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Abstract: Learned associations between stimuli allow us to model the world and make 
predictions, crucial for efficient behavior; e.g., hearing a siren, we expect to see an 
ambulance and quickly make way. While theoretical and computational frameworks for 
prediction exist, circuit and receptor-level mechanisms are unclear. Using high-density 15 
EEG and Bayesian modeling, we show that trial history and frontal alpha activity account 
for reaction times (a proxy for predictions) on a trial-by-trial basis in an audio-visual 
prediction task. Low-dose ketamine, a NMDA receptor blocker – but not the control drug 
dexmedetomidine – perturbed predictions, their representation in frontal cortex, and 
feedback to posterior cortex. This study suggests predictions depend on frontal alpha 20 
activity and NMDA receptors, and ketamine blocks access to learned predictive 
information. 
 
One Sentence Summary: Predictions depend on NMDA receptors, representation in 
frontal cortex, and feedback to sensory cortex for comparison with sensory evidence. 25 
 
Main Text: The classical view of sensory processing focuses on feedforward information 
transmission from the sensory organs to higher-order cortex, to generate representations 
of the world (1, 2). However, expectations can strongly influence perception and behavior 
(3, 4). This is captured in a radically different view of sensory processing, called predictive 30 
coding (PC), where the brain uses generative models to make inferences about the world 
(5–9), possibly even to support conscious experience (3, 4, 10). PC proposes that models 
represented in higher-order cortex transmit predictions to lower-order cortex along 
feedback connections. Any mismatch between feedback predictions and feedforward 
observed sensory evidence generates an error signal, leading to model updating (11–35 
13). N-methyl-D-aspartate receptors (NMDARs) may play a key role in PC as they 
modulate higher-order (frontal) cortical excitability (14–17) and are enriched on the 
postsynaptic terminals of feedback connections (18). Ketamine, a NMDAR blocker (19), 
can reduce error signals, measured as auditory mismatch negativity (MMN) (20–22). 
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However, the NMDAR contribution to predictions and their neural representation are 
unclear. 
 
To test circuit and receptor-level mechanisms of PC, we recorded 256-channel EEG of 
subjects performing an audio-visual delayed match-to-sample task (Fig. 1A). The task 5 
design separates predictions (generated during the delay period) from error processing 
(after image onset), which are not readily separable in oddball paradigms. Subjects 
performed the task before, during, and after recovery from sub-hypnotic dosing of 
ketamine, targeted to concentrations that modulate NMDARs, or the control drug 
dexmedetomidine (DEX), an a2 adrenergic receptor agonist, selected to account for 10 
changes in arousal and modulation of hyperpolarization-activated cyclic nucleotide 
channels (HCN-1, which mediate ketamine’s anesthetic effects (23)). Subjects initially 
learned paired associations (A1-V1, A2-V2, A3-V3) between 3 sounds (A1, A2, A3) and 
3 images (V1, V2, V3) through trial-and-error, allowing us to modulate separate 
feedforward (auditory to frontal) and feedback (frontal to visual) pathways. During 15 
learning, each sound and image had equal probability (33%) of appearing in any given 
trial, preventing subjects developing any differential predictions due to stimulus 
frequency. Following presentation of both stimuli, subjects reported if the sound and 
image matched or not. To manipulate subjects' predictions during subsequent testing, we 
varied the probability of an image appearing after its associated sound. This probability 20 
was different for each sound: 85% chance of V1 after A1; 50% chance of V2 after A2; 
and 33% chance of V3 after A3. Thus, A1 was highly predictive (HP), A2 was moderately 
predictive (MP), and A3 was not match predictive (NP). 
  
We hypothesized that increasing the predictive value of the sound would allow subjects 25 
to make better predictions about the upcoming image, enabling quicker responses 
(HP<MP<NP) in match trials. Reaction times (RTs) were faster when sounds had greater 
predictive value (ANOVA, N=11, P=0.001) (Fig. 1B). This result was further validated in 
parallel psychophysics experiments, where we controlled for possible match bias (24) 
(ANOVA, N=25, P<0.001; Fig. S1A). RTs could not be explained by speed-accuracy 30 
trade-offs, as subjects were most accurate for HP, followed by MP and NP sounds 
(ANOVA, N=25, P=0.001, Fig. S1B).  
 
