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Abstract
Decoding is a powerful approach for measuring the information contained in
the activity of neural populations. As a result, decoding analyses are now
used across a wide range of model organisms and experimental paradigms.
However, typical analyses employ general purpose decoding algorithms that
do not explicitly take advantage of the structure of neural variability, which
is often low-dimensional and can thus be effectively characterized using
latent variables. Here we propose a new decoding framework that exploits
the low-dimensional structure of neural population variability by removing
correlated variability that is unrelated to the decoded variable, then decoding
the resulting denoised activity. We demonstrate the efficacy of this framework
using simulated data, where the true upper bounds for decoding performance
are known. A linear version of our decoder provides an estimator for the
decoded variable that can be more efficient than other commonly used linear
estimators such as linear discriminant analysis. In addition, our proposed
decoding framework admits a simple extension to nonlinear decoding that
compares favorably to standard feed-forward neural networks. By explicitly
modeling shared population variability, the success of the resulting linear and
nonlinear decoders also offers a new perspective on the relationship between
shared variability and information contained in large neural populations.
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1 Introduction
The increasing ability to record activity from large neural populations now
allows for the study of information processing at the level of populations
rather than individual neurons [1]. However, the complexity of such recordings
also introduces new challenges for data analysis [2, 3]. One popular approach
for understanding such complex, high-dimensional data is to search for lower
dimensional representations using unsupervised latent variable models [4, 5].
Decoding is an alternative, supervised approach that relates neural activity
to variables such as stimuli or behavior. This approach is useful when one is
interested in the neural representation of specific variables, and can provide
complementary information to related encoding models [6].

Studies across all major neural recording modalities have used decoding
analyses to investigate the relationship between neural activity and variables
such as external stimuli [7–9], motor outputs [10,11], decisions [12,13], and
spatial location [10,14,15]. As neural recordings begin to measure simultaneous
activity across multiple regions, decoding also promises to play a pivotal role
in understanding how information content differs across brain regions [16].

The increasing numbers of neurons that can be simultaneously recorded
can make decoding analyses more relevant, but also present challenges to the
effective decoding of a given variable from neural activity. Most decoding algo-
rithms show good statistical properties only when the number of observations
(e.g. trials) is much larger than the number of features (e.g. neurons) [17].
Current recording technologies focus on increasing the number of neurons,
without a concomitant increase in the number of trials, as most experiments
are still typically of limited duration (although advances in chronic recordings
promise to partially ameliorate this problem [18,19]). This trend highlights
a need to develop new decoding algorithms that are better suited to this
many-neuron, few-trial regime.

Here we propose a solution that is tailored to the known structure of
neural population activity. Recent studies have demonstrated that variability
in neural activity tends to be low-dimensional across many experimental
paradigms, and can thus be well-described by latent variable models [20–25].
This suggests that one way of improving a decoding algorithm would be to
first estimate low-dimensional variability that is not task-related, remove it
from the population responses, and then decode the denoised residual response
with reference to the task.

We first provide an intuitive explanation of this decoding framework, and
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demonstrate the efficacy of a linear version on simulated data where analytic
bounds for decoding performance allow a straightforward comparison to other
linear decoders such as Linear Discriminant Analysis (LDA) and logistic
regression. We then show how this decoding framework can be naturally
extended to a nonlinear method through the use of artificial neural networks.
Finally, we discuss the implications of these results when analyzing real neural
data.

2 Results

2.1 Describing noise correlations with latent variables
We begin by describing a simple example that elucidates the relationship
between latent variables and noise correlations, which will motivate the
development of our latent variable decoding framework in the following section.
Consider a task in which the subject sees one of two possible stimuli on each
trial and must perform a saccade to the presented stimulus, while we record
the simultaneous activity of many neurons in a task-relevant brain region.
To visualize how the dynamics of neural population activity unfold in time,
we perform dimensionality reduction on the trial-averaged responses using
principal component analysis (PCA), and project the high-dimensional activity
into the first three principal components (Fig. 1A, bold lines). Notably, trial
averaging is necessary in this case because variability in single-trial population
responses from trial-to-trial often introduces many more relevant dimensions
into the population response, and may disrupt visualization of the trajectories
that only depend on the fixed experimental conditions.

A full understanding of neural computation, however, requires understand-
ing this single-trial activity. For example, trial-averaged trajectories reveal
nothing about the differences between correct and error trials. A straight-
forward way to visualize single-trial activity is to project it into the space
defined by the trial-averaged data (Fig. 1A, thin lines), although, as noted
above, this space will often fail to capture a large portion of the single-trial
variability.

To help make the connection between noise correlations and latent vari-
ables, we consider neural activity at a single time point t during the experiment,
and simplify the picture by only visualizing the neural activity in the two-
dimensional plane that passes through the mean trajectories at time t (Fig.
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Figure 1: Using latent variables to decode stimulus identity from
neural population activity. A: Illustration of the dynamics of high di-
mensional neural activity during a visually-guided saccade task, visualized
using a latent variable model fit to trial-averaged activity. The trial-averaged
activity at stimulus onset is marked by black dots, and evolves over time
according to the saccade direction (leftward saccade, bold blue line; rightward
saccade, bold red line). Activity from individual trials can also be projected
into this space for visualization (thin lines). At a given point in time (gray
plane), the saccade direction can be decoded from the neural activity by
considering the position of the activity along the stimulus coding direction
(straight black arrow). The more accurately the direction can be decoded
from neural activity, the more information the population contains about the
stimulus. B: Instead of using latent variables to visualize dynamics, the latent
variable decoder exploits the covariance structure of the neural activity to
remove variability that is shared among many neurons to improve decoding
(bottom). This approach offers an alternative to optimal linear decoding (top),
which accounts for the covariance structure by rotating the decoding direction
by the inverse covariance matrix.

