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Figure 4: Outline of LV decoding algorithm.

where (x)i denotes the ith component of a vector x. The extent to which
rz contains variability that is shared across many neurons (due to latent
variables) determines the efficacy of the LV decoder.

Step 4: We estimate this shared component of variability with the full
population response R by learning a mapping fθ : RN → R parametrized by
θ using a neural network (see Neural network details below), so that

(r̂z)i = fθ(ri) (7)

Evaluating the LV decoder. Once fθ has been learned, we can evaluate
the performance of the LV decoder. As an example, we will use Rxv to
represent the cross-validation data. Rxv is first projected onto α̂ (learned
from the training data) to get rαxv (Step 6 ). The activity rxv from each trial
is then run through the function fθ to produce one component of the vector
r̂zxv (Step 7 ). Finally, the variance-reduced activity is given by (Step 8 )

r̃xv = rαxv − r̂zxv (8)

To calculate the classification of each trial i, the corresponding value from
r̃xv is compared with µ̄ = 1

2(µ1 + µ−1); values larger than this threshold are
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classified as stimulus 1, and all others are classified as stimulus −1 (Step 8 ).

Neural network details. Here we describe details of the neural network
that is used to estimate variability in the stimulus coding direction. Any
technique that can learn a mapping from RN to R is suitable in principle,
but we restrict our explorations to a standard neural network for simplicity.
The neural network takes R as input and produces an estimate r̂z of rz.
Parameters of the network θ are learned by minimizing the mean square error
(MSE) between r̂z and rz. L2 regularization is included to prevent overfitting
to the training data [50], so that the penalized cost function C is defined as:

C(θ) = ‖rz − r̂z‖2
2 + λ‖θ‖2

2 (9)

where ‖x‖2 = ∑
k x

2
k is the L2 norm of a vector x and λ is a hyperparameter

that controls the magnitude of the regularization term. In practice, we fit
the LV decoders using 10 different values of λ logarithmically spaced between
1e-4 and 1e1, and choose the value that results in the smallest cost function
when evaluated on the testing data (Step 5 ). The cost function is optimized
using an L-BFGS routine [51].

The Linear LV decoder requires a linear mapping from RN to R, and
therefore uses a neural network with just an input layer and an output layer.
With the L2 regularization, this network is equivalent to regularized linear
regression, or “ridge regression” [50]. The Nonlinear LV decoders use a neural
network with a single hidden layer composed of 15 rectified linear units
(ReLUs), which we found to work well for all simulated datasets. We explored
different numbers of hidden units and hidden layers, but did not perform an
exhaustive hyperparameter search.

Projecting out the stimulus coding dimension. To test the extent to
which the LV decoders require information contained in the stimulus coding
direction α (Fig. 2C, F, I), we projected this dimension out of the population
activity R before using it to predict variability in the same dimension α, and
we denote the resulting activity by R̃. The stimulus coding dimension was
calculated after subsampling trials, and was only calculated using training
data. Training the decoder then amounted to replacing R in Eq. 5 with R̃.
To evaluate the decoder, the same α was projected out of the testing/cross-
validation data, and all other steps in the Evaluating the LV decoder section
remain the same.
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4.2 Training of standard decoders
Difference of means (DoM). The mean response to each stimulus was
calculated; the difference in mean responses α defined the discriminant line for
the DoM decoder, and the mean of the mean responses defined the threshold.
For each trial, neural activity was projected onto the discriminant line and
compared to the threshold value to determine its classification.

Linear discriminant analysis (LDA). LDA was performed using the
fitcdiscr function in MATLAB, with the ‘DiscrimType’ option set to ‘linear ’
so that a single pooled covariance matrix was estimated from the data. The
‘Gamma’ option was set to 0, so that the estimated covariance matrix was not
regularized with an additional diagonal matrix. This choice limited the use
of LDA to settings where the number of trials was larger than the number of
neurons.