If predictions are mediated by NMDARs, then ketamine should block predictions; i.e., 
subjects administered a sub-anesthetic dose of ketamine should be unable to exploit the 35 
differential predictive value of each sound, causing the linear trend in RTs (HP<MP<NP 
sounds) to disappear. Subjects under ketamine (minimum effective plasma concentration 
of 0.2 µg/ml) no longer showed a linear correlation between the predictive value of sounds 
and RT (ANOVA, N=11, P=0.93) (Fig. 1C). This was not due to low accuracy as subjects’ 
average accuracy was 79.93% under ketamine (87.19% without ketamine). Effects were 40 
specific to NMDAR manipulation, as DEX did not block predictions. Subjects under DEX 
showed significant (ANOVA, N=13, P=0.002) linear correlation between the predictive 
value of sounds and RT (Fig. 1E), similar to the baseline condition. Results were not due 
to sedation as, subjects were more alert under ketamine than dexmedetomidine 
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(ketamine average modified observer’s assessment of alertness/sedation (OAA/S) score 
of 4.72 compared to 3.33 under DEX (5, awake – 1, unresponsive)). After recovery from 
ketamine (2-4 hours after ending ketamine administration, depending upon subject’s 
recovery), subjects once again showed a linear correlation between the predictive value 
of sounds and RT (ANOVA, N=9, P=0.02; 2 subjects excluded post-ketamine due to 5 
vomiting; Fig. 1D). Overall, our results demonstrate predictions depend on NMDARs. 
 
To identify what information in the trial history subjects base predictions on, we used a 
hierarchical drift-diffusion model (HDDM) (25), with two possible choices from our task 
(correct/incorrect). In the HDDM, evidence accumulates (drift process) from a starting 10 
point to two boundaries (one for each choice). It stops when it reaches a boundary, which 
determines the choice (and RT) for the trial (Fig. 1F). The starting point is determined by 
the predictive value of the sound, which may be biased towards one of the choices 
(reflected in a bias parameter; z). We used the causal power (26) of the sound-image 
association (calculated each trial based on prior trials) as a predictor of bias (Fig. 1G). 15 
(Causal power is the amount of evidence that a sound “causes” a particular image, as 
opposed to chance.) Specifically, we estimated the posterior probability density of the 
regression coefficient (b1; Fig. 1F) to determine the relationship between bias and causal 
power. Bias was positively correlated with the predictive value of sounds (P=0.01; Fig. 
1H). This suggests that more predictive sounds create a larger bias before the onset of 20 
the visual image and, as a result, decisions are reached more quickly, which translates 
to quicker RTs. Further, causal power (deviance information criterion, DIC=-3197) 
predicted RTs better than transitional probabilities (how often a particular image follows 
the sound only; DIC=-1795). This means subjects used the trial history beyond simple 
stimulus frequencies to generate predictions.  25 
 
We used the HDDM to model drug effects. If ketamine blocks predictions, all sounds will 
generate similar biases; i.e., there will be no correlation between bias and the predictive 
value of sounds. Indeed, under ketamine, the posterior probability density of b1 was not 
significantly different from zero (P=0.97; Fig. 1H). In contrast, under DEX, bias positively 30 
correlated with the predictive values of sounds (all sounds generating equal vs different 
biases, P<10-10; Fig. 1H) similar to baseline. After recovery from ketamine, the posterior 
probability density of b1 was significantly greater than zero (P<10-10; Fig. 1H) confirming 
that subjects had again generated larger bias for more predictive sounds. The question 
is: (a) did subjects re-gain access to previously learned and stored predictive information 35 
(Fig. S2B) or (b) did they re-learn the predictive value of each sound after ketamine 
recovery (Fig. S2C)? To answer this, we used the HDDM to analyze the first 200 trials 
after recovery (to ensure each trial-type had at least 10 trials, for every subject). We found 
that only the former (option (a)) had significant (P=0.03; Fig. S2, D and E) positive 
posterior probability density. This suggests that ketamine did not erase previously learned 40 
predictive information, but rather ketamine prevented access to the predictive information.  
 
We next investigated the circuit-level mechanism of prediction. Four clusters of 
electrodes, right frontal (RF), right central (RC), left central (LC) and occipital (OC), 
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showed significant modulation of delay period alpha power compared to baseline, 
irrespective of sound (Fig. 3A). Considering alpha power as an index of neural excitability 
(reduced alpha equating to reduced inhibition/increased excitability) (27, 28), one might 
expect stronger predictions to be associated with lower alpha power, reflecting greater 
activation of prediction-encoding neurons. Indeed, stronger predictions significantly 5 
correlated with lower delay period alpha power at the RF electrode cluster (ANOVA, 
N=22, P=0.02; Fig. 2A-C; and Fig. S4A-C). This was not due to feedforward sensory 
processing, as all three sounds generated similar auditory ERPs (Fig. S3B). Hence, 
frontal alpha indexed predictions. 
 10 
Because ketamine blocked predictions, subjects under ketamine should no longer show 
frontal alpha differences between sounds. NMDAR blockade has been shown to increase 
frontal cortical excitability (14–17), reducing response selectivity and signal-to-noise ratio 
(SNR) (29, 30). We thus expect low-dose ketamine to increase frontal cortical excitability 
irrespective of the predictive value of sounds. This would manifest as similarly low RF 15 
alpha power for all sounds. Delay period alpha power at the RF electrode cluster was 
similar across sounds (ANOVA, N=10, P=0.87; Fig. 2, E-J). Whereas, under DEX, the RF 
alpha power still showed a significant linear trend (ANOVA, N=12, P=0.02; Fig. 2, I-K) 
similar to baseline. This suggests that NMDARs mediate prediction strength through 
modulation of frontal excitability (alpha). 20 
 