1A, gray plane; Fig. 1B, left). Furthermore, we assume at time t the activity
of neuron n on trial i is the sum of three terms (and drop the dependence
on t): (1) the response to stimulus si, with coupling strength αn; (2) the
response to a latent variable zi (described more below), which is independent
of the stimulus, with coupling strength βn; and (3) a noise term εni , which is
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independent of both the stimulus and the latent variable:

rni = αnsi + βnzi + εni (1)

The latent variable zi introduces trial-to-trial variability that is shared across
the population, and while it might represent meaningful internal signals such
as attention or arousal [26,27], it could also arise due to internal structure
within the network without clear behavioral relevance [28,29]. The noise term
εni , on the other hand, represents trial-to-trial variability that is private to
each neuron. If we define the variance of zi as σ2

z and the variance of εni as σ2
ε ,

then the covariance matrix of the full population activity ri =
[
r1
i . . . r

N
i

]ᵀ
,

conditioned on the stimulus (an unscaled version of the noise correlation
matrix), is given by

Cov(ri|si) = Σ = σ2
zββᵀ + σ2

ε I (2)

where β is the vector of all βn’s. The component due to the private noise term
εni is a scaled version of the identity matrix (for simplicity; more generally it
could be any diagonal matrix), and thus produces variability that is isotropic
in space (Fig. 1B, left, dashed circles). The component due to the latent
variable is a rank-1 matrix given by the outer product ββᵀ, which highlights
how the latent variable induces a low-dimensional structure on the noise
covariance matrix. This latent variable component produces variability that
is oriented along the direction β (Fig. 1, left, solid ellipses). This example
generalizes to K latent variables, which would produce a rank-K component
in the noise covariance matrix (and point along K different dimensions in the
neural response space).

2.2 Decoding in the presence of latent variables
How does the presence of the latent variable affect the amount of information
the neural responses contain about the identity of the stimulus on trial i? A
straightforward approach for measuring linear information is to train a linear
decoder to predict the stimulus using the neural activity (although see [30]
for a direct estimation approach). Using the decoding approach, the optimal
linear estimate of the stimulus si is defined as

ŝi = so + f ′ᵀΣ−1

f ′ᵀΣ−1f ′
(ri − r̄) (3)
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where so is the average stimulus, f ′ is the vector of tuning curve derivatives
with respect to si, and r̄ is the average population activity vector [31]. Linear
Fisher information quantifies the accuracy of this estimate, and is defined as
the inverse of the variance of ŝi [31].

Because the noise covariance matrix Σ plays a central role in the optimal
linear decoder’s estimate of the stimulus, theoretical work has often addressed
how decoding is affected by structure in this matrix that can arise in the
neuroscience-related setting. These considerations include the impact of noise
correlations that are related to the signal correlations [32], the relationship
between diagonal and off-diagonal elements [33], and a noise component that
points along the direction of individual neurons’ tuning curves [34]. However,
no one has yet to our knowledge explicitly considered the consequences of a
low-dimensional component arising from latent variables on decoding.

The optimal linear decoder takes the structure of Σ into account by
multiplying α by Σ−1 to construct a decision boundary (Fig. 1B, top). This
procedure rescales the space of neural responses to account for variances and
cross-covariances among the different dimensions.

Our latent variable decoding framework proposes an alternative approach
to the optimal linear decoder by assuming that the noise covariance matrix
contains low-dimensional structure. We first project the full, high-dimensional
neural activity onto the direction of α (Fig. 1B, Latent Variable Decoding
Step 1 ), which in general is not the optimal decoding direction. Next, we
form a trial-by-trial estimate of the variability in the direction of α. It is
possible to form this estimate because of the latent variable’s shared effect
on the activity of the whole population; it would be impossible to form this
estimate from the activity of any individual neuron, since its impact on neural
activity is indistinguishable from the noise term εni without the single-trial
statistical power gained from simultaneously recorded neurons. Next, we take
the estimate of this variability and subtract it from the projected population
activity to reduce variability in the activity along this direction (Fig. 1B,
Latent Variable Decoding Step 2 ), then finally decode the adjusted neural
activity by comparing to a threshold value (Fig. 1B, Latent Variable Decoding
Step 3 ).

Although this linear latent variable decoder cannot, by definition, outper-
form the optimal linear decoder in the limit of an infinite number of trials, we
show in the following section that this decoder uses data more efficiently than
other linear decoders, requiring fewer trials to extract the same amount of
information. An additional feature of this framework is that it is not restricted
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to a linear method; indeed, using any nonlinear regression technique such as
a neural network to estimate variability in the direction of α will result in a
nonlinear latent variable decoding algorithm, which we also explore in the
following sections.

2.3 Validating the LV decoder with simulated data
We demonstrate the performance of the latent variable (LV) decoder on
simulated data, where it is possible to compare its performance to ground
truth. Responses from 200 neurons were generated in a manner similar to Eq.
1, so that the same low-dimensional covariance matrix describes the variability
around each of two mean responses (see Methods for simulation details). This
data allows for an analytic expression of the linear Fisher information, and
thus serves as a useful test case for our method. As a reminder, linear Fisher
information provides an upper bound on the amount of information about
the decoded variable that can be extracted from the population using linear
operations.

