from ambient mRNAs. Importantly, a 3’ capture-derived RNA sequencing library is 
designed to capture poly-adenylated transcripts and thus does not completely identify the RNA 
molecules present within a ribosomal RNA-depleted, fragment-based, bulk RNA sequencing experiment. 

A total of 17 distinct cell clusters were observed following unsupervised Louvain clustering at a 
resolution of 1.0. Distributions of cell clusters by chamber specific UMAP representations are shown in 
Figure 1A which are combined within a global UMAP representation in Figure 1B. We were able to 
group these into 9 major cell types by canonical marker and ontology analysis, followed by analyses of 
cell type substructure within each of these groups. Cell clusters are well represented across samples 
with a few notable exceptions (Figure 1C). First, cardiomyocytes derived from the atria cluster 
independently of those from the ventricle. Second, one ventricular cardiomyocyte cluster is largely 
found in the right ventricle of a single sample, P1708. Third, lymphocytes were preferentially found in 
the left ventricle of sample P1723.  In addition, we believe two specific clusters represent cytoplasmic 
fragments as they are enriched for reads mapping to mature transcripts and mitochondrial genes (Figure 

S2C,D). The following sections will detail the features of each cell cluster, which are described by marker 
genes in Figure 2 and Table ST2 and analyzed for gene ontology biological function terms in Figure 2. 
Markers genes were determined as those which display an area under the receiver operating 
characteristic curve (AUC) value of greater than 0.7 and an average natural log fold change greater than 
0.6 (Methods). In cases when an insufficient number of genes was identified to define a cluster, 
additional genes with lower levels of overall expression, but strong selectivity for the target cluster of 
interest, were used for cell type definitions. These were defined as genes expressed in at least 5% of 
target cells and with a standardized positive predictive value (PPV50) greater than 0.90 (Methods). For 
subclustering analyses, a similar approach was employed but lowering the threshold for marker genes to 
an AUC greater than 0.65 and average natural log fold change greater than 0.5. As with the clusters from 
the global map, for some subclusters additional genes expressed in at least 5% of cells in the target 
subcluster with PPV50 greater than 0.90 were interrogated to assign subcluster labels (Methods).  
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Nine major cell types and more than twenty subclusters of cell types in the human heart  

Distinct transcriptional profile of atrial and ventricular cardiomyocytes 
Cell clusters 3, 4, 5, 6, 12, and 15 comprise the most frequent major cell type of cardiomyocytes and 
reflect strong expression of genes involved in canonical excitation-contraction function. Clusters 5 and 
12 displayed an enrichment of mature mRNAs (Figure S2D), suggesting that non-nuclear regions were 
the source of these “cells.” We removed these clusters from subsequent analyses as the clear 
differences between cytoplasm and nuclei would further confound comparisons across chamber and 
sex. After this exclusion, cardiomyocytes represented 35.9% of observed cells. Cluster 3 displayed 
canonical markers of the atrium, including NPPA (AUC3=0.91), MYL7 (AUC3=0.93) and MYH6 (AUC3=0.96) 
(Figure 2 and Table ST2). Clusters 4, 6, and 15 displayed obvious markers of mature cardiomyocytes 
such as TTN (AUC4=0.85, AUC6=0.86, AUC15=0.79) and MYH7 (AUC4=0.87, AUC15=0.79), but had fewer 
known markings of ventricular specificity in the global analysis (Figure 2 and Table ST2). This is likely due 
to the splitting of ventricular cardiomyocytes amongst multiple clusters by the Louvain algorithm such 
that some subclusters are included in the reference group for marker gene identification in a given 
cluster. A separate analysis of atrial versus ventricular cardiomyocytes resolved this issue and is 
discussed in the cross chamber comparisons below.  

Subclustering of aggregated cardiomyocytes reveals 5 subclusters (Figure S3A). Cardiomyocyte 
subcluster 1 (CM-S1) corresponds to cluster 3 from the global map and contains all atrial 
cardiomyocytes. Within the ventricular cardiomyocytes, cluster CM-S5 has enrichment for mitochondrial 
components and an increased mature transcript proportion suggesting these may also be cytoplasmic 
contaminants. CM-S4 correlates strongly to cluster 15 in the global map and displays increased 
expression of ANKRD1 (AUCCM-S4=0.82), which is thought to have a role in cardiomyopathy associated 
remodeling [8] and KCP (PPV50CM-S4=0.91), a BMP modifier whose expression is associated with heart 
failure [9] (Figure S3A and Table ST3). These cells are most often found in the right ventricle of a single 
donor (73% from P1708), and may represent a marker of a sub-clinical cardiac pathology.  

 
Identification of activated and non-activated cardiac fibroblasts 
By volume, cardiomyocytes comprise the majority of heart mass; however, in the absence of structural 
heart disease, fibroblast are roughly equivalent to cardiomyocytes in cell number. As the hearts used in 
this study were largely free of fibrotic remodeling (Figure S4A), we expected similar representation for 
fibroblasts and cardiomyocyte nuclei within our data. The cells from the combination of clusters 1, 2, 
and 14 represent cardiac fibroblasts, constituting 32.4% of observed cells. These cells display common 
markers of fibroblast lineages, with enriched expression of known fibroblast genes such as DCN 
(AUC1=0.85, AUC2=0.83), which encodes the proteoglycan decorin which regulates collagen 
fibrillogenesis, and (ELN (AUC1=0.71, AUC2=0.86), which produces elastin, a major component of the 
extracellular matrix (Figure 2 and Table ST2). The former was used to evaluate the distribution of the 
fibroblasts in our tissue samples, which exhibit the traditional interstitial localization observed in 
previous work (Figure S4B). In addition to extracellular matrix proteins, members of the ATP binding 
cassette subfamily of transmembrane transporters, including ABCA6, -8 and -9, were also preferentially 
expressed in one or more of these clusters (ABCA6: AUC1=0.80, AUC2=0.77; ABCA8: AUC1=0.79, 
AUC2=0.79, ABCA9: AUC1=0.75, AUC2=0.74) (Table ST2). Analysis of ontology for specific genes in this 
class display expected terms in the realm of extracellular matrix and structural organization, with the 
greatest enrichment in cluster 2 (Figure 2). No terms reached significance thresholds for clusters 1 and 
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14, perhaps as a consequence of a lower number of genes surpassing our criteria of a marker gene 
within these clusters (15 and 48, respectively). This is largely a consequence of including other fibroblast 
clusters in the reference outgroup for marker gene testing.  

 
To further evaluate the structure within the fibroblast population, we performed local clustering of 

these cells, from which 4 populations were observed (Figure 3A). Importantly, subcluster FB-S2, which 
composes a large proportion of cluster 2 in the global map, shows an enrichment for NPPA, a known 
marker of atrial cardiomyocytes (Figure 3B). Whether this is truly fibroblast specific NPPA expression, an 
artifact derived from cardiomyocyte/fibroblast nuclear doublets, or a result of the presence of NPPA 
transcript in the extranuclear contaminant, requires further investigation. Cluster FB-S3 displays 
enriched expression of fibrosis associated genes NOX4 (AUCFB-S3=0.70) and IGF1 (AUCFB-S3=0.69), and 
cluster FB-S4, which corresponds to cluster 14 in the main map, exhibits clear upregulation of pro-
fibrotic markers, including ADAMTS4 (AUCFB-S4=0.69), which encodes a pro-fibrotic metalloprotease, 
VCAN (AUCFB-S4=0.69), which encodes the proteoglycan versican [10], and AXL (AUCFB-S4=0.69), which 
encodes a receptor tyrosine kinase associated with pathologic remodeling [11](Figure 3B, Table ST3). 
Further interrogation of these cells via RNA in situ hybridization with α-ADAMTS4-specific probes 
demonstrates an interstitial distribution throughout the tissue rather than being localized to a particular 
region (Figure 3C), suggesting that an organ wide event stimulated this fibroblast state transition. To 
attempt to identify the lineage of these fibroblast subclusters, we intersected our data with those from 
fibroblast activation in mice and humans.[12,13] None of these clusters are enriched for expression of 
canonical markers for fibroblast activation (POSTN), myofibroblast transition (MYH11, FAP), or 
transformation to fibrocytes (CHAD, COMP) (Figure 3B). Whether these cells are a previously undefined 
state in canonical fibroblast activation, or are instead an entirely non-canonical form of fibroblast will be 
the focus of future work.  
 