Increased excitability of frontal cortex does not necessarily translate to useful prediction, 
if it reduces SNR. We trained a decoder to measure if this hyperexcitability, reflected in 
low RF alpha power, still allows differential representation of predictions. Before 
ketamine, the classification F score for each sound separated at 550 ms after sound onset 25 
(ANOVA, Holm’s corrected P=0.0031; Fig. 3B). Similarly, classification F score for DEX 
separated at 600 ms after sound onset (ANOVA, Holm’s corrected P=0.0017; Fig. 3D). In 
contrast, under ketamine, there was no separation of classification F score for each 
sound, and accuracy overall was lower (ANOVA, Holm’s corrected P=0.31; Fig. 3C). The 
weighting of features contributing to classifier performance confirmed that, before 30 
ketamine, RF alpha power contributed most to classification accuracy (RF alpha power 
feature (WRFa) > other features (W~RFa), ANOVA, Holm’s corrected P=0.020; Fig. 3F). 
This was also true under DEX (WRFa > W~RFa, ANOVA, P=0.027; Fig. 3H). As expected, 
under ketamine, RF alpha power contributed little to classification accuracy (WRFa > 
W~RFa, ANOVA, P=0.47; Fig. 3G). These results suggest that ketamine blocks predictions 35 
by reducing frontal SNR.  
 
Although frontal activity correlates with predictions, we need to show that subjects use it. 
We used the HDDM to show RF alpha power predicts RT on a trial-by-trial basis. We 
calculated the posterior probability density of the regression coefficient, b1a – the 40 
relationship between the bias and RF alpha power. Bias was inversely correlated with RF 
alpha power (P=0.02, Fig. 3E). This suggests that for more predictive sounds, lower RF 
alpha power creates a larger bias, and as a result, decisions are reached quicker (quicker 
RT). In contrast, ketamine blocked the correlation between bias and alpha power 
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(posterior probability distribution of regression coefficient, b1a, did not significantly differ 
from zero, P=0.69; Fig. 3H). This shows that subjects used frontal activity to make 
predictions. 
 
The audio-visual task anatomically isolates predictions transmitted along feedback 5 
pathways to posterior visual areas, from the initial sound processing along ascending 
auditory pathways. We measured the predictive feedback from frontal to posterior cortex 
using spectral Granger causality. Granger causality increased after sound onset and 
remained elevated throughout the delay period. One might expect higher frontal 
excitability (from stronger predictions or effect of ketamine) to give rise to stronger 10 
feedback. Indeed, stronger predictions were proportionately associated with greater 
Granger causal influence of right frontal on right central electrodes during the delay period 
(ANOVA, N=22, P=0.006; Fig. 4, A-D). This suggests predictions are disseminated along 
feedback connections down the cortical hierarchy prior to image onset.  
 15 
Because NMDAR blockers have been reported to perturb feedback pathways in 
macaques (31) and humans (32), we expected ketamine to alter feedback carrying 
predictions from frontal to posterior cortex. Under ketamine, there was no longer a 
correlation between the predictive value of sounds and alpha band Granger causal 
influence of right frontal on right central cortex (ANOVA, N=10, P=0.22; Fig. 4E); i.e., 20 
ketamine scrambled the feedback for each sound. In contrast, under DEX, the Granger 
causal influence in the alpha band still differed between sounds (ANOVA, N=12, P=0.02; 
Fig. 4F), similar to baseline. This suggests that the predictive feedback facilitating 
behavior depends on NMDARs. 
 25 
In PC, divergence between predictive feedback and sensory evidence generates surprise 
conveyed in an error signal (when convergent, the prediction inhibits the sensory 
response). One might expect this to occur when the predicted and actual visual image 
differ. To test this, we compared the N170 peak of the V1 event-related potential for 
predictive (A1-V1) and not-predictive (A2-V1) trials in posterior cortex (T6 electrode). The 30 
MMN (A2-V1 minus A1-V1) during baseline is consistent with error signaling (paired T 
test, N=22, P=0.001; Fig. S5A). Blocking NMDAR-mediated prediction should reduce the 
MMN, as there will be no predictions in match (A1-V1) or non-match (A2-V1) trials. 
Indeed, the MMN disappeared under ketamine (P=0.18; Fig. S5B). Overall, this supports 
that predictions inhibit visual responses to expected images minimizing surprise.  35 
 