Logistic regression with early stopping (LogisticES). Logistic regres-
sion models were fit by minimizing the mean square error between class labels
y ∈ {0, 1} and predicted class labels given by

ŷ = 1
1 + exp(−Rb + c) (10)

where R is the matrix of neural responses, b is the vector of learned decoder
weights and c is a learned bias term. The negative log-likelihood of the testing
data was evaluated on each iteration, and model fitting terminated once
the negative log-likelihood began to increase or the algorithm reached 1000
iterations [52].

Neural network decoder. Neural networks were used as an additional
nonlinear decoding algorithm. The networks were trained to take in neural
population activity and predict the stimulus class (±1); parameters were
learned by minimizing penalized MSE between true and predicted class using
the L-BFGS routine (L2 regularization was applied to the weights using the
same range as the LV decoders). The network architecture matched that of
the Nonlinear LV decoder - a single hidden layer comprised of 15 ReLU units.

18

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 7, 2020. ; https://doi.org/10.1101/2020.01.06.896423doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.06.896423
http://creativecommons.org/licenses/by-nc/4.0/


Kernel support vector machine (Kernel SVM). Kernel SVMs were
fit using the fitcsvm function in MATLAB with the ‘KernelFunction’ option
set to ‘rbf ’ to use radial basis function kernels. Radial basis functions are
unnormalized Gaussians, and the scale of these functions relative to the
data is important for kernel SVM performance. MATLAB provides another
option ‘KernelScale’ that scales the data (rather than the kernel); to fit this
hyperparameter, we fit kernel SVMs using 10 different values of the scale
parameter logarithmically spaced between 1e-3 and 1e3, and chose the scale
that resulted in the largest number of correctly classified trials when evaluated
on the testing data (see Evaluating decoder performance below).

4.3 Evaluating decoder performance
Subsampling trials and cross-validation. A main goal of this study
was to understand how the performance of different decoders scaled with
the number of trials. To do so we first removed 10000 trials from the data
as validation trials, which were not used for training or hyperparameter
selection. Then for each dataset size (K = 100 to K = 90000 trials), we
randomly sampled K trials from the dataset, then randomly split these trials
into five folds - four for training and one for hyperparameter selection (e.g.
L2 regularization for LV and Neural Network decoders, early stopping for
LogisticES decoders, etc.). The best model, found using the testing data,
was then evaluated on the held-out validation trials, and these are the values
reported in Figs. 2 and 3.

Quantifying decoder performance with d′. The simplest measure for
quantifying decoder performance is the fraction of correctly classified trials.
For LDA and kernel SVM, the predicted classification for each trial was
obtained using the predict function in MATLAB. The DoM, LV, and Neural
Network decoders explicitly define a threshold, and a trial is classified based
on comparing the projection of the data along the learned discriminant line
to the threshold. For LogisticES, the predicted class label ŷ (Eq. 10), a
continuous quantity between 0 and 1, was turned into a binary classification
by using 0.5 as a threshold.

However, in this work, our concern was not in the fraction of correctly
classified trials, but rather in the total amount of information the neural
population contains about the decoded variable. For example, when classes
are fully separable, fraction correct is unable to distinguish between a decoder
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with high variance and one with low variance (see, for example, Fig. 2B). So
instead of reporting fraction correct we instead use the more general linear
Fisher information measure to quantify decoder performance.

Linear Fisher information measures the inverse of the variance of a de-
coder’s prediction of the stimulus, and therefore decoders with smaller variance
in their predictions will contain more information. We estimate linear Fisher
information using two different computations of the d′ measure2: d′MLE, which
is most appropriate when the simulation noise is Gaussian, and useful when
the data are nearly or completely separable (simulation 1); and d′FC, which is
more appropriate when the simulation noise is non-Gaussian and the data
are far from separable (simulations 2 and 3), and/or the decoding algorithm
does not project the data along a discriminant line (such as kernel SVM).