To evaluate the performance of various decoders on this data we estimated
Fisher information by calculating d′2 in the learned decoding direction (see
Methods), and compared this to the true linear Fisher information (Eq. 15).
d′2 is a quantity that must be estimated from data, and even the optimal
linear estimator cannot extract the full linear Fisher information from limited
data.

We tested performance of the LV decoder as a function of training trials
(Fig. 2). Both the Linear and Nonlinear LV decoders extracted a large
fraction of the true linear information using relatively few trials (Fig. 2A).
Because this data does not contain nonlinear information, the Nonlinear LV
decoder cannot perform better than the Linear LV decoder. We also show the
performance of the “Difference of Means” decoder (Fig. 2A, purple dashed
line), which uses the same decoding direction as the LV decoders, but does not
estimate and subtract off shared variance. The gap in performance between
the Difference of Means and LV decoders demonstrates the extent to which
the LV decoders are able to account for shared variability that is detrimental
to decoding (Fig. 2B). [See Fig. 3 for a comparison between the Linear LV
decoder and other standard linear decoders on this simulated data.]

To gain some intuition about how the neural networks might learn to
predict the variability that is due to the latent variables, we analytically
work out a simple example in the Appendix. This example suggests that the
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Figure 2: Linear and Nonlinear LV decoding performance on sim-
ulated data. A: Gaussian data is generated using the same covariance
matrix for each class (inset), which only contains linear Fisher information
(black line). Information measure is the d′2 discriminability index described in
section 4.3, and error bars represent SEM on validation data over 25 simulated
datasets. B: Histograms of the data projected onto the decoding direction
for one dataset, colored by class, both before (solid lines) and after (dashed
lines) subtracting off the predicted variability using the Linear LV (top) or
Nonlinear LV (bottom) decoders. C: Decoder performance when projecting
the stimulus dimension α out of the population activity before using it to
infer variability. D–F: Same as A-C, but data is generated using a different
covariance matrix for each class (see inset in D). G–I: Same as D-F, but the
resulting values are rectified and passed through a Poisson spike generator to
simulate spike count data.
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Linear LV decoder should project the high-dimensional neural activity onto
a direction orthogonal to the stimulus coding dimension α to produce an
estimate of the variability. To test this, we projected the α direction out of
the data and retrained the Linear LV decoder, and found that its performance
did not change (Fig. 2C).

The amount of information that a linear decoder can extract from data
is bounded above by the linear Fisher information. However, a system
with information that is not linearly decodable (for example, when the
decision boundary is a curve rather than a straight line) would contain
more information than just the linear Fisher information; in some cases, this
nonlinear component of the full Fisher information can be substantially larger
than the linear component [35].

One context where neural population activity contains nonlinear Fisher
information is in the presence of stimulus-dependent noise correlations [36,
37]. We introduce this structure into the simulation by defining a different
covariance direction for each stimulus context (Fig. 2D, inset), in which
case the simulation contains nonlinear information [33], unlike the previous
simulation, and thus serves as a natural extension for testing nonlinear
decoders.

Figure 2D-F (analogous to Fig. 2A-C) demonstrates that the Nonlinear LV
decoder can extract nonlinear Fisher information that is orders of magnitude
larger than the linear Fisher information, and can do so with even a small
number of trials. How does the decoding strategy learned by the Nonlinear LV
decoder compare to that of the Linear LV decoder? We saw previously that
the Linear LV decoder could estimate variability in a direction orthogonal to
the stimulus coding direction (by projecting out the stimulus coding direction
before decoding); when we performed the same experiment with the Nonlinear
LV decoder, we found that its performance decreased substantially, becoming
equivalent to that of the Linear LV decoder (Fig. 2F). This points to the
ability of the Nonlinear LV decoder to extract nonlinear information by
explicitly using activity in the direction of α.

To test whether the LV decoders still perform well in a more realistic set-
ting, we added additional statistical features of neural data to the simulation:
we introduced stimulus-dependent noise correlations, followed by rectification
and a Poisson spike generator to mimic the discrete nature of spiking data.
These additional statistical features did not impair the performance of either
LV decoder (Fig. 2G-I), demonstrating the ability of these techniques to gen-
eralize well to non-Gaussian data. Note that in this simulation the Nonlinear
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Figure 3: Linear and Nonlinear LV decoding performance on sim-
ulated data. A: Gaussian data with a single noise covariance matrix for
both classes. B, C: Gaussian data with a different noise covariance matrix
for each class; B: comparison of linear decoders; C : comparison of nonlinear
decoders. D, E: Same as B and C, except resulting values are rectified and
then passed through a Poisson spike generator to simulate spike count data.
Details of the simulations are presented in the Methods.
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LV decoder can extract more information than the Linear LV decoder without
using activity in the direction of α, but only with a large number of training
trials (Fig. 2I).

Finally, we compared the LV decoders with a range of other decoders,
including linear discriminant analysis (LDA), logistic regression with early
stopping regularization (LogisticES), kernel support vector machine (kernel
SVM), and a two-layer neural network (Neural Network) (Fig. 3). In all three
simulations the Linear LV decoder was able to achieve better performance
than the other linear decoders (LDA and LogisticES) with a small number of
training trials (Fig. 3A, B, D). The Nonlinear LV decoder, however, does not
perform as well as a standard feed-forward neural network in the simulations
that contain nonlinear Fisher Information (Fig. 3C, E). This suggests that
while first estimating variability and then subtracting it out of the data is an
effective approach for linear decoding, optimizing a cost function that is more
directly related to classification accuracy is more effective in the nonlinear
regime (at least with the simulations considered here). Additionally, the
Nonlinear LV decoder performs equivalently to kernel SVM for simulation
2 (Fig. 3C), but attains better performance in the more realistic scenario
of simulation 3 (Fig. 3E). [The same conclusions hold when using fraction
correct rather than Fisher Information as a measure of decoder performance;
results not shown.]