Vascular support network of pericytes and vascular smooth muscle 
Defining specific markers for microvessel associated pericytes and large vessel associated vascular 
smooth muscle cells has remained difficult, because the cells derive from similar progenitors and serve 
similar vascular support functions. We observed a relative enrichment of pericyte-specific PDGFRB in 
cluster 7 (AUC7=0.75) and the expression of smooth muscle actin (MYH11) in cluster 13 (AUC13=0.89) 
(Figure 2, Table ST2). This observation, combined with the preponderance of small vessels in our tissue 
samples, led us to classify the more numerous cluster 7 as pericytes and cluster 13 as vascular smooth 
muscle. Subcluster analyses of these cell types yielded little appreciable structure (Figure S3B, Table 

ST3), with the exception of cluster P-S2 in pericytes, which is enriched for some markers of endothelial 
cells (VWF, AUCP-S2=0.77, for example). Whether this indicates a differentiation event, as pericytes 
derive from endothelial cells, potential nuclear doublets, or ambient RNA contamination within the 
data, remains unclear.  
 
A complex cardiac immune cell component 
Two cell clusters (8 and 17) identified in this analysis have genetic signatures consistent with immune 
cell types. The first, cluster 8, represent cardiac resident macrophages and can be characterized by 
expression of the scavenger receptors CD163 (AUC8=0.84) and COLEC12 (AUC8=0.72), the mannose 
receptor MRC1 (AUC8=0.85), the E3 ubiquitin ligase MARCH1 (AUC8=0.72) and natural resistance-
associated macrophage protein 1 (NRAMP1 or SLC11A1) (AUC8=0.74) (Table ST2). Subclustering further 
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revealed two populations that both express M2-polarization associated genes, including RBPJ and F13A1 
in M-S1 (AUCM-S1=0.85 and 0.84, respectively) and the transmembrane collagen COL23A1 in M-S2 (AUCM-

S2=0.65) (Figure 4A, Table ST3). 
 

A second immune cell population (cluster 17) selectively expresses a number of well-known T cell 
markers. This includes the T cell surface antigen CD2 (PPV5017=0.99), the early T cell activation antigen 
CD69 (PPV5017=0.99), the T cell receptor associated transmembrane adaptor 1 (TRAT1) (PPV5017=0.98) 
(Table ST2). In addition, PTPRC/CD45 (AUC17=0.77), an essential regulator of T- and B-cell antigen 
receptor signaling, the T cell immune adaptor SKAP1 (AUC17=0.77), and the thymocyte selection marker 
CD53 (PPV5017=0.91) show selectivity to this cluster (Figure 2, Table ST2). This overall lymphocyte 
population can be further subdivided into two distinct subclusters (LC-S1 and LC-S2). While many of the 
genes defining these subclusters have yet to be assigned functional roles within specific T cell 
populations, functional delineation may be enabled by future studies characterizing their localization 
within cardiac tissue and by analysis of transcriptional changes during disease. A gene of note within LC-
S2 is KIT, which was long associated with cardiac resident stem cells, but since largely refuted [14]. We 
observe KIT expression exclusively within this lymphocyte subpopulation, with no evidence for 
expression in any cell with signatures of being progenitors or precursors for cardiomyocytes (Figure 4B 
and Table ST3). 

 
Identification of vascular and non-vascular endothelial cells 
The endothelial cell component of the heart consists of those cells which line the large and small 
circulatory vessels, the lymphatics, and the endocardium. From global clustering, we identified two 
major endothelial cell clusters (clusters 9 and 10), which express canonical markers such as VWF 
(AUC9=0.88, AUC10=0.77) and PECAM-1 (AUC9=0.71, AUC10=0.81), but were unable to further resolve 
subtypes prior to subclustering analysis (Figure 2, Table ST2). 

Five subclusters were identified within combined endothelial clusters 9 and 10 (Figure 4C). We were 
unable to clearly resolve subclusters based on AUC markers alone, but interrogation of less abundant 
genes with significant selectivity proved useful in identifying subcluster populations. For instance, in 
subcluster 4 (L-EC), we observed enrichment for cells expressing lymphatic endothelial cell markers 
including PROX1, FLT4 and PDPN (PPV50L-EC of 0.95, 0.91, and 0.94, respectively) (Table ST3). A subset of 
cells in EC-S2 express BMX (AUCEC-S2=0.65), an artery specific endothelial cell marker as well as NPR3 
(AUCEC-S2=0.65). In mice, NPR3 is selectively expressed in adult endocardium [15], suggesting the EC-S2 
population may represent endocardial cells (Table ST3). These observations reflect the fact that the 
heart biopsies used did not include any large vessels, explaining in part the lack of distinct arterial and 
venous endothelial cell populations. 
 
Epicardial adipocytes enriched in the leukocyte marker CD96 
Epicardial adipose tissue is present in human hearts which comprises up to 20% of its total mass.[16] 
Adipocytes may also be observed within the heart itself in pathological conditions such as obesity or 
cardiomyopathy. Tissues were generally free of myocardial adiposity as observed by histology in our 
samples with the exception of the right ventricle of P1723 (Figure S4C). Given that cells of this sample 
are not overly represented in the cluster, we propose that Cluster 11 is comprised primarily of epicardial 
adipocytes, with ontology analysis identifying terms such as fatty acid and lipid metabolism (Figure 2). 
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These cells were characterized by genes whose expression ultimately regulate the size and stability of 
lipid droplets, such as CIDEC (AUC11=0.72) and PLIN5 (AUC11=0.78). These data also support the view of 
epicardial fat as an endocrine organ. ADIPOQ, which modulates fatty acid transport and increases 
intracellular calcium is present in nearly 65% of adipocyte nuclei but only 0.3% of other cell types 
(AUC11=0.82). Within this population, TRHDE, which inactivates thyrotropin releasing hormone, and IGF-
1 are also strongly enriched within this population (AUC11=0.76 and AUC11=0.76, respectively). IGF-1 also 
has an important role in cell growth, proliferation and resistance to death later in an individual’s life, 
functions which directly relate to its significant role in the development of obesity.[17] Surprisingly these 
cells are also enriched for CD96, a marker most often identified with Natural Killer (NK) and T-cells 
(AUC11=0.73) (Table ST2).  

Autonomic neuronal inputs of the intrinsic cardiac network 
The heart is innervated by the central nervous system through the cardiac plexus, which distributes 
parasympathetic (vagal) and sympathetic stimulation. In addition, an intrinsic cardiac autonomic 
network, consisting of ganglionated plexi within epicardial fat pads, resides within all four chambers of 
the heart. We identified a subset of neuronal cells in cluster 16, largely defined by neuronal cell 
adhesion genes such as the neurexins (NRXN1, AUC16=0.91 and NRXN3, AUC16=0.87), and NCAM2 
(AUC16=0.73) rather than by electrophysiology or secretory associated genes. The only ion channel gene 
identified as a marker in this cluster is SCN7A (AUC16=0.74), initially described in glia, but since 
understood to reside in other cell types of the nervous system [18]. For signaling genes, the receptor 
genes ADGRB3 (AUC16=0.72), which acts to promote angiogenesis, and SHISA9 (AUC16=0.72), which 
modulates AMPA-type glutamate receptors, were robustly expressed within this cluster (Table ST2). 
Given the sampling location of the lateral wall and the presence of this neuronal subtype through all 
four chambers, it is likely that the neuronal cells identified within the present study are derived from the 
intrinsic cardiac autonomic network.  