Computing d′MLE. To compute the d′MLE measure, the full-dimensional
population activity is first projected onto the discriminant line (which pre-
cludes the use of this measure with kernel SVM, which does not estimate
discriminant lines). In our simulated data the resulting one-dimensional
projection for each class is well-described by a Gaussian distribution (e.g. Fig.
2B). The mean and variance of these distributions are fit for each class using
the maximum likelihood estimates (MLE). Then, the fraction of correctly
classified trials for each class (denoted as the accuracy A), in the limit of
infinite data, is estimated by using the error function of the Gaussian defined
by these MLE parameter values.

For example, if the mean of class −1 is located to the left of the threshold,
the fraction of correctly classified trials from this class is given by the area
under the curve between the threshold and negative infinity, and is denoted
by A−1 (A1 is defined analogously for the other class). The overall fraction of
correctly classified trials is then estimated as Â = 1

2(A−1 +A1), and this value
can be converted to the d′ measure using the inverse of the complimentary
error function H [33]:

d′MLE = 2H−1(1− Â) (11)

We use this computation for d′ in Simulation 1 (see Table 1), where classes
are fully separable and projections onto the discriminant line are guaranteed
to have a Gaussian distribution.

2see the section Equivalence of linear Fisher information and d′2 below for a non-rigorous
proof demonstrating the equivalence of these two quantities under simple assumptions.
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Computing d′FC. A drawback to d′MLE is that it cannot be used to evaluate
decoding algorithms such as kernel SVM, which do not linearly project the
data along a discriminant line. An alternative way to compute d′ (when
classes are not fully separable) is to use the fraction of correctly classified
trials, or accuracy A (not in the limit of infinite data, as before). As before,
this value can be converted to d′:

d′FC = 2H−1(1− A) (12)

where ‘FC’ denotes ‘fraction correct’. We use this computation for d′ in
Simulations 2 and 3 (see Table 1), where classes are not fully separable and
projections onto the discriminant line are not guaranteed to have a Gaussian
distribution.

Equivalence of linear Fisher information and d′2. Throughout this
paper, we refer to d′2 as ‘Information’. To justify this equivalence, we show
here that yet another definition of d′ is equivalent to linear Fisher information
when calculated along the optimal coding direction and squared. Although
the three values of d′ considered here differ in their computation, under the
assumption of Gaussianity they become equivalent in the limit of infinite
data.

We now consider the classic definition of d′ [53], which was originally
introduced in the signal detection literature as a measure of the signal-to-
noise ratio (SNR):

d′SNR = µ1 − µ−1

σ
(13)

where µi is the mean of the ith one-dimensional response distribution and σ
is the standard deviation, which we take to be the same for both distributions.
If we now consider the response r of a population of neurons, with a stimulus-
conditioned covariance matrix given by Cov(r|s) = Σ, the definition of linear
Fisher information in this context becomes

I = f ′ᵀΣ−1f ′ (14)
= (µ1 − µ−1)ᵀΣ−1(µ1 − µ−1) (15)

We now calculate d′2SNR of the response distributions after they have been
projected along the optimal decoding direction wᵀ = (µ1−µ−1)ᵀΣ−1

(µ1−µ−1)ᵀΣ−1(µ1−µ−1) [31],
and show that this is equivalent to the expression for linear Fisher information
in Eq. 15.
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The means of the response distributions along this dimension, denoted
by µ̂i, are µ̂i = wᵀµi and the variance along this dimension (which we again
assume is the same for both response distributions), denoted by σ̂2, is

σ̂2 = Var(wᵀr|s)
= wᵀVar(r|s)w
= wᵀΣw

= (µ1 − µ−1)ᵀΣ−1ΣΣ−1(µ1 − µ−1)
[(µ1 − µ−1)ᵀΣ−1(µ1 − µ−1)]2

= 1
(µ1 − µ−1)ᵀΣ−1(µ1 − µ−1)

and thus

d′2SNR = (µ̂1 − µ̂−1)2

σ̂2

= [wᵀ(µ1 − µ−1)]2
[
(µ1 − µ−1)ᵀΣ−1(µ1 − µ−1)