3 Discussion
We presented a novel method for decoding neural population activity, mo-
tivated by the observation that noise correlations in neural data can be
effectively modeled using a small number of latent variables. As we showed,
dimensionality reduction - which is common in neural population analyses
(Fig. 1) - can be explicitly used by decoding methods to infer the variability
along a chosen decoding direction and remove it, and thus eliminate its detri-
mental effect on decoding. While a linear latent variable (LV) decoder cannot
outperform optimal linear decoding with infinite data, it is more efficient in
its use of data than other common linear decoders for the range of simulations
tested (Figs. 2 and 3). We also generalized this framework to nonlinear
LV decoding, and demonstrated that it can extract nonlinear information
approximately as well as other nonlinear LV decoding techniques (Figs. 2
and 3).
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3.1 Decoder assumptions
The decoding framework presented here considers a binary classification
problem rather than a continuous regression problem. We made this choice
based on the rich literature that has developed around two-alternative forced
choice tasks, which is the most natural setting for our LV decoding framework.
Sani et al. [38] recently introduced a decoding technique that is similar in
spirit to ours which considers the regression problem. Their technique finds a
low-dimensional subspace of neural activity that is most predictive of behavior
while considering other dimensions to contain non-relevant variability (with
respect to the decoded behavior).

Our framework explicitly defines neural variability as resulting from LVs
that are added to a mean stimulus response. Recent experimental results
suggest that additive LVs may be present in cortical population activity [20,24],
although other results suggest the LVs may be multiplicative [21, 23], or
both [22,25,39]. Furthermore, our linear decoding framework only considers
LVs that are not functionally targeted, i.e. a neuron’s coupling to the LVs is
assumed independent of its stimulus tuning properties (although the Nonlinear
LV decoder can in principle learn mappings from neural activity to LVs that
are stimulus-dependent). Recent work by Haimerl et al. [40] proposed a
decoding algorithm that considers neural responses which are functionally
targeted by a multiplicative LV. The aim of their approach is focused on a
flexible, biologically plausible decoder, while our approach is more focused
on maximizing information extraction using as few training trials as possible.
Nevertheless, our approach could be augmented by incorporating structure
resulting from multiplicative LVs and functionally-targeted LVs (both additive
and multiplicative) into the model of the noise covariance matrix.

3.2 The function of noise correlations
Variability of neural population activity along the stimulus coding direction
(α in Fig. 1B) cannot be distinguished from changes in the stimulus itself, and
as such this form of variability is known as information-limiting or differential
noise correlations [34]. Our decoding framework, although designed to reduce
variability in the coding direction, does not remove information-limiting
correlations (and indeed cannot, by definition). Instead, our decoder acts
on variability that points in other directions of neural activity space (and
therefore infers non-information-limiting noise correlations), and removes the
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projection of this variability into the coding direction (the projection of β
onto α in Fig. 1B).

Although the LV decoder was not designed with strict biological plausibility
in mind, it provides a useful framework for considering how the brain might
deal with this type of variability. The sensitivity of noise correlations to
behavioral context [41, 42], attention [27, 43, 44] and perceptual learning
[27, 45] suggest that they are at least partially the product of top-down,
feedback processes in sensory cortex. However, these types of correlations
can reduce the amount of information available in a neural population of
finite size [33] (though not limit the information as the population becomes
infinitely large [34]). What then is the functional role of these correlations?

Theoretical work has shown how inducing particular patterns of noise
correlations improves information transmission between different brain regions
[46]. Another line of theoretical inquiry implicates correlated variability in
the representation of prior information in a Bayesian framework of sensory
integration [26, 47]. Here we show that the goals of robust information
propagation or perceptual inference (where noise correlations can help) and
accurate decoding (where noise correlations can hurt) are not necessarily at
odds with one another. We hypothesize that if activity in a brain region is
corrupted by latent-variable-induced noise correlations, a downstream decoder
of that activity need not be negatively impacted if it has access to the top-down
signal inducing the correlations (a possibility also addressed by [26,40,42]).
Decision-making areas could then conceivably integrate sensory information
with these top-down signals [47,48], or use them for flexible, task-dependent
information routing [40].

Our results are also consistent with a recent study demonstrating that the
inclusion of activity from untuned neurons can increase the performance of
decoders [49]. In our framework, these neurons might not be tuned to the
particular task, but they can still carry information about the signals that
give rise to correlated variability. Including these neurons in a decoder can
then lead to more accurate estimation of the trial-to-trial variability, which
in turn will improve the performance of the decoder.

3.3 Application to real data
The application of the LV decoders to experimental data is straightforward.
However, our simulations encode very simple assumptions about sources of
variability, and it is not clear how well the LV decoders we developed here will
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generalize to other commonly encountered sources of variability in neural data.
These sources could be introduced by the recording modality, such as electrode
drift in electrophysiology data, or bleaching in calcium imaging data. Sources
of variability could also be introduced by uncontrolled fluctuations in the state
of the animal, such as changing levels of arousal, attention, or locomotion.
These sources of variability (as well as many others not considered here) most
likely have more complex structure than the basic Gaussian noise terms built
into our simulations. Comparing the LV decoders to other common decoding
algorithms in these settings is a clear avenue for future work.