Our results show NMDAR-mediated, circuit-level mechanisms of prediction. Frontal 
cortex represents predictions and, starting prior to image onset, transmits them to 
posterior cortex in the alpha band (33). Ketamine blocks predictions by reducing frontal 
alpha power to the same low level prior to all images (reducing SNR), leading to 40 
undifferentiated feedback. Overall, it suggests that NMDARs normally sharpen 
representations of predictions in frontal cortex, to enable PC. The data are less supportive 
of the classical view of sensation, with its reliance on feedforward processing to 
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reconstruct images, because one might have expected little systematic difference in 
behavioral and neural measures for different predictive conditions.   
 
This has broader clinical and scientific relevance. Ketamine is a promising treatment for 
depression (34), and possible mechanisms include blocking lateral habenula bursting 5 
activity (35) and activating the mammalian target of rapamycin (mTOR) signaling pathway 
(36). Our results point to an additional antidepressant mechanism for ketamine. 
Depression is associated with negative predictions about upcoming personal events (37, 
38). By blocking predictions, ketamine may reduce the negative (39, 40) bias, to 
ameliorate depressive symptoms (41). Finally, it has been proposed that generative 10 
models create virtual realities that support conscious experience (3, 4, 10). That subjects’ 
predictions could be blocked, and error signaling reduced, without impairing 
consciousness imposes constraints on PC as a theory of consciousness. 
 
 15 
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Fig. 1. Ketamine blocked fast RTs to predictive sounds. (A) We manipulated subjects' 5 
predictions by changing the probability of an image appearing after its associated sound 
in an audio-visual delayed match-to-sample task. Population RT (+SE) of 11 subjects (B) 
before (Pre), (C) under (Keta), and (D) after recovery (Reco) from ketamine. (E) 
Population RT (+SE) of 13 subjects under dexmedetomidine (DEX). (F) HDDM of RTs. 
Bias (z) calculated for each trial (t) using causal power (CP). b1 determines relationship 10 
between z and CP. (G) Population CP values across time for pre-ketamine (Pre) testing. 
(H) Posterior probability density of b1 for different drug conditions. 

 

 

 15 
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Fig. 2. Ketamine blocked correlation between prediction strength and right frontal alpha 
power. Population time-frequency decomposition of right frontal electrode cluster (RF) 
before drug administration (Pre; A-C), under ketamine (Keta; E-G), and under 5 
dexmedetomidine (Dex; I-K), for highly predictive (HP; A, E and I), moderately predictive 
(MP; B, F and J), and not-match predictive (NP; C, G and K) sounds. Power calculated in 
0.55 s sliding windows, with window at 0 s representing interval -0.275 s to +0.275 s. 
Population average RF alpha power in delay period (after 0.6 s) for (D) Pre, (H) Keta and 
(L) Dex. 10 
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Fig. 3. Ketamine blocked decoding of predictions. (A) Electrode clusters in right frontal 
(RF), right central (RC), left central (LC), and occipital (OC) cortex showing significant 
modulation in delay period alpha power. Average across all trials (HP, MP and NP). F 5 
score using support vector machine (SVM) to decode predictive value (highly predictive, 
HP; moderately predictive, MP; or not-match predictive, NP) of sound, based on time-
frequency power spectrum (B) before drug administration (Pre), (B) under ketamine 
(Keta), and (C) under dexmedetomidine (Dex). Dashed vertical line denotes sound onset. 
Solid vertical line denotes earliest possible image onset. Dashed horizontal line signifies 10 
level of decoding expected by chance. Gray shaded areas indicate significant zone of 
separation between HP, MP and NP, prior to image onset. (E) Posterior probability 
density of b1a. Bias (z) calculated for each trial (t) using alpha power (AP). b1a determines 
relationship between z and AP. Feature weights from SVM decoder for (F) Pre, (G) Keta, 
and (H) Dex. q, a, b, and g indicate theta (5-7 Hz), alpha (8-14 Hz), beta (15-30 Hz), and 15 
gamma (30-45 Hz) bands respectively.  
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Fig. 4. Ketamine perturbed correlation between prediction strength and alpha feedback. 
Time-frequency plots of Granger causality from right frontal to right central cluster before 
drug administration (Pre; A-C), for  HP (A), MP (B), and NP (C) sounds. Granger causality 
calculated in 0.55 s sliding windows, with window at 0 s representing interval -0.275 s to 5 
+0.275 s. Plots aligned to image onset. Population average Granger causal influence 
during delay period for (D) Pre, (E) Keta, and (F) Dex. 
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Materials and Methods 

Participants 

The University of Wisconsin-Madison Health Sciences and Social Sciences Institutional 

Review Boards (IRBs) approved experiments. 29 participants (14 female) performed the 

psychophysics predictive coding experiment. We excluded data from four subjects as 5 

their performance accuracy was below 50%. 17 additional participants (six female) for 

dexmedetomidine and 11 participants (five female) for ketamine took part in the 

pharmacology predictive coding experiments. Four participants (from 17 

dexmedetomidine participants) were excluded for low accuracy (accuracy less than 50%). 