]
= (µ1 − µ−1)ᵀΣ−1(µ1 − µ−1)
= I

4.4 Simulation details
We tested all decoders on a variety of simulated datasets. For all simulations,
we generated the responses of N neurons over T trials, where the population
response ri on trial i was generated as a sum of five terms: (1) a bias; (2) the
stimulus si ∈ {±1}, coupled to the population via α; (3) a collection of K
latent variables zki ∼ N (0, 1) coupled to the population via β; (4) a (K + 1)st

latent variable z(K+1)
i ∼ N (0, 1) that points in the coding direction α with

strength d, to explicitly introduce information-limiting noise correlations [34];
and (5) and a noise term εi:

ri = c1N + siα +
K∑
k=1

zki βk + dz
(K+1)
i α + εi (16)

where 1N is a vector of N 1s. We assume that all statistical quantities in Eq.
16 are independent of each other. Data generated in this way results in a
single noise covariance matrix that is independent of the stimulus identity:

Cov(ri|si) =
K∑
k=1

βkβ
ᵀ
k + d2ααᵀ + σ2

ε I (17)
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Sim Figures c α βk d εi Stim-dep Rect/Poiss

1 2A-C
3A 0 N (0, 0.25) N (0, 0.5) 0.07 N (0, 1) No No

2 2D-F
3B, C 0 N (0, 0.25) N (0, 0.5) 0.07 N (0, 1) Yes No

3 2G-I
3D, E 1 N (0, 0.0056) N (0, 0.5) 0.07 N (0, 0.01) Yes Yes

Table 1: Simulated data details. The performance of various decoders
evaluated on these simulated datasets is shown in Figs. 2 and 3. All datasets
were generated using N = 200 neurons, K = 10 latent variables and T =
100000 trials.

In this setting, linear discriminant analysis is equivalent to the optimal
linear decoder, and the population response only contains linear information
[33]. We introduced nonlinear information into the population via stimulus-
dependent noise covariance matrices, which requires a separate, independent
set of latent variable coupling vectors {βj

k} for each stimulus value j, so that

Cov(ri|si = j) =
K∑
k=1

(βj
k)(β

j
k)ᵀ + d2ααᵀ + σ2

ε I (18)

To generate data more closely resembling neural activity, for some analyses we
rectified the values of ri, and the resulting non-negative values were used as
rate parameters for independent Poisson processes to produce spiking activity.
Details of each simulation are shown in Table 1. For each row of the table
(corresponding to each row of the indicated figures) we randomly sampled 25
datasets; errorbars in the figures show SEM over the datasets.
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Appendix: Single latent variable example
This appendix provides a deeper analysis of the single latent variable example
introduced in sections 2.1 and 2.2. To restate the problem formulation, the
population firing rate vector ri ∈ RN on trial i is the sum of three terms:
(1) the stimulus si ∈ {±1}, coupled to the population via α; (2) a latent
variable zi ∼ N (0, σ2

z) coupled to the population via β; (3) and a noise term
εi ∼ N (0, σ2

ε I):
ri = siα + ziβ + εi

We assume that zi and εi are independent, so that Cov(zi, εi) = 0. To
facilitate the derivations below, we make the further assumptions that α
and β are unit vectors (more generally, the magnitude of each vector can
be absorbed into the scalars si and zi), and that α and β are known. The
covariance matrix of population activity, conditioned on si, is given by

Cov(ri|si) = Σ = σ2
zββᵀ + σ2

ε I (19)

In the remainder of this appendix we derive an analytic “latent variable”
estimator for si under these specific assumptions and examine its statistical
properties in relation to the optimal linear estimator.

A latent variable estimator for si. The optimal linear estimator for si,
denoted by ŝOLE

i , is

ŝOLE
i = so + αΣ−1

αᵀΣ−1α
(ri − r̄)

where so is the average stimulus value (0 in this case) and r̄ = 1
T

∑T
i=1 ri [31].

We propose to exploit our knowledge of the structure of Σ in Eq. 19 to
derive a different estimator for si. We will first infer the activity of the latent
variable zi in the direction of α, then remove this component from ri before
decoding in the direction of α.