14

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 7, 2020. ; https://doi.org/10.1101/2020.01.06.896423doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.06.896423
http://creativecommons.org/licenses/by-nc/4.0/


4 Methods

4.1 The LV decoder
Training the LV decoder. For a population of N neurons recorded during
T trials, we define R = [r1 . . . rT ]ᵀ ∈ RT×N to be the matrix of spike counts
and y = [y1 . . . yT ]ᵀ ∈ {±1}T to be a binary vector that indicates the stimulus
identity s ∈ {±1} on each trial i ∈ {1, . . . , T}. The two stimuli could be, for
example, gratings with different orientations in a visual paradigm, or tones
with different frequencies in an auditory paradigm. The following steps are
illustrated in Fig. 4.

Step 1: We first estimate the mean stimulus responses µ̂s as

µ̂s = 1
Ns

∑
i s.t.
yi=s

ri (4)

where Ns is the number of stimuli from class s. We then estimate the stimulus
coding direction α̂ ∈ RN that points between the two mean stimulus responses
as α̂ = µ̂1 − µ̂−1.

Step 2: Next, we project R onto α̂ to reduce the high-dimensional
neural activity into a single dimension,

rα = Rα̂ (5)

which is now a scalar value for each trial i1.

Step 3: We next estimate variability in the stimulus coding direction that
is not stimulus-driven. To do so, for each trial i we subtract the appropriate
mean stimulus response from the projection along α̂ and denote this new
quantity rz:

(rz)i = (rα)i − α̂ᵀµ̂yi
(6)

1For reference, decoding rα is referred to as the “Difference of Means” decoder used
throughout the text. This decoder generally has worse performance than the LV decoder,
even though both use the same decoding direction. Their difference demonstrates the
extent to which variability in the direction of rα is both (1) detrimental to decoding, and
(2) shared across multiple neurons, and hence inferrable from the data.
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Linear LV Decoder
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Figure 4: Outline of LV decoding algorithm.

where (x)i denotes the ith component of a vector x. The extent to which
rz contains variability that is shared across many neurons (due to latent
variables) determines the efficacy of the LV decoder.

Step 4: We estimate this shared component of variability with the full
population response R by learning a mapping fθ : RN → R parametrized by
θ using a neural network (see Neural network details below), so that

(r̂z)i = fθ(ri) (7)

Evaluating the LV decoder. Once fθ has been learned, we can evaluate
the performance of the LV decoder. As an example, we will use Rxv to
represent the cross-validation data. Rxv is first projected onto α̂ (learned
from the training data) to get rαxv (Step 6 ). The activity rxv from each trial
is then run through the function fθ to produce one component of the vector
r̂zxv (Step 7 ). Finally, the variance-reduced activity is given by (Step 8 )

r̃xv = rαxv − r̂zxv (8)

To calculate the classification of each trial i, the corresponding value from
r̃xv is compared with µ̄ = 1

2(µ1 + µ−1); values larger than this threshold are
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classified as stimulus 1, and all others are classified as stimulus −1 (Step 8 ).

Neural network details. Here we describe details of the neural network
that is used to estimate variability in the stimulus coding direction. Any
technique that can learn a mapping from RN to R is suitable in principle,
but we restrict our explorations to a standard neural network for simplicity.
The neural network takes R as input and produces an estimate r̂z of rz.
Parameters of the network θ are learned by minimizing the mean square error
(MSE) between r̂z and rz. L2 regularization is included to prevent overfitting
to the training data [50], so that the penalized cost function C is defined as:

C(θ) = ‖rz − r̂z‖2
2 + λ‖θ‖2

2 (9)

where ‖x‖2 = ∑
k x

2
k is the L2 norm of a vector x and λ is a hyperparameter

that controls the magnitude of the regularization term. In practice, we fit
the LV decoders using 10 different values of λ logarithmically spaced between
1e-4 and 1e1, and choose the value that results in the smallest cost function
when evaluated on the testing data (Step 5 ). The cost function is optimized
using an L-BFGS routine [51].

The Linear LV decoder requires a linear mapping from RN to R, and
therefore uses a neural network with just an input layer and an output layer.
With the L2 regularization, this network is equivalent to regularized linear
regression, or “ridge regression” [50]. The Nonlinear LV decoders use a neural
network with a single hidden layer composed of 15 rectified linear units
(ReLUs), which we found to work well for all simulated datasets. We explored
different numbers of hidden units and hidden layers, but did not perform an
exhaustive hyperparameter search.

Projecting out the stimulus coding dimension. To test the extent to
which the LV decoders require information contained in the stimulus coding
direction α (Fig. 2C, F, I), we projected this dimension out of the population
activity R before using it to predict variability in the same dimension α, and
we denote the resulting activity by R̃. The stimulus coding dimension was
calculated after subsampling trials, and was only calculated using training
data. Training the decoder then amounted to replacing R in Eq. 5 with R̃.
To evaluate the decoder, the same α was projected out of the testing/cross-
validation data, and all other steps in the Evaluating the LV decoder section
remain the same.
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4.2 Training of standard decoders
Difference of means (DoM). The mean response to each stimulus was
calculated; the difference in mean responses α defined the discriminant line for
the DoM decoder, and the mean of the mean responses defined the threshold.
For each trial, neural activity was projected onto the discriminant line and
compared to the threshold value to determine its classification.