Participants who performed the psychophysics predictive coding experiment did not take 10 

part in the pharmacology experiments. All 11 participants who performed ketamine 

experiments had to participate in the dexmedetomidine experiments first as per IRB 

requirements.   

Stimuli 

For our psychophysics experiments, we used biomorphic visual stimuli from Michael 15 

Tarr’s lab (http://wiki.cnbc.cmu.edu/Novel_Objects). These are known as greebles. Fig. 

1A shows examples presented to participants. We used three gray-scale greebles for 

each psychophysics session, and each greeble was personified with a name. We used 

novel sounds (trisyllabic nonsense words) for the greeble names – e.g., “Tilado”, “Paluti”, 

and “Kagotu” – from Saffran et al. (1). The sounds were generated using the Damayanti 20 

voice in the “text to speech” platform of an Apple MacBook. To avoid differences in the 
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salience of stimuli, greeble images have similar size (13 degrees of visual angle in height 

and 8 degrees in width), number of extensions and mean contrast, and greeble names 

have the same number of syllables and sound level (80 dB SPL). 

For the pharmacology experiments, we generated three new triplets of greebles. To 

control for saliency, each participant rated greeble salience for each of four (three plus 5 

one from the psychophysics experiment) triplets, i.e., the participant identified whether 

any of the greebles in a triplet stand out compared to the other two greebles from the 

same triplet. We proceeded to use triplets which the participant rated all three greebles 

as being equally salient. We then named each of these greebles with a new trisyllabic 

nonsense word. 10 

Audio-visual delayed match-to-sample task 

Each trial of the task involves the sequential presentation of a sound (trisyllabic nonsense 

word) followed by a greeble image. We refer to stimuli using the following notation: A1, 

A2 and A3 correspond to each of the three sounds used (A for auditory) and V1, V2 and 

V3 correspond to each of the greebles used (V for visual). Using this notation, audio-15 

visual stimulus sequences containing the matching name and greeble are A1-V1, A2-V2 

and A3-V3. Audio-visual stimulus sequences containing a non-matching name and 

greeble are A1-V2, A1-V3, A2-V1, A2-V3, A3-V1 and A3-V2. We pseudo-randomized 

names for greebles (i.e., matching sounds and images) across subjects.  

Learning Phase. During the first phase of the task, participants learn the association 20 

between the sounds and images (i.e., names of the greebles) through trial-and-error, by 
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performing a match/non-match (M/NM) task. This phase is called the “learning” phase. 

Each trial starts with blank blue screen (R=35, G=117, B=208, 200ms duration; shown as 

gray in Fig. 1A). After that, a black fixation cross (size 1.16 degrees of visual angle; jittered 

200-400 ms) is presented followed by a sound, a greeble name voiced by the computer 

(600 ms duration). After a jittered delay period (900-1,200 ms duration), a greeble image 5 

(until a participant responds or 1,100 ms duration, whichever is earliest) was presented 

on the monitor screen, as well as two symbols (√ and X) to the left and right of the greeble 

(9.3 degrees of visual angle from screen center). These symbols indicated participants’ 

two response options: match (√) or non-match (X). The symbol location, left or right of the 

greeble image, corresponded to the left or right response button, respectively: left and 10 

right arrow keys of a computer keyboard in the psychophysics experiments; and left and 

right buttons of a mouse in the pharmacology experiments. We randomly varied the 

symbols’ locations relative to the greeble image to minimize motor preparation (i.e., on 

some trials, a match response required a left button press and, on other trials, a match 

response required a right button press). In the learning phase, each greeble name and 15 

image had 33% probability of appearing in any given trial. This is to prevent subjects from 

developing any differential predictions about the greebles due to greeble name or image 

frequency, during the learning phase.  