 

Differential expression analysis uncovers chamber- and sex-specific gene expression profiles within 

cell subtypes 

We next determined whether expression programs in the major cell types differed by cardiac chamber 
or sex. Prior to performing differential expression testing, we first removed any cluster or subcluster 
that was previously labeled as cytoplasmic (clusters 5 and 12 from the global map and subclusters CM-
S5 and EC-S5), collapsed cell clusters into their respective major cell types, and removed genes with a 
poor PPV50 for the major cell type of interest (Methods). We then performed differential expression 
testing using a generalized linear mixed model framework on the 5 most numerous major cell types 
(cardiomyocytes, fibroblasts, endothelial cells, pericytes, and macrophages). The smaller number of cells 
for other cell types coupled with the sparsity of single nucleus RNA-sequencing expression matrices 
sequencing limited our ability to confidently call differentially expressed genes in rare cell types.  

Cardiomyocytes are the most distinct cell type between chambers 
Atrial and ventricle cardiomyocytes are well known to have distinct physiological functions, contractile 
properties, and electrical signaling. These functional and structural differences are reflected in discrete 
transcriptional profiles. As anticipated, when we compared the atria to the ventricles we observed a 
total of 2,300 genes that reach an FDR adjusted significance threshold (Figure 5A,B,C Table ST4). These 
differences were exemplified by an increased expression of HEY2 and MYH7 in the ventricles (effect 
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size=3.75, P=1.5x10-27 and effect size=1.83, P=1.07x10-16, respectively), and NPPA and MYL4 in the atria 
(effect size=6.89, P=1.22x10-30 and effect size=4.23, P=2.94x10-29, respectively). We identified 2,058 
differentially expressed genes between the left atrium and left ventricle, but only 1,134 differentially 
expressed genes between the right atrium and right ventricle.  

In contrast to the marked transcriptional patterns observed between the atria and ventricles, there 
were many fewer genes that were differentially expressed when comparing the left versus the right side 
of the heart. A comparison of the left versus right atria revealed 248 differentially expressed genes, 
while only 24 genes were differentially expressed between the left and right ventricles.  

Closer inspection of the data yield noteworthy insights into chamber specific expression programs. 
For example, the atrial fibrillation susceptibility gene, PITX2 [19] was observed in 2.3% of left atrial 
cardiomyocytes and in less than 0.05% of cardiomyocytes in any other chamber. Interestingly, HCN4 is 
present in 4.3% of cardiomyocytes from the right atrium, in only ~1% of cardiomyocytes from the right 
ventricle and left ventricle, and less than 0.5% of cardiomyocytes from the left atrium. The HCN4 gene 
encodes the ion channel responsible for spontaneous depolarization and has also been associated with 
atrial fibrillation.  

Other genes with limited or entirely unexplored roles in cardiomyocyte biology also exhibit chamber 
preference. Among these, HAMP, which encodes a protein for regulating iron export, and the solute 
carrier gene SLC5A12 are found predominantly within the right atrium (present in 18.3% and 5.8% of 
cardiomyocytes in the right atrium, respectively, compared to < 1% of cardiomyocytes in any other 
chamber). Eight genes display significant differences in expression in opposing directions when 
comparing left or right atrium to their respective ventricular partner (Figure 5B, Table ST4). Among 
these are MYOT (left: effect size=0.75, P=8.86x10-5; right: effect size=-0.93, P= 2.00x10-5) and TNNT1 
(left: effect size=0.64, P=0.001; right: effect size=-0.45, P=1x10-4), which are enriched in the right 
ventricle and left atrium and which play critical roles in sarcomeric organization and function.  

Non-cardiomyocytes display striking chamber-specificity 
While differences in cardiomyocytes between chambers were expected, it was less clear from previous 
work if chamber specificity exists within other cardiac resident cells. Surprisingly, there were profound 
signatures of chamber specificity in the other cell types examined. A total of 765 genes surpassed FDR-
corrected P-value threshold in fibroblasts for at least one comparison of chamber or laterality. In 
addition, 125 genes in pericytes, 320 genes in macrophages and 354 genes in endothelial cells were also 
found to be differentially expressed. (Figure 5B, Table ST4).  

Among fibroblasts, pericytes and macrophages, the atrial versus ventricular comparisons account 
for the majority of differential expression, with the right atrial cells being consistently the most 
divergent. In some cases, this divergence is sufficient to drive some of the subclustering observed within 
Figure 4 and Figure S3. The most striking example of this is within the macrophage population, where 
the differential expression between the right atrial macrophages and those of other chambers is strong 
enough to detect a second macrophage subcluster (M-S2, Figure 4A) which consists almost entirely of 
right atrial cells (94.0%). In contrast, endothelial cells are most distinct when comparing sidedness (220 
differentially expressed genes genes for left versus right, 43 differentially expressed genes for atrium 
versus ventricle). Again, much of this is driven by the right atrium, with 217 significant genes when 
comparing to the left atrium. This difference manifests within the subclustering, where right atrial cells 
make up 88.2% of subcluster EC-3 (Figure 4C).  
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Similar to the cardiomyocytes, some genes display different directionalities when comparing atria 
versus ventricles on the left or right side (Figure 5B, Table ST4). This includes 6 genes in fibroblasts, 
including CILP (left: effect size=1.13, P=4.04x10-5; right: effect size=-1.55, P=8.43x10-7) and ITGBL1 (left: 
effect size=1.07; P=7.26x10-6; right: effect size=-0.67; P= 4.08x10-4)  which have links to the regulation of 
fibrosis [20,21] and 1 gene in endothelial cells, ZNF385D (left: effect size=0.82, P=0.001; right: effect 
size=-1.14, P=1.60x10-8). In sum, there are profound differences in the expression profiles of non-
myocytes across the cardiac chambers. 

Sex-based differential expression identifies genes associated with myopathy and coronary artery disease 
Biological sex has profound impact upon cardiac morphology, physiology, and susceptibility to 
cardiovascular disease, but the molecular differences of the heart between the sexes remain obscure. 
Given the inclusion of 4 female and 3 male donors within our data, we proceeded to separate the cells 
by sex and performed differential expression testing within the same 5 major cell types both globally 
and by chamber of origin. Given our limited sample size, the number of sex-specific genes was greatly 
reduced when compared to those derived from chamber specificity in the previous section. In total, 17 
genes exhibited sex-based differential expression within cardiomyocytes, 2 within the endothelium, 10 
within the fibroblasts, 3 within the macrophages, and none for the pericyte comparisons (Table ST5). 
Approximately one third of the genes that were differentially expressed by sex were autosomal 
(Cardiomyocyte = 6, fibroblast = 4). An anticipated, several of these differentially expressed genes are 
related to hormonal signaling. CRISPLD2 is induced by the progesterone receptor [22] and UGT2B4 is 
involved in estrogen metabolite modification.[23]  NEB, which encodes the sarcomeric structural protein 
nebulin, is enriched within the left ventricle in males (effect size=1.54, P=1.73x10-6) while ZNF827, which 
resides proximal to a GWAS locus for coronary artery disease [24] is expressed at increased levels in 
women with the most marked upregulation in the right atrium (effect size=1.31, P=2.12x10-6).  