We can infer the latent variable zi by projecting the response vector onto
α⊥, the component of β that is orthogonal to α:

α⊥ ≡ β − (αᵀβ)α ≡ β − γα
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so that γ corresponds to the cosine of the angle between α and β. Then the
projection of the response vector along α⊥ becomes

αᵀ
⊥ri = siα

ᵀ
⊥α + ziα

ᵀ
⊥β + αᵀ

⊥εi

= ziα
ᵀ
⊥β + αᵀ

⊥εi

= zi[β − γα]ᵀβ + αᵀ
⊥εi

= zi
[
1− γ2

]
+ αᵀ

⊥εi

Rearranging,
zi = αᵀ

⊥ri
1− γ2 −

αᵀ
⊥εi

1− γ2

so that
ẑi = αᵀ

⊥ri
1− γ2

is an unbiased estimator for zi, and γẑi is an unbiased estimator for the
projection of the latent variable term ziβ along the α direction.

To arrive at the latent-variable-adjusted estimate of the stimulus, ŝLVE, we
simply project the population activity along the direction of α and subtract
the estimate of the latent variable term in that direction:

ŝLVE
i = αᵀri − γẑi

= αᵀri − γ
αᵀ
⊥ri

1− γ2

= [α− γβ]ᵀ ri
1− γ2 (20)

This estimate of the stimulus depends on the angle between α and β through
γ, and it is instructive to note the two extreme cases. First, when α and
β are parallel, γ = 1 and there is no solution, because zi cannot be disam-
biguated from the stimulus (in this situation the induced correlations would
be information-limiting noise correlations [34]). Second, when α and β are
orthogonal, γ = 0 and the latent variable is not detrimental to decoding along
α, so that the estimate of the stimulus reduces to ŝi = αᵀri.

Linear Fisher information for ŝLVE
i . Given the estimate ŝLVE

i in Eq. 20,
we can calculate its linear Fisher information as the inverse of the variance of
ŝLVE
i , which is given by

ILV E = 1− γ2

σ2
ε

(21)
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Figure 5: Comparison of estimators for the single latent variable
model. Color indicates the logarithm of the ratio of the linear Fisher
information for the latent variable estimator (ILVE, Eq. 21) and the optimal
linear estimator (IOLE, Eq. 22). This value is plotted as a function of the
ratio of the variances of the noise (σε) and the latent variable (σz), and γ, the
cosine of the angle between α and β.

How does this compare to the linear Fisher information of the optimal
linear estimator ŝOLE

i ? By substituting Eq. 19 into the standard result that
IOLE = αᵀΣ−1α,

IOLE =
1− γ2

1+σ2
e/σ

2
z

σ2
e

(22)

Again, we note the two extreme cases. When γ = 1, ILVE = 0 because
the latent variable is pointing in the direction of the stimulus, but IOLE is
greater than zero. This illustrates an important case in which ŝLVE

i is far from
optimal. When γ = 0, however, ILVE and IOLE are equivalent. Results from
intermediate values of γ are shown in Fig. 5.

Why does ILVE → 0 as γ → 1? This behavior is easier to understand by
considering the variance of the estimate ẑi, which is given by

Var(ẑi) = σ2
z + σ2

ε

1− γ2

The variance of ẑi is equal to the variance of z plus a term that depends on
γ. When α and β are orthogonal (γ = 0), this second term becomes equal to
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σ2
ε , the variance of the noise. As α and β become more aligned (γ → 1), the

variance of ẑi blows up and drives ILVE to zero.
The LV decoder cannot, by definition, extract more information from

population responses than the optimal linear decoder. However, this single
latent variable example demonstrates that there are a wide range of parameter
settings for which the LV decoder performs close to optimal. Importantly, this
analysis only considers the behavior of these estimators in the limit of infinite
data, and does not consider how efficiently these estimators use finite amounts
of data. In practice (i.e. with a limited number of trials), the LV decoder is
able to more efficiently extract information than other linear decoders (see
Fig. 3).
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