Linear discriminant analysis (LDA). LDA was performed using the
fitcdiscr function in MATLAB, with the ‘DiscrimType’ option set to ‘linear ’
so that a single pooled covariance matrix was estimated from the data. The
‘Gamma’ option was set to 0, so that the estimated covariance matrix was not
regularized with an additional diagonal matrix. This choice limited the use
of LDA to settings where the number of trials was larger than the number of
neurons.

Logistic regression with early stopping (LogisticES). Logistic regres-
sion models were fit by minimizing the mean square error between class labels
y ∈ {0, 1} and predicted class labels given by

ŷ = 1
1 + exp(−Rb + c) (10)

where R is the matrix of neural responses, b is the vector of learned decoder
weights and c is a learned bias term. The negative log-likelihood of the testing
data was evaluated on each iteration, and model fitting terminated once
the negative log-likelihood began to increase or the algorithm reached 1000
iterations [52].

Neural network decoder. Neural networks were used as an additional
nonlinear decoding algorithm. The networks were trained to take in neural
population activity and predict the stimulus class (±1); parameters were
learned by minimizing penalized MSE between true and predicted class using
the L-BFGS routine (L2 regularization was applied to the weights using the
same range as the LV decoders). The network architecture matched that of
the Nonlinear LV decoder - a single hidden layer comprised of 15 ReLU units.
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Kernel support vector machine (Kernel SVM). Kernel SVMs were
fit using the fitcsvm function in MATLAB with the ‘KernelFunction’ option
set to ‘rbf ’ to use radial basis function kernels. Radial basis functions are
unnormalized Gaussians, and the scale of these functions relative to the
data is important for kernel SVM performance. MATLAB provides another
option ‘KernelScale’ that scales the data (rather than the kernel); to fit this
hyperparameter, we fit kernel SVMs using 10 different values of the scale
parameter logarithmically spaced between 1e-3 and 1e3, and chose the scale
that resulted in the largest number of correctly classified trials when evaluated
on the testing data (see Evaluating decoder performance below).

4.3 Evaluating decoder performance
Subsampling trials and cross-validation. A main goal of this study
was to understand how the performance of different decoders scaled with
the number of trials. To do so we first removed 10000 trials from the data
as validation trials, which were not used for training or hyperparameter
selection. Then for each dataset size (K = 100 to K = 90000 trials), we
randomly sampled K trials from the dataset, then randomly split these trials
into five folds - four for training and one for hyperparameter selection (e.g.
L2 regularization for LV and Neural Network decoders, early stopping for
LogisticES decoders, etc.). The best model, found using the testing data,
was then evaluated on the held-out validation trials, and these are the values
reported in Figs. 2 and 3.

Quantifying decoder performance with d′. The simplest measure for
quantifying decoder performance is the fraction of correctly classified trials.
For LDA and kernel SVM, the predicted classification for each trial was
obtained using the predict function in MATLAB. The DoM, LV, and Neural
Network decoders explicitly define a threshold, and a trial is classified based
on comparing the projection of the data along the learned discriminant line
to the threshold. For LogisticES, the predicted class label ŷ (Eq. 10), a
continuous quantity between 0 and 1, was turned into a binary classification
by using 0.5 as a threshold.

However, in this work, our concern was not in the fraction of correctly
classified trials, but rather in the total amount of information the neural
population contains about the decoded variable. For example, when classes
are fully separable, fraction correct is unable to distinguish between a decoder

19

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 7, 2020. ; https://doi.org/10.1101/2020.01.06.896423doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.06.896423
http://creativecommons.org/licenses/by-nc/4.0/


with high variance and one with low variance (see, for example, Fig. 2B). So
instead of reporting fraction correct we instead use the more general linear
Fisher information measure to quantify decoder performance.

Linear Fisher information measures the inverse of the variance of a de-
coder’s prediction of the stimulus, and therefore decoders with smaller variance
in their predictions will contain more information. We estimate linear Fisher
information using two different computations of the d′ measure2: d′MLE, which
is most appropriate when the simulation noise is Gaussian, and useful when
the data are nearly or completely separable (simulation 1); and d′FC, which is
more appropriate when the simulation noise is non-Gaussian and the data
are far from separable (simulations 2 and 3), and/or the decoding algorithm
does not project the data along a discriminant line (such as kernel SVM).

Computing d′MLE. To compute the d′MLE measure, the full-dimensional
population activity is first projected onto the discriminant line (which pre-
cludes the use of this measure with kernel SVM, which does not estimate
discriminant lines). In our simulated data the resulting one-dimensional
projection for each class is well-described by a Gaussian distribution (e.g. Fig.
2B). The mean and variance of these distributions are fit for each class using
the maximum likelihood estimates (MLE). Then, the fraction of correctly
classified trials for each class (denoted as the accuracy A), in the limit of
infinite data, is estimated by using the error function of the Gaussian defined
by these MLE parameter values.

For example, if the mean of class −1 is located to the left of the threshold,
the fraction of correctly classified trials from this class is given by the area
under the curve between the threshold and negative infinity, and is denoted
by A−1 (A1 is defined analogously for the other class). The overall fraction of
correctly classified trials is then estimated as Â = 1

2(A−1 +A1), and this value
can be converted to the d′ measure using the inverse of the complimentary
error function H [33]:

d′MLE = 2H−1(1− Â) (11)

We use this computation for d′ in Simulation 1 (see Table 1), where classes
are fully separable and projections onto the discriminant line are guaranteed
to have a Gaussian distribution.