To address possible same-different biases, e.g., quicker reaction times (RTs) for match 

trials (2) we introduced a control called “inversion trials” in psychophysics experiments, 20 

to minimize the expectation of M/NM trials which, in itself, might otherwise contribute to 

participants’ responses. In these inversion trials, participants had to respond whether the 
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greeble image presented on screen is inverted (the appropriate response button, left/right, 

indicated on screen by the left/right location of a red arrow pointing down) or upright 

(yellow arrow pointing up). Participants did not know the type of trial in advance; the trial 

type was only revealed by the symbols to the left and right of screen center at the onset 

of the greeble image (i.e., √ and X signal M/NM trials, whereas downward red arrow and 5 

upward yellow arrow signal inversion trials). 50% of the total number of trials in the 

learning phase were inversion trials and the rest were M/NM trials. Because participants 

cannot specifically prepare in advance for M/NM trials due to the random presentation of 

inversion and M/NM trials, there should be minimal confounding of RTs with a bias 

towards match responses. 10 

Testing phase. Once participants show above 80% accuracy for the M/NM trials in the 

learning phase of the task, they move on to the “testing phase” (1,000 trials for the 

psychophysics experiments; Fig. 1A). During the testing phase, we manipulated 

predictions by changing the probability of a greeble appearing after its learnt name. This 

probability is different for each greeble name and image. That is, in the testing phase, 15 

when a participant hears A1, there is 85% chance of V1 being shown (highly predictive; 

HP); when a participant hears A2, there is 50% chance of V2 being shown (moderately 

predictive; MP); and when a participant hears A3, there is a 33% chance of V3 being 

shown (not-match predictive; NP). This allows participants to make stronger predictions 

about the identity of the upcoming visual image after hearing A1, than after hearing A2 or 20 

A3, for instance.  
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Inversion trials also consisted of half the total trials in the testing phase of the 

psychophysics experiments. We randomly presented all the trial types (M/NM trials and 

inversion trials) to the participants. The testing phase of the task had approximately equal 

match and non-match trials to avoid response bias. The testing phase also had an 

approximately equal number of trials for each greeble image, and its corresponding name 5 

had approximately equal probability of being voiced, to control for stimulus familiarity.  

Causal Strength and Transitional Probability  

We quantified the relationship between a sound (name) and its paired image (greeble) 

using the strength of causal induction: given a candidate cause C (sound) how likely is 

the effect E (i.e., how likely is it followed by its paired image). We will represent variables 10 

C and E with upper case letters, and their instantiations with lower case letters. Hence, 

C		= 𝑐 +	/	𝐸	 = 	𝑒 +	 indicates that the cause/effect is present, and 	𝐶	 = 𝑐 −	/	𝐸	 = 	𝑒 −

	indicates that the cause/effect is absent (for brevity, we will shorten variables equal to 

outcomes, such as C		= 𝑐 +		or 	𝐶	 = 𝑐 − as simply	𝑐 + 	or	𝑐 −	, respectively). The 

evidence for a relationship can be encoded as a 2 X 2 contingency table for each sound, 15 

as in Table S1 (black letters), where N(c+, e+) represents the number of trials in which 

the effect occurs in the presence of the cause, N(c−, e+)	represents the number of trials 

in which the effect occurs in the absence of the cause and so on. Applied to our study, 

e.g., C could be hearing sound A1, and E viewing the paired greeble V1. For this case, 

N(c+, e+) would be the number of trials V1 follows A1; whereas N(c−, e+) would be the 20 

number of trials V1 follows A2 or A3. The full contingency table for the “Highly Predictive” 

auditory cue A1 and its paired greeble V1 is shown in Table S1 (in green letters). There 
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are analogous contingency tables for the other two auditory cues and their paired 

greebles. 

Based on these contingency tables, we calculated three different measures of causal 

relationship (DP, causal power and causal support) for each trial. DP  and causal power 

assume that C causes E. DP reflects how the probability of E changes as a consequence 5 

of the occurrence of the C. Causal power corresponds to the probability that an effect E 

happened because of cause C in the absence of all other causes. Whereas causal 

support evaluates whether or not a causal relationship actually exists and calculates the 

strength of that relationship. To do this, causal support estimates the evidence for a 

graphical model with a link between C and E against one without a link. For example, let 10 

us consider the graphs denoted by Graph 0 and Graph 1 in Fig. S1D (adapted from (3)). 