 

Integration of single nucleus RNA-seq data with cardiovascular genetics and the druggable genome 

We next sought to apply our snRNA-seq data to better understand the basis of human cardiovascular 
disease using three complementary approaches. First, we examined the cell type specific expression of 
genes implicated in Mendelian forms of cardiovascular disease. Second, we related cardiac 
transcriptional data to the data derived from population-based, genome wide association studies 
(GWAS) for cardiovascular diseases and traits. Finally, we intersected our snRNA-seq data with genes 
that are potentially druggable in order to identify novel therapeutic targets for cardiovascular diseases.  
 
Genes implicated in cardiomyopathies and arrhythmia syndromes are enriched in cardiomyocytes 

Intersection of our snRNA-seq data with a panel of genes previously implicated in cardiomyopathies and 
arrhythmia syndromes revealed three 3 general patterns. First, as anticipated, over 25% of the 
pathogenic genes show enriched selectivity (AUC > 0.70) in the cardiomyocyte population (Figure 6, S5, 
17/75 genes for arrhythmias (p < 0.0001), 27/106 genes for cardiomyopathies (p < 0.0001)). Second, a 
smaller subset of known pathogenic genes are highly expressed in non-cardiomyocyte populations. This 
pattern was exemplified by the ABCC9 gene which has been implicated in dilated cardiomyopathy and is 
predominantly expressed in pericytes. Similarly, LAMA4, which encodes a component of the 
extracellular matrix and has been associated with dilated cardiomyopathy, was specifically expressed in 
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adipocytes (AUCAD=0.79). Finally, we found that approximately half of the genes implicated in Mendelian 
cardiovascular diseases were not highly or broadly expressed in the healthy human heart.  

Combining GWAS and snRNA-seq data to identify the most relevant cell types for cardiovascular diseases 
To identify putative cell types of interest to a set of complex traits and diseases, we employed linkage 
disequilibrium (LD) score regression to partition genetic heritability from GWAS studies. Briefly, 
assuming a cis-regulatory model for single nucleotide polymorphism (SNP) function, the approach 
partitions SNP heritability derived from GWAS across regions near genes considered to be cell type 
specific in our sn-RNAseq data. Should SNP-trait associations be enriched around cell type specific 
genes, this suggests that heritability of the trait is driven in part by the genetic effects in that cell type. 
We applied this approach to a range of cardiometabolic traits, as shown In Figure 6B. 

Integration of our single nucleus sequencing results with GWAS data for cardiometabolic traits 
revealed the expected enrichment in cardiomyocytes for two electrocardiographic traits, the PR interval 
(P=1.4x10-5) and the QT interval (P=2.3x10-4). We observed a similar cardiomyocyte enrichment for the 
most common cardiac arrhythmia, atrial fibrillation (P=0.007). Interestingly, we also observed a marked 
enrichment in pericytes for genes at the loci for myocardial infarction (P=0.001) and in adipocytes for 
LDL cholesterol (P=0.004). 

After examining global enrichments, we chose to employ a more reductionist approach to evaluate 
potentially unique expression profiles of disease-associated genes. Expression quantitative trait loci 
(eQTL) mapping, which evaluates changes in gene expression due to genotype, is a common strategy for 
linking a GWAS locus to a particular gene. We used the intersection of known disease or trait associated 
eQTLs from GTEx [25] and our own work [26] to determine the cell type where the transcript of interest 
is most highly expressed. For each trait, we limited our analysis to genes from the most disease relevant 
tissue, for example the QT interval is only intersected with left ventricular eQTLs and atrial fibrillation 
only those from the left atrium. eQTLs are derived from tissue level RNAseq experiments, and are thus 
predisposed to discover signals in more prevalent cell types. Surprisingly, rather than patterns which 
indicate cardiomyocyte centered expression, genes generally show non-specific cell type expression, 
with a few interesting patterns emerging (Figure S5B). Within the left ventricle, 1 of the 11 putative 
genes for PR interval (PDZRN3) shows enriched expression in cardiomyocytes (AUCCM=0.88), 1 of 21 
putative genes for QT interval (SLC35F1) shows enriched expression in neuronal cells (AUCNR=0.71), and 
2 of 37 putative genes for CAD show enriched expression in adipocytes (C6orf106, AUCAD=0.70) and 
vascular smooth muscle cells (LMOD1, AUCVSMC=0.74). Interestingly, in the left atrium, the putative PR 
interval gene PDZRN3 shows enriched expression in adipocytes (AUCAD=0.76) and 2 of 12 atrial 
fibrillation genes show enriched expression in cardiomyocytes (CASQ2, AUCCM=0.74) and endothelial 
cells (SYNE2, AUCEN=0.74). 

 

Cell-type specific expression of potentially druggable genes 
To identify potential drug targets in cardiac tissue, we sought to identify tier 1 classified genes from the 
druggable genome [27] that shows selectivity toward particular cardiac cell types. This tier includes 
targets of both approved drugs and those in clinical development. Of the 1420 potential genes, 53 
unique genes were specifically expressed in at least one major cell type with an AUC > 0.70 (Figure 6A). 
Most commonly these genes were found in adipocytes (n=17), cardiomyocytes (n=14), and fibroblasts 
(n=9). Among these, CACNA1C, the receptor for calcium channel blockers that are commonly used to 
treat hypertension, and PDE3A, a known target of inamrinone for treatment of congestive heart 
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failure,[28,29] showed selectivity toward cardiomyocytes. However, the selective expression of other 
druggable genes in cardiac cell types, and particularly in non-myocytes, will provide new opportunities 
for future therapeutic development.    
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Discussion 

We have developed a comprehensive map of the transcriptional landscape in normal human heart 
comprised of snRNA-seq for more than 280,000 cells.  Our work provides at least four novel advances 
that will enhance our understanding of cardiovascular biology. First, we have developed the largest 
collection of single nuclear transcriptomes from the human heart to date. This robust dataset allowed us 
to define 9 major clusters and at least 20 subclusters of cell types within the healthy heart.  Second, we 
identified unexpected differences in chamber-, laterality-, and sex-specific transcriptional programs 
across major subtypes of cardiac cells. Third, we linked specific cell types to common and rare genetic 
variants underlying cardiovascular diseases. Finally, we generated a portable, scalable analytic and 
statistical framework for handling the unique challenges of cardiac single nuclear data that will be of 
broad interest to the scientific community.  

Previous single cell sequencing of the heart has focused on murine models of health and disease 
[4,7,30–33], with limited forays into analyses of human tissues [5,6]. Notable examples of the latter 
include compelling studies of fetal development and cardiomyopathy-control comparisons. The rarity of 
data from humans highlights the inherent technical and logistical challenges associated with these 
studies. Ideal tissue harvesting requires coordination between clinical and laboratory teams to quickly 
isolate and preserve the metabolically active, ischemia-sensitive tissue. After tissue isolation, additional 
challenges emerge, including problematic cell isolation protocols combined with large disparities in cell 
size necessitating nuclear rather than whole cell sequencing. Further, the lysis of cells for single nuclear 
isolation produces significant cytoplasmic RNA contamination in the form of ambient RNA, which we 
remove using a probabilistic model developed by our group. In human tissue, there is also significant 
intersample diversity such that cell alignment across samples is required for any additional cell subtype 
comparisons. As batch correction with the commonly used canonical correlation analysis (CCA) may 
remove sample specific clusters [34], we applied a deep neural network to correct batch effects using 
the scVI tool [35]. Finally, the transcriptional complexity of nuclei is not equivalent between cell types, 
making identification of droplets containing cells versus those which are empty more challenging than 
typical cell-based protocols. To overcome this challenge, we called cells using our CellBender remove-
background tool which compares each droplet to the background signature of ambient RNA to identify 
and retain cell types with lower average transcriptional coverage. 