2see the section Equivalence of linear Fisher information and d′2 below for a non-rigorous
proof demonstrating the equivalence of these two quantities under simple assumptions.
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Computing d′FC. A drawback to d′MLE is that it cannot be used to evaluate
decoding algorithms such as kernel SVM, which do not linearly project the
data along a discriminant line. An alternative way to compute d′ (when
classes are not fully separable) is to use the fraction of correctly classified
trials, or accuracy A (not in the limit of infinite data, as before). As before,
this value can be converted to d′:

d′FC = 2H−1(1− A) (12)

where ‘FC’ denotes ‘fraction correct’. We use this computation for d′ in
Simulations 2 and 3 (see Table 1), where classes are not fully separable and
projections onto the discriminant line are not guaranteed to have a Gaussian
distribution.

Equivalence of linear Fisher information and d′2. Throughout this
paper, we refer to d′2 as ‘Information’. To justify this equivalence, we show
here that yet another definition of d′ is equivalent to linear Fisher information
when calculated along the optimal coding direction and squared. Although
the three values of d′ considered here differ in their computation, under the
assumption of Gaussianity they become equivalent in the limit of infinite
data.

We now consider the classic definition of d′ [53], which was originally
introduced in the signal detection literature as a measure of the signal-to-
noise ratio (SNR):

d′SNR = µ1 − µ−1

σ
(13)

where µi is the mean of the ith one-dimensional response distribution and σ
is the standard deviation, which we take to be the same for both distributions.
If we now consider the response r of a population of neurons, with a stimulus-
conditioned covariance matrix given by Cov(r|s) = Σ, the definition of linear
Fisher information in this context becomes

I = f ′ᵀΣ−1f ′ (14)
= (µ1 − µ−1)ᵀΣ−1(µ1 − µ−1) (15)

We now calculate d′2SNR of the response distributions after they have been
projected along the optimal decoding direction wᵀ = (µ1−µ−1)ᵀΣ−1

(µ1−µ−1)ᵀΣ−1(µ1−µ−1) [31],
and show that this is equivalent to the expression for linear Fisher information
in Eq. 15.
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The means of the response distributions along this dimension, denoted
by µ̂i, are µ̂i = wᵀµi and the variance along this dimension (which we again
assume is the same for both response distributions), denoted by σ̂2, is

σ̂2 = Var(wᵀr|s)
= wᵀVar(r|s)w
= wᵀΣw

= (µ1 − µ−1)ᵀΣ−1ΣΣ−1(µ1 − µ−1)
[(µ1 − µ−1)ᵀΣ−1(µ1 − µ−1)]2

= 1
(µ1 − µ−1)ᵀΣ−1(µ1 − µ−1)

and thus

d′2SNR = (µ̂1 − µ̂−1)2

σ̂2

= [wᵀ(µ1 − µ−1)]2
[
(µ1 − µ−1)ᵀΣ−1(µ1 − µ−1)

]
= (µ1 − µ−1)ᵀΣ−1(µ1 − µ−1)
= I

4.4 Simulation details
We tested all decoders on a variety of simulated datasets. For all simulations,
we generated the responses of N neurons over T trials, where the population
response ri on trial i was generated as a sum of five terms: (1) a bias; (2) the
stimulus si ∈ {±1}, coupled to the population via α; (3) a collection of K
latent variables zki ∼ N (0, 1) coupled to the population via β; (4) a (K + 1)st

latent variable z(K+1)
i ∼ N (0, 1) that points in the coding direction α with

strength d, to explicitly introduce information-limiting noise correlations [34];
and (5) and a noise term εi:

ri = c1N + siα +
K∑
k=1

zki βk + dz
(K+1)
i α + εi (16)

where 1N is a vector of N 1s. We assume that all statistical quantities in Eq.
16 are independent of each other. Data generated in this way results in a
single noise covariance matrix that is independent of the stimulus identity:

Cov(ri|si) =
K∑
k=1

βkβ
ᵀ
k + d2ααᵀ + σ2

ε I (17)
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Sim Figures c α βk d εi Stim-dep Rect/Poiss

1 2A-C
3A 0 N (0, 0.25) N (0, 0.5) 0.07 N (0, 1) No No

2 2D-F
3B, C 0 N (0, 0.25) N (0, 0.5) 0.07 N (0, 1) Yes No

3 2G-I
3D, E 1 N (0, 0.0056) N (0, 0.5) 0.07 N (0, 0.01) Yes Yes

Table 1: Simulated data details. The performance of various decoders
evaluated on these simulated datasets is shown in Figs. 2 and 3. All datasets
were generated using N = 200 neurons, K = 10 latent variables and T =
100000 trials.

In this setting, linear discriminant analysis is equivalent to the optimal
linear decoder, and the population response only contains linear information
[33]. We introduced nonlinear information into the population via stimulus-
dependent noise covariance matrices, which requires a separate, independent
set of latent variable coupling vectors {βj

k} for each stimulus value j, so that

Cov(ri|si = j) =
K∑
k=1

(βj
k)(β

j
k)ᵀ + d2ααᵀ + σ2

ε I (18)