There are three variables in each graph: cause C, effect E and background cause B. In 

Graph 0, B causes E, but C has no relationship to either B or E. In Graph 1, both B and 

C cause E. While calculating DP  and causal power Graph 1 is assumed, whereas causal 

support compares the structure of Graph 1 to that of Graph 0. Causal support is defined 15 

as the evidence provided from data D in favor of Graph 1, P(D | Graph 1), over Graph 0, 

P(D | Graph 0), which can be calculated by the following equation: 

𝐶𝑎𝑢𝑠𝑎𝑙	𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = log =(>|@ABCD	E)
=(>|@ABCD	F)

        (1) 

We calculated causal support using freely available Matlab code from (3). DP and causal 

power were calculated using the following formulas: 20 

D𝑃 =	 H(IJ,KJ)
H(IJ,KJ)		J			H(IJ,KL)

− H(IL,KJ)
H(IL,KJ)		J			H(IL,KL)

= 𝑃(𝑒 + |𝑐 +) − 𝑃(𝑒 + |𝑐−)   (2) 

Causal power =  DM
ELM(KJ|IL)

         (3) 
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We compared these three measures of causal relationship with the transitional probability 

(i.e., a comparison between causation and correlation). We calculated the transitional 

probability of each greeble (V) given prior presentation of its paired sound (A), using the 

equation below:  

Transitional probability= N(OJ,PJ)
N(OJ)

         (4)  5 

For each subject, we used the causal relationship value of each condition (HP, MP and 

NP) at the end of a testing phase as the starting values of the next testing phase. For 

example, the starting values of causal relationship for the “under drug” testing phase were 

equal to the causal relationship values at the end of the “pre/baseline” testing phase. 

Similarly, the starting values for the “after recovery” testing phase were equal to the causal 10 

relationship values at the end of the “under drug” phase (Fig. S2A and B). We tested if 

subjects (i) regained access to already learned and stored predictive information, after 

they recovered from ketamine dosing, or (ii) re-learned the predictive information. We 

mimicked hypothesis (ii) by forcing the starting values of causal relationship (causal 

power here) “after recovery” to be zero (Fig. S2C) instead of starting values equal to the 15 

causal relationship at the end of the “under drug” phase (hypothesis (i); Fig. S2B). 

Pharmacology Experiments 

To manipulate participants’ predictions, we administered two drugs, ketamine and 

dexmedetomidine, each on a separate day: dexmedetomidine on the first day, and 

ketamine on the second day, with at least one month intervening. This fixed order was 20 

IRB-imposed in their consideration of safety profiles of the different medications 
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(registered on NCT03284307). All subjects were healthy and aged between 18-40 years 

old without contraindication to study drugs. We also acquired EEG data throughout 

pharmacology experiments (see section “EEG Recording” below), to measure 

electrophysiological activity during predictive coding. A typical pharmacology experiment 

consisted of three segments: (a) pre-drug baseline, (b) under drug influence 5 

(dexmedetomidine or ketamine), and (c) after recovery. During the pre-drug baseline, 

participants performed the learning phase (200 trials), then the first testing phase (400 

trials). Under drug influence, participants performed the second testing phase (200 trials). 

Under ketamine, participants also performed a third testing phase (200 trials; see 

ketamine dosing for details). After recovery, they performed the last testing phase (400 10 

trials). Due to a protocol-limited maximum time under drug influence, and the need to 

acquire sufficient M/NM trials for EEG analyses, the pharmacology experiments did not 

include inversion trials. All other aspects of the task in pharmacology experiments were 

the same as that in psychophysics experiments. For each of the two pharmacology 

experiments involving a particular participant, we used three new greeble name and 15 

image pairs to rule out any possible contribution of long-term memory. 

Dexmedetomidine Dosing 

We intravenously administered a 0.5 mcg/kg bolus over 10 minutes, followed by 0.5 

mcg/kg/h infusion. Participants performed the testing phase (under drug influence) during 

this infusion time, corresponding to stable drug levels according to the pharmacokinetic 20 

model for dexmedetomidine by Hannivoort et al. (4). We targeted a plasma concentration 

of dexmedetomidine that is associated with mild sedation (modified observer’s 
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assessment of alertness/sedation (OAA/S) of 4 (5)) to control for non-specific sedative 

effects, including hyperpolarization-activated cyclic nucleotide channel (HCN-1) effects 

(6). The actual sedation achieved was on average slightly deeper than anticipated 

(modified OAA/S median 3, IQR 2) with a mean plasma concentration of 0.8 (SD 0.33) 

ng/ml (5). 5 

Ketamine Dosing  

In initial experiments, we tested two doses of ketamine to target the lowest plasma 

concentration that would modulate NMDARs in the relevant concentration range 

(<1microMolar (7)). The first dose corresponded to intravenously administered 0.25 

mg/kg ketamine over 10 minutes, followed by 30 mg/h infusion, corresponding to 0.4 10 

microMolar. Prior to testing subjects, lack of nystagmus and visual disturbance was 

confirmed in all participants. Participants performed the testing phase (under drug 

influence) during this infusion time, corresponding to stable drug levels according to the 

pharmacokinetic model for ketamine by Domino et al. (8, 9). A second dose was tested 

with a second bolus of 0.25 mg/kg ketamine over 10 minutes, followed again by 30 mg/h 15 

infusion. Testing again was completed once stable plasma concentrations of 

approximately 0.8 microMolar were achieved. Ketamine blocked predictions at this 

second level of ketamine dosing, equating to a minimum plasma concentration of 0.2 

µg/ml; range tested: 0.2-0.3 µg/ml. As we found the effective ketamine dose to be 0.2 

µg/ml in our first seven subjects, we targeted that plasma concentration for our last four 20 

subjects. Two subjects were excluded from “after recovery” testing due to vomiting.  
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Monitoring  

Subjects were monitored during drug exposure according to the American Society of 

Anesthesiologists guidelines, including electrocardiogram, blood pressure and oxygen 

saturation. We monitored arousal level using the modified OAA/S scale (10).  