The result of highly collaborative effort is a large-scale map of the transcriptional diversity of the 
human heart that is approximately 50 times larger than prior human studies. The scope of our study 
afforded us the ability to interrogate rarer cell types, perform detailed cellular subclustering, and define 
the signatures of cell types beyond what was previously possible. We believe that our data will be a 
unique resource for the cardiovascular research community and is available for further exploration at 
the Broad Institute’s Single Cell Portal (https://portals.broadinstitute.org/single_cell). This data will 
facilitate the independent evaluation of the cell types we have described, provide the opportunity for 
re-analyses and more liberal cellular subclustering, examination of the expression of genes of interest, 
and additional comparisons across and within cell groups.  

Beyond analyses we have presented here, we anticipate that this work will serve as a framework for 
further studies, both as a reference dataset of human non-failing samples, and as an analytic framework 
for further comparisons. We were excited to read the initial studies of human disease comparisons by 
single cell sequencing, and hope that the data and approach here will facilitate further comparisons of 
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this kind in the future. As highlighted with the discovery of ionocytes based on CFTR expression in 
patients with cystic fibrosis [36], we hope to identify similar rare disease-specific cellular subtypes that 
can be used in cardiovascular disease research. Looking forward, recent advances in the non-
cardiovascular single cell work using LIGER [37] and Seurat v3.0 [38] have highlighted the potential for 
multi-modal integration of transcriptome and epigenome datasets. Generation of richer datasets of this 
nature in these samples and others will further facilitate translational discoveries, while overcoming 
limitations of any single data modality. Finally, we hope that this is the first entry in a larger series of 
large human transcriptomes to be published by our group and others. When combined, these data can 
facilitate analyses which require significant sample sizes, such as eQTL analyses which link risk loci to 
genes; these methods are just beginning to be applied to single cell data [39]. 

Limitations 
Our study was subject to several potential limitations. Although this is a much larger collection of human 
cardiac transcriptomes than any other study to date, these individuals may not reflect the complete 
diversity contained within non-failing hearts. Studies to expand the number of normal and diseased 
tissue comparisons are ongoing. Second, all individuals in this study were of European descent; thus, 
transcriptional profiling of samples from other races and ethnicities should be a goal in the future. Third, 
sex-based comparisons were relatively underpowered given the limited numbers of individuals present 
in the study. Fourth, nuclear transcriptomes represent a small percentage of the total mRNA present in 
a cell and differ significantly from the population of species present in the cytoplasm. Follow up studies 
that examine the concordance of whole cell versus nuclear transcriptomes will clarify the differences in 
these two populations of mRNA. Finally, methods to remove ambient RNA, identify nuclear doublets, 
perform batch correction are imperfect; even after correction droplets are expected to retain some 
background signal. Thus, interpretation of the data should keep this in mind, especially when observing 
the expression of genes from common cell types, such as cardiomyocytes, in other cell types. 

Conclusions 
Single cell RNA sequencing has been a revolutionary tool for characterizing known and novel cell types 
and states in health and disease. Here we provide a large-scale map of the transcriptional and cellular 
diversity in the normal human heart. Our identification of discrete cell subtypes and differentially 
expressed genes within the heart will ultimately facilitate the development of new therapeutics for 
cardiovascular diseases.  
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Figure 1: Observed cell types in the adult human heart.  

A: UMAP plot displaying cellular diversity present in the human heart by chamber. Each dot represents 
an individual cell. Colors correspond to the cell cluster labels below the panel. B: Combined UMAP plot 
containing a total of 287,269 cells from 7 individuals. Colors and numbers correspond to the cell cluster 
labels as listed in the lower panel. C: Relative representation of cell clusters by sample. Aggregation of 
four bars for each cell cluster equals 100% for each cell type. White lines within bars separate individual 
sample contributions. Colors correspond to the cell type descriptions displayed in the panel above.  
 
 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 7, 2020. ; https://doi.org/10.1101/2020.01.06.896076doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.06.896076


Figure 1:  
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Figure 2: Gene and ontology definitions of observed cardiac cell clusters.  
Left panel: Dot plots display the top 6 marker genes for each supercluster as determined by AUC. The 
size of the dot represents the percentage of cells within the cluster where each marker is detected while 
the gradation corresponds to the mean log2 of the counts normalized by total counts per cell times 
10,000. Right panel: Gene ontology enrichment analysis as performed by GOStats using all genes which 
reach an AUC threshold of greater than 0.70 and an average log fold-change greater than 0.60 for the 
given cell cluster. Red dotted line indicates a Bonferroni statistical significance threshold. The top three 
gene ontologies are shown for each cell cluster. 
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Figure 3: Subclustering fibroblasts to identify activated and quiescent fibroblasts  
A: UMAP plot representing the four observed fibroblast subclusters superimposed over the global UMAP 
distribution. Each dot represents an individual cell and are colored by their respective subcluster B: Dot 
plot detailing the percentage of cells where each gene is detected (dot size) and mean log2 expression 
(blue hue) for representative subcluster marker genes. Each row represents the cell subcluster as 
displayed in panel A as according to color. C: Representative RNA in situ hybridization showing 
localization of ADAMTS4 positive cells (brown stain) in sample LV1723 compared to a non-specific RNA 
probe (Control). Localization of nuclei is shown with hematoxylin (blue stain). Scale bar represents 
100um.  
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Figure 4: Subclustering to identify additional cellular diversity within macrophages, endothelial cells 
and lymphocytes  
A: Left panel showing the UMAP distribution of the two identified macrophage subclusters. Each dot 
represents an individual cell colored by its respective subcluster. Center panel represents the calculated 
proportion of exonic mapping reads for the two subclusters. Right panel details the top markers by AUC 
for each subcluster. The size of the dot relates to the percentage of cells within the cluster which 
express that markers whereas the gradation relates to the mean log2 of the counts normalized by total 
counts per cell times 10,000. B: Left panel is the distribution of the two subclusters for lymphocytes in 
the global UMAP. Each dot represents an individual cell colored by its respective subcluster. Inset is the 
magnification of the outlined region. Center panel displays equivalent exon mapping reads for each of 
the subclusters. Right panel displays the top genes defining each subcluster as defined by AUC. C: Left 
panel is the distribution of the five identified subclusters of endothelial cells within the global UMAP 
plot. Each dot represents an individual cell colored by its respective subcluster. Center details the 
percentage of exon mapping reads, where cluster X (purple) has enrichment for exonic reads. Right 
panel shows a dot plot of the top markers for each subcluster by AUC with the addition of those markers 
used for identification of the lymphatic endothelium cluster derived from the standardized positive 
predictive value.  
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Figure 4:  
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Figure 5: Differential expression analyses for chamber specific signatures of major cell types 
A: Volcano plot detailing differential expression of genes when comparing the aggregated atrial and 
ventricular chambers in cardiomyocytes (orange), fibroblasts (blue), endothelial cells (purple), pericytes 
(red), and macrophages (pink). The X-axis represents the fixed effect from the generalized linear mixed 
model and the Y-axis represents the -log10(P-value). Dotted line indicates the FDR adjusted P-value 
threshold for statistical significance. The top 3 genes upregulated in atrial cells and ventricle cells are 
highlighted for each cell major cell type. B: Heat maps detailing a representative selection of significantly 
differentially expressed genes between chambers within major cell types. Color indicates whether the 
gene is enriched within the chamber listed on the left (red) or right (blue). Size of the inset block 
indicates the P-value for the comparison. Dot within the block indicates statistical significance for the 
given comparison. Genes to the right of the dark vertical line are those with different directionalities 
when comparing atria versus ventricles on the left or right side. C: Density plot displaying the number of 
genes with certain P-values across the P-value spectrum within each major cell type for atrium versus 
ventricle (left panel) and left versus right (right panel) comparisons. 
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Figure 6: Integration of single nucleus RNA sequencing with genetic associations to uncover disease 
biology 
A: Dot plot for genes currently on standard cardiomyopathy clinical testing panels. The size of each dot 
represents the percent of cells in which the gene of interest is detected and the shading represents the 
relative expression of the gene. Color of the genes correspond to the cell type for which the AUC 
reaches 0.70 or greater. Genes with black color indicate no cell type which reaches this threshold. Size 
and shade of the dot corresponds percentage of cells and relative expression, respectively. B: Results of 
LD score regression analyses on the combined major cell types. Dotted lines display unadjusted (blue) 
and Bonferroni adjusted (red) P-value thresholds for statistical significance. Colors of the bars 
correspond to the color of the cell major cell type labels on the left. C: Heat map detailing the 
intersection between single nucleus RNA sequencing data and Tier 1 druggable genes. Genes with an 
AUC greater than 0.70 in at least one cell type are shown. Shade of the color represents the AUC value 
for the gene within each cell type. Of note, genes that have an AUC greater than 0.70 in multiple cell 
types appear multiple times in the plot. 
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Figure 6:  
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Table 1: Clinical characteristics of transplant donors  