To generate data more closely resembling neural activity, for some analyses we
rectified the values of ri, and the resulting non-negative values were used as
rate parameters for independent Poisson processes to produce spiking activity.
Details of each simulation are shown in Table 1. For each row of the table
(corresponding to each row of the indicated figures) we randomly sampled 25
datasets; errorbars in the figures show SEM over the datasets.
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Appendix: Single latent variable example
This appendix provides a deeper analysis of the single latent variable example
introduced in sections 2.1 and 2.2. To restate the problem formulation, the
population firing rate vector ri ∈ RN on trial i is the sum of three terms:
(1) the stimulus si ∈ {±1}, coupled to the population via α; (2) a latent
variable zi ∼ N (0, σ2

z) coupled to the population via β; (3) and a noise term
εi ∼ N (0, σ2

ε I):
ri = siα + ziβ + εi

We assume that zi and εi are independent, so that Cov(zi, εi) = 0. To
facilitate the derivations below, we make the further assumptions that α
and β are unit vectors (more generally, the magnitude of each vector can
be absorbed into the scalars si and zi), and that α and β are known. The
covariance matrix of population activity, conditioned on si, is given by

Cov(ri|si) = Σ = σ2
zββᵀ + σ2

ε I (19)

In the remainder of this appendix we derive an analytic “latent variable”
estimator for si under these specific assumptions and examine its statistical
properties in relation to the optimal linear estimator.

A latent variable estimator for si. The optimal linear estimator for si,
denoted by ŝOLE

i , is

ŝOLE
i = so + αΣ−1

αᵀΣ−1α
(ri − r̄)

where so is the average stimulus value (0 in this case) and r̄ = 1
T

∑T
i=1 ri [31].

We propose to exploit our knowledge of the structure of Σ in Eq. 19 to
derive a different estimator for si. We will first infer the activity of the latent
variable zi in the direction of α, then remove this component from ri before
decoding in the direction of α.

We can infer the latent variable zi by projecting the response vector onto
α⊥, the component of β that is orthogonal to α:

α⊥ ≡ β − (αᵀβ)α ≡ β − γα
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so that γ corresponds to the cosine of the angle between α and β. Then the
projection of the response vector along α⊥ becomes

αᵀ
⊥ri = siα

ᵀ
⊥α + ziα

ᵀ
⊥β + αᵀ

⊥εi

= ziα
ᵀ
⊥β + αᵀ

⊥εi

= zi[β − γα]ᵀβ + αᵀ
⊥εi

= zi
[
1− γ2

]
+ αᵀ

⊥εi

Rearranging,
zi = αᵀ

⊥ri
1− γ2 −

αᵀ
⊥εi

1− γ2

so that
ẑi = αᵀ

⊥ri
1− γ2

is an unbiased estimator for zi, and γẑi is an unbiased estimator for the
projection of the latent variable term ziβ along the α direction.

To arrive at the latent-variable-adjusted estimate of the stimulus, ŝLVE, we
simply project the population activity along the direction of α and subtract
the estimate of the latent variable term in that direction:

ŝLVE
i = αᵀri − γẑi

= αᵀri − γ
αᵀ
⊥ri

1− γ2

= [α− γβ]ᵀ ri
1− γ2 (20)

This estimate of the stimulus depends on the angle between α and β through
γ, and it is instructive to note the two extreme cases. First, when α and
β are parallel, γ = 1 and there is no solution, because zi cannot be disam-
biguated from the stimulus (in this situation the induced correlations would
be information-limiting noise correlations [34]). Second, when α and β are
orthogonal, γ = 0 and the latent variable is not detrimental to decoding along
α, so that the estimate of the stimulus reduces to ŝi = αᵀri.

Linear Fisher information for ŝLVE
i . Given the estimate ŝLVE

i in Eq. 20,
we can calculate its linear Fisher information as the inverse of the variance of
ŝLVE
i , which is given by

ILV E = 1− γ2

σ2
ε

(21)
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Figure 5: Comparison of estimators for the single latent variable
model. Color indicates the logarithm of the ratio of the linear Fisher
information for the latent variable estimator (ILVE, Eq. 21) and the optimal
linear estimator (IOLE, Eq. 22). This value is plotted as a function of the
ratio of the variances of the noise (σε) and the latent variable (σz), and γ, the
cosine of the angle between α and β.

How does this compare to the linear Fisher information of the optimal
linear estimator ŝOLE

i ? By substituting Eq. 19 into the standard result that
IOLE = αᵀΣ−1α,

IOLE =
1− γ2

1+σ2
e/σ

2
z

σ2
e

(22)

Again, we note the two extreme cases. When γ = 1, ILVE = 0 because
the latent variable is pointing in the direction of the stimulus, but IOLE is
greater than zero. This illustrates an important case in which ŝLVE

i is far from
optimal. When γ = 0, however, ILVE and IOLE are equivalent. Results from
intermediate values of γ are shown in Fig. 5.

Why does ILVE → 0 as γ → 1? This behavior is easier to understand by
considering the variance of the estimate ẑi, which is given by

Var(ẑi) = σ2
z + σ2

ε

1− γ2

The variance of ẑi is equal to the variance of z plus a term that depends on
γ. When α and β are orthogonal (γ = 0), this second term becomes equal to
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σ2
ε , the variance of the noise. As α and β become more aligned (γ → 1), the

variance of ẑi blows up and drives ILVE to zero.
The LV decoder cannot, by definition, extract more information from

population responses than the optimal linear decoder. However, this single
latent variable example demonstrates that there are a wide range of parameter
settings for which the LV decoder performs close to optimal. Importantly, this
analysis only considers the behavior of these estimators in the limit of infinite
data, and does not consider how efficiently these estimators use finite amounts
of data. In practice (i.e. with a limited number of trials), the LV decoder is
able to more efficiently extract information than other linear decoders (see
Fig. 3).
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