File # Sex 
Age 
(yr) 

Weight 
(kg) 

Height 
(cm) 

Heart 
Weight (g) 

LV Mass 
(g) 

LVMI(g/m2) 
LVEDD 
(cm) 

LVESD 
(cm) 

PW Thick 
(cm) 

LVEF 
(%) 

Creat 
(mg/dl) 

P1221 Female 52 59 156 300     4.2 2.9 0.8 75 0.7 
P1600 Female 51 68 162.6 213 134 76.5 4.2 2.8 0.7 50 0.8 
P1666 Male 54 62 173 262 159 92.1     1.2 65 0.75 
P1681 Male 39 61 170 400 232 136.7 4.5 3 0.9 60 0.7 
P1702 Male 59 62 177 386 206 118.0 4.6 2.7 0.8 60 1.38 
P1708 Female 60 63 160 281 159 95.0 3.9 1.8 1.1 65 0.47 
P1723 Female 47 79 167 310 205 107.1     0.9 60 0.8 

 

LV: Left ventricle, LVMI: left ventricular mass index, LVEDD: left ventricular end diastolic dimension, LVESD: left ventricular end systolic 
dimension, PW Thick: posterior wall thickness, LVEF: left ventricular ejection fraction, Creat: creatinine 
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Methods 
 
 
Human tissue samples 
Adult human myocardial samples of European ancestry were collected from deceased organ donors by 
the Myocardial Applied Genetics Network (MAGNet; www.med.upenn.edu/magnet). For all donors, 
clinical examination and medical history displayed no indications of structural heart disease.  Employing 
methods used in clinical transplantation, all hearts were arrested in situ with at least 1 liter of ice-cold 
crystalloid cardioplegia solution, as previously reported.[40,41]Hearts were transported to the lab in ice-
cold cardioplegia solution until cryopreservation (always <4 hours). Written informed consent for 
research use of donated tissue was obtained from next of kin in call cases. Research use of tissues were 
approved by the relevant institutional review boards at the Gift-of-Life Donor Program, the University of 
Pennsylvania, Massachusetts General Hospital and the Broad Institute.  
 
 
Single nucleus RNA-sequencing 
Single nucleus suspensions were generated by a series of cellular membrane lysis, differential 
centrifugation and filtration steps. Approximately 100mg of tissue was cryosectioned at 100 um on a 
Leica CM1950 cryostat to enable liberation of nuclei from the tissue while minimizing mechanical 
manipulation. Tissue sections were homogenized in a dounce homogenizer after suspension in 4mL of 
ice cold lysis buffer containing propidium iodide for nuclear staining (250mM Sucrose, 25mM KCl, 0.05% 
IGEPAL-630, 3mM MgCl2, 1uM DTT, 10mM Tris pH 8.0). After 5 minutes incubation, large debris was 
pelleted at 20g for 1 min in a Beckman Coulter Allegra X-15R swinging bucket centrifuge. Supernatant 
was brought to 8mL of total volume with nuclear wash buffer (PBS + 3mM MgCl2 + 0.01% BSA) then 
filtered sequentially through a 100um and 20 um filter (pluriSelect Life Science). Nuclei were pelleted at 
400g for 5 minutes at 4C, washed in 4mL of nuclear wash buffer and repelleted. After removal of wash 
buffer, nuclei were resuspended in approximately 500uL of cold nuclear resuspension buffer (Nuclear 
wash buffer + 0.4U/uL of murine RNAse inhibitor (New England Biolabs)) with gentle trituration then 
counted on a hemocytometer. Cells were loaded into the 10x Genomics microfluidic platform (Single cell 
3’ solution, v2) for an estimated recovery of 5000 cells per device. Processing of libraries was performed 
according to manufacturer’s instructions with a few modifications. First, nuclei were incubated at 4C for 
30 minutes after emulsion generation to promote nuclear lysis. Second, the reverse transcription 
protocol was modified for one of the two replicates to be 42C for 20 minutes then 53C for 120 minutes. 
This is noted as (_2) in the Sample ID column of the sample information table (Supplemental Table ST1). 
Libraries were multiplexed at an average of 4 libraries per flow cell on an Illumina Nextseq550 in the 
Broad Institute’s Genomics Platform.  

 
Sample selection and quality control 
In total, 56 single nuclei RNA-seq experiments were performed from all four chambers of the human 
heart in 7 distinct biological individuals, processed in duplicate. Reads from single nuclei experiments 
were de-multiplexed and aligned to a GRCh38 human pre-mRNA reference using the 10x Genomics 
toolkit CellRanger 2.1.1 and default parameters with the exception of setting the --expect-cells flag to 
5000 based on library preparation. 
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For each experiment, the distribution of the number of unique molecular identifiers (UMI) was 
visually inspected to identify experiment failures. Any experiment where the fraction of reads in cells 
was less than 33% (n=7) or the median UMI per cell was less than 600 (n=6) based on CellRanger were 
excluded from further analysis. In total 9 experiments failed on these criteria. These cutoffs 
corresponded to poor structure in the UMI decay curve.  

Additionally, genetic concordance was checked between all experiments of the same biological 
individual using the Genome Analysis Toolkit (GATK) [42] method CrosscheckFingerprints on the single 
cell 10x aligned reads. A list of approximately 6,300 sites was provided and samples were considered 
concordant if their corresponding LOD score was greater than 10. Two experiments from the right 
ventricle of individual P1681 were discordant with the remaining experiments from the same individual 
and were subsequently removed. 

  
Post-Sample Selection Processing: CellBender 
All 45 experiments passing initial quality control were processed using the remove-background tool from 
CellBender v0.1 to determine which droplets contain a cell and to correct gene count matrices by 
removing ambient background RNA contamination. For complete details on the CellBender remove-
background model, see https://github.com/broadinstitute/CellBender. Briefly, CellBender performs 
Bayesian inference in the context of a probabilistic model to remove ambient RNA by estimating the 
contribution of ambient background RNA captured in each droplet and adjusting the count matrix 
appropriately. The CellBender model does require that there are some unambiguously empty droplets 
containing only ambient, background RNA. One additional experiment was removed because of poor 
definition in the UMI decay curve which prevented CellBender from converging appropriately. 

Specifically, CellBender remove-background was run on a Tesla K80 GPU using the following 
parameters: expected-cells 5000, total-droplets-included 20000, low-count-threshold 50, epochs 300, z-
dim 200, z-layers 1000, empty-drop-training-fraction 0.3. After an examination of the output cell calls, it 
was determined that unusually high ambient RNA had led to a failure on sample RV_1666_2, which was 
subsequently rerun with the following parameters altered: total-droplets-included 15000, low-count-
threshold 200. 
 
Four chamber map aggregation 
Prior to cell clustering, additional low quality cells were removed on a per-experiment basis to account 
for large variability in sequencing depth and complexity between experiments. These pre-processing 
steps were performed using Seurat 2.3.4. In brief, cells were removed from an experiment if: 1) the 
number of genes detected was less than 100 or greater than a predefined upper outlier cutoff, 2) the 
number of UMI for the cell was greater than a predefined upper outlier cutoff, or 3) the percent of 
mitochondrial gene content was greater than 5%. The upper outlier cutoff was calculated as the third 
quartile plus 1.5 times the interquartile range. Upper cutoffs were used to minimize the introduction of 
multiplets into downstream clustering. These criteria reduced the total number of putative cells from 
373,243 to 287,269 for subsequent aggregation. 

Highly variable genes were selected to perform cell clustering using Seurat 2.3.4. The aggregated cell 
count matrix was first normalized by dividing the number of UMI for each transcript by the total UMI for 
the cell, multiplying by 10,000, and taking the natural log of these results. Variable genes were found 
globally using the FindVariableGenes function in Seurat which bins genes by average expression and 
calculates a Z score for dispersion within each bin [1]. Normalized expression bounds were set between 
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0.03 and 5, and genes with dispersion Z score greater than 0.5 were selected. In total, 1,969 genes 
remained for clustering.  

Because of large biological heterogeneity between samples, we applied the single-cell variational 
inference (scVI) framework to map cells from different samples onto a joint coordinate system.[35] In 
brief, scVI uses deep neural networks to learn the underlying distributions of cell-level expression, while 
accounting for batch variables. By treating the individual, rather than the experiment, as a batch 
indicator, this procedure aligns cells accounting for heterogeneity between individuals. Note that the 
success of scVI in removing biological batch effects implies that in our dataset, batch effect is dominated 
by biological inter-individual variability and is not technical in nature. The inferred latent space can then 
be used for downstream clustering of cells. We applied scVI 0.3.0 on the previously identified 1,969 
genes to estimate 50 latent variables. A neighborhood graph of cells was built based on these 50 latent 
variables using scanpy 1.4 [43](scanpy.pp.neighbors) selecting a cosine distance metric and using 15 
neighbors. Cells were subsequently placed into clusters using the Louvain algorithm 
(scanpy.api.tl.louvain) with default parameters and a resolution parameter of 1.0. To visualize cells in a 
high dimensional space, uniform manifold approximation and projection (UMAP) was applied to the 
same latent space using a cosine distance metric, and default parameters.[44] 
 
Calculation of intronic and exonic reads 
scR-Invex (Aaron Graubert, François Aguet; https://github.com/broadinstitute/scrinvex) was run in 
order to count the reads in each BAM file output by CellRanger 2.1.1 count that mapped to intronic, 
exonic, and junction regions of the transcriptome. 
 
Sub-chamber visualization 
Sub-chamber maps were generated using global latent variables and retaining cluster identities from the 
global cell map. Default UMAP parameters were used with the exception of setting metric='cosine', 
spread = 1, min_dist = .3, and n_neighbors = 25 for left ventricle and metric='cosine', spread = 1, 
min_dist = .1, and n_neighbors = 15 for left atrium, right ventricle, and right atrium. 

 
Tissue staining and microscopy 
RNA in situ hybridization was performed using the RNAscope 2.5 High Definition and RNAscope 
Multiplex Fluorescent v2 assays from Advanced Cell Diagnostics, Inc. (catalog numbers 322370 and 
323100, respectively) following the manufacturer’s protocols with the following modifications. During 
tissue preparation, fresh frozen tissue was sectioned at 15 um and mounted onto Superfrost Plus Slides 
(VWR). Fixation was performed in 4% PFA for 10 min at 4°C. Protease treatment was performed using 
RNAscope Protease III for 15 min at RT. Probes for ADAMTS4, DCN and RYR2 were obtained from 
Advanced Cell Diagnostics. Hematoxylin and eosin or Masson’s Trichrome stains were performed on 
paraffin embedded sections according to standard protocols. 
 
Marker gene identification 
Genes discriminating each cluster were identified by calculating the area under the receiver operating 
characteristic curve (AUC) for all genes comparing cells from the target cluster to all other cells not 
included in that cluster. The AUC will indicate how well a gene discriminates cells of a given cluster from 
those of all other clusters, with a value of 0.50 designating no discrimination and a values of 1 
designating perfect discrimination. Two clusters determined to contain a high fraction of cytoplasmic 
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material based on the proportion of exonic reads detected with scR-Invex were excluded from these 
calculations. Data were normalized by dividing the number of UMI for each transcript by the total UMI 
for the cell, multiplying by 10,000, and taking of the natural log of this result. The classifier used to 
calculate the AUC was built by taking the normalized expression values in each cell as predictions, and 
the cell cluster assignment as the class being predicted. Genes with an AUC greater than 0.70 and an 
average natural log fold-change > 0.6 were selected as markers of a cluster. These cutoffs were chosen 
to balance selecting genes with moderate discrimination for the cluster of interest, while not being 
overly inclusive so that a reasonably sized set of genes (hundreds for the larger clusters and a less than 
10 for the smallest cluster) was available for each cluster. A less stringent AUC cutoff was required than 
others have used in the past [45,46] as: 1) the reference group for a cluster of interest sometimes 
contains cells with similar expression profiles (e.g., multiple fibroblast clusters) and 2) single nuclei RNA-
seq create a generally higher noise ratio than whole cell RNA-seq. In some clusters, these gene lists did 
not provide sufficient information to identify cell types. In those cases, genes expressed in > 5% of 
cluster cells that showed a standardized positive predictive value (PPV50) > 0.90 were also examined 
[47,48]. For each gene, the PPV50 between the target cluster of interest and all cells from other clusters 
quantifies the probability that a cell is of the target cluster when it expresses that gene of interest (UMI 
> 0), standardizing to an equal number of cells between clusters (prevalence=50%). Standardization was 
necessary given the highly variable numbers of cells within each cluster, which systematically reduce the 
number of genes found with an unstandardized PPV for smaller clusters. 
 
Sub-clustering 
To uncover potential sub-clusters of cells within the major clusters identified above, a simple sub-
clustering procedure was performed for the follow cell types: cardiomyocytes (clusters 3, 4, 6, 15), 
fibroblasts (cluster 1, 2, 14), endothelial cells (cluster 9 and 10), pericytes (cluster 7), macrophages 
(cluster 8), adipocytes (cluster 11), vascular smooth muscle (cluster 13), neuronal (cluster 16), and 
lymphocytes (cluster 17). A new neighborhood graph was built for each of these groups using cosine 
distance based on the latent variables derived from the global scVI model. Louvain clustering was 
applied using varying resolution (ranging from 0.2 to 0.6) to establish new sub-groups. AUC was 
calculated for each sub-cluster compared to the remaining cells in the cluster. Genes with AUC greater 
than 0.65 and an average natural log fold-change > 0.5 were selected as markers of sub-clusters. A more 
liberal cutoff was employed here as cell sub-clusters look more similar to one another on average. 
Similarly to the global map, when necessary genes expressed in > 5% of target subcluster cells with a 
PPV50 > 0.90 were examined to help determine potential cell sub-types. Putative spurious sub-groups 
were identified based on an elevated proportion of exonic reads to all reads, which are often marked by 
increased mitochondrial genes. 
 
Differential gene expression analysis 
Between-chamber and between-sex differential gene expression analyses were performed for the top 
five most abundant cell types in the aggregated four chamber map. This included cardiomyocytes 
(cluster 3, 4, 6, 15), fibroblasts (cluster 1, 2, 14), endothelial cells (cluster 9 and 10), pericytes (cluster 7), 
and macrophages (cluster 8). Additional sub-clusters within the cardiomyocytes and endothelial cells 
were removed if they had an enriched proportion of spliced transcripts, often accompanied by 
mitochondrial gene markers (see above). 
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Within each cell type, a generalized linear mixed model framework was employed using the R package 
lme4.[49] For a given gene in a given cell type, we first assumed that the UMI counts in cell ! from 
experiment " of individual #, denoted $%&', followed a negative binomial distribution,[50] 
$%&'~)*(,%&', .), where θ represents inverse over-dispersion.[50] In many cases, θ approached infinity 
and we therefore reverted to a Poisson assumption, $%&'~/0!11023,%&'4, if θ > 10,000 for either the 
null or the full model. We constructed two generalized linear mixed models for log(,%&'), specifically: 
 

)566:	log(,%&') = >? + A' + 1&' + B%&' + log(CDE%) 
F566:	log(,%&') = >? + >GHI05J + A' + 1&' + B%&' + log	(CDE%) 

 
where >? is a global mean UMI, >G is the fixed effect for the group of comparison (chamber or sex), 
log(CDE%) is an offset of the total UMI in cell !, and A', 1&', and B%&' are random effects for biological 
sample, experiment and residual error normally distributed with mean 0 and variances KLM, KNM, and KOM, 
respectively. Any genes where θ < 0.10 from either the null or full negative binomial model were 
removed as very high over-dispersion created problems in model convergence. 
 
In lme4 notation, the negative binomial mixed model was fit as: 

Null	Model:	glmer. nb(Z	~	1	 +	(1	|	E/^) 	+ 	offset(log(CDE)) 
Full	Model:	glmer. nb(Z	~	1 + cI05J +	(1	|	E/^) 	+ 	offset(log(CDE)) 

 
And the Poisson model was fit as: 

Null	Model:	glmer(Z	~	1	 +	(1	|	E/^) 	+ 	offset(log(CDE)), family = ′poisson′) 
Full	Model:	glmer(Z	~	1	 + 	cI05J +	(1	|	E/^) 	+ 	offset(log(CDE)), family = ′poisson′) 

 
where Y represent UMI counts, I is a random effect of biological individual, S is a random effect of 
experiment, UMI are the total UMI counts in the given cell, and Group represents the fixed effect 
comparison of interest. 
 
Significance was tested using a likelihood ratio test comparing the full model to the null model.  
Only genes expressed in at least 1% of either group in the given comparison were tested. To avoid 
capturing genes only present in the ambient background RNA or genes whose expression comes from 
cluster misclassification, only genes with a PPV50 > 0.55 or PPV50 > 0.50 for the cluster of interest were 
included for testing chamber comparisons and sex comparisons, respectively. To account for multiple 
testing in a given comparison of interest, a false discovery rate (FDR) correction using the Benjamini-
Hochberg procedure was applied jointly for all genes tested across the five considered cell types. Any 
gene with an FDR corrected P < 0.01 was considered significant. 

 
Gene ontology analysis 
Gene ontology analysis was performed using the R package GOstats version 2.46.0. Ensembl identifiers 
were mapped to Entrez gene identifiers when possible for compatibility with GOstats gene ontologies. 
The gene universe was set to all protein coding genes that were successfully mapped and only gene sets 
with a minimum size of 5 were considered for enrichment testing.[51] For each set of marker genes, a 
hypergeometric test was performed to test for enrichment of genes in each ontology, considering only 
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ontologies with at least one gene overlapping the given marker list. A Bonferroni significance threshold 
was used for each set of markers correcting for the number of ontologies tested. 
 
Genome-wide association study integration 
For six cardiometabolic traits with genome-wide association studies (GWAS), we looked for enriched 
heritability around marker genes of given cell types using stratified linkage disequilibrium (LD) score 
regression.[52,53] We considered major cell types for this analysis, excluding low quality sub-clusters 
identified as described above. Only genes with a total of at least 10 counts across all cells were 
considered. Gene coordinates were used from the GRCh37 Ensembl reference to align with LD score 
regression methods. When genes from the GRCh38 Ensembl reference were not available in GRCh37 
Ensembl reference, coordinates were lifted back using liftOver [54] when possible. In total, 25,968 genes 
were considered. For each cluster, a new set of marker genes were identified based on having at least 
some discrimination for the cluster of interest over other cell types (AUC > 0.55). Single nucleotide 
polymorphisms (SNPs) within 100 KB of any gene identified this way were annotated for LD score 
regression based on 1000G European individuals. The LD score regression model was run including the 
baseline annotations generated in Finucane et al 2015 [55] only considering high quality HapMap3 SNPs. 
The six GWAS traits used included atrial fibrillation,[26] PR Interval,[56] QT Interval,[57] coronary artery 
disease,[58] LDL,[59] and type 2 diabetes.[60] European ancestry-specific results were used when 
available to be most consistent with the LD reference panel. 

Additionally, specific GWAS genes for atrial fibrillation, PR interval, QT interval, and coronary artery 
disease were highlighted based on colocalization of a genome-wide association signal and an expression 
quantitative trait loci (eQTL) from bulk sequence data of the relevant chamber of the heart. 
Colocalization was performed in a 1 MB region around the sentinel SNP of a GWAS locus using the 
coloc.abf function from the coloc package in R.[61] Allele frequency data was derived from the same 
European 1000 Genomes [62] samples used in the LD score regression analysis described above. Left 
ventricle eQTL data was taken from the Genotype-Tissue Expression (GTEx) project [25] based on 272 
samples and left atrial eQTL data was taken from the MAGNet repository 
(http://www.med.upenn.edu/magnet/) based on 101 individuals.[26] Genes estimated to have a 
greater than 0.60 probability that the GWAS signal and eQTL signal share a causal variant we considered 
putative GWAS genes. 
 

DATA AVAILABILITY 

Raw sequence data will be made available through dbGaP accession number phs001539.v1.p1. 
Processed data will be available through the Broad Institute’s Single Cell Portal under study ID SCP498.  
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 RESOURCES 
REAGENT or RESOURCE SOURCE IDENTIFIER 
Single Cell 3’chip V2 10x Genomics 120236 
Single Cell 3’ v2 Mod 2 10x Genomics 120237 
Mrine RNase inhibitor New England Biolabs M0314 
AMPure XP  Beckman Coulter A63881 

α-ADAMTS4 RNAscope probe Advanced Cell 
Diagnostics Inc. (ACD)  

α-DCN RNAscope probe ACD  
α-RYR2 RNAscope probe ACD  

RNAscope 2.5 High Definition assay ACD 322370 

RNAscope Multiplex Fluorescent v2 assay ACD 323100 
pluriStrainer pluriSelect Life 

Science 
43-50020-50 

Software and Algorithms 
CellRanger 2.1.1  https://support.10xg

enomics.com/ 
seurat 2.3.4 Stuart et al, 2018 https://satijalab.org

/seurat/  
CellBender 0.1 Fleming et al, 2019 https://github.com/

broadinstitute/CellB
ender 

scR-Invex  https://github.com/
broadinstitute/scrin
vex 

scanpy 1.4 Wolf et al, 2018 https://scanpy.readt
hedocs.io/en/stable
/ 

scVI 0.3.0 Lopez et al, 2018 https://scvi.readthe
docs.io/en/master/ 

umap 0.3.7 McInnes & Healy, 
2018 

https://umap-
learn.readthedocs.io
/en/latest/ 

R 3.5.0  https://www.r-
project.org/ 

lme4 1.1-21  https://cran.r-
project.org/web/pac
kages/lme4/index.ht
ml 

GOStats 2.46.0 Falcon & Gentleman, 
2007 

https://bioconducto
r.org/packages/relea
se/bioc/html/GOstat
s.html 
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ldsc 1.0.0 Bulik-Sullivan, et al., 
2015 
Finucane, HK, et al., 
2015 

https://github.com/
bulik/ldsc 

Coloc 3.2-1  https://cran.r-
project.org/web/pac
kages/coloc/index.h
tml 
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