EEG Recording 5 

We performed high-density EEG recordings using a 256 channel system (including NA 

300 amplifier; Electrical Geodesics, Inc., Eugene, OR). After applying the EEG cap with 

conductive gel (ECI Electro-Gel), we adjusted electrodes so that the impedance of each 

electrode was within 0-50 kiloohms. We checked electrode impedance before the 

experiment started, and again before drug administration. Using Net Station, we sampled 10 

EEG signals at 250 Hz and, off-line, bandpass filtered between 0.1 Hz and 45 Hz. 

EEG Preprocessing 

We combined pre-drug baseline data from both ketamine and dexmedetomidine 

experiments (baseline RT data showed similar results for both drugs) but “under drug” 

analyses were performed separately for each drug. We performed offline preprocessing 15 

and analysis using EEGLAB (11). First, we extracted data epochs -1,500 ms to 3,000 ms 

relative to the onset of the sound and -3000 ms to 800 ms relative to the onset of the 

image, for each trial. We then visually inspected each epoch and excluded noisy trials 

(around 5% of the total trials). Next, we performed Independent Component Analysis 

(ICA) using built-in functions of EEGLAB (pop_runica.m) and removed noisy components 20 

through visual inspection. We excluded two subjects from further analysis – one ketamine 
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subject and one dexmedetomidine subject – due to very noisy EEG data, which after 

cleaning left too few trials for analysis (conditions with <10 trials). Finally, we performed 

channel interpolation (EEGLAB function, eeg_interp.m, spherical interpolation) and re-

referenced to the average reference.  

Time-Frequency Decomposition 5 

To investigate changes in EEG spectral content, we performed time-frequency 

decompositions of the preprocessed data using Morlet wavelets, whose frequency ranged 

from 5 Hz to 45 Hz in 40 linearly spaced steps. Power for each time-frequency point is 

the absolute value of the resulting complex signal. We dB normalized power (dB power = 

10*log10[power/baseline]) to the baseline of -400 ms to 0 ms relative to the onset of the 10 

sound. For drift-diffusion model analysis, we calculated spectral power and performed 

divisive baseline correction for each trial. 

Electrode Selection 

We used a data-driven approach, orthogonal to the effect of interest, to select the 

electrodes of interest based on the task EEG data. In the first step, we averaged power 15 

across all electrodes (aligned to sound onset) and all sounds/greeble names. This 

revealed increased alpha power (8-14 Hz) during the delay period compared to baseline 

(Fig. S3A). In the second step, we selected the electrode clusters that showed significant 

change in alpha power during the 600 ms to 1,225 ms time window post-sound onset, 

compared to baseline. This time window ensured that our delay period activity was devoid 20 

of any stimulus-driven response, either from the sound or image. After cluster-based 
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multiple comparisons correction (6), four different clusters showed significant modulation 

in alpha power during the delay period (Fig. 3A): (i) right frontal (RF electrodes 4, 214, 

215, 223, 224); (ii) left central (LC electrodes 65, 66, 71, 76, 77); (iii) right central (RC 

electrodes 163, 164, 173, 181, 182); and (iv) occipital (OC electrodes 117, 118, 119, 127, 

129).  5 

Alpha Power Calculation 

For each condition, HP, MP and NP, we averaged alpha power over 600 to 1,225 ms 

(aligned to sound onset) and all five electrodes in a cluster, to calculate the average alpha 

power of each cluster. To best capture the delay period activity just prior to image onset, 

we also calculated mean alpha power between -625 to -275ms (as the wavelet window 10 

is centered around each time point, the power estimate before -625 ms and after -275 ms 

may contain auditory and visual stimulus-related responses, respectively) for each trial 

aligned to image onset. To link EEG spectral power to behavior using our drift-diffusion 

model analysis (see section HDDM), we calculated single-trial baseline-corrected 

(divisive normalization) alpha band power, aligned to image onset.  15 

Granger Causality 

We calculated spectral Granger causality (GC) between electrodes in the right frontal and 

right central clusters using the SIFT plugin (https://sccn.ucsd.edu/wiki/SIFT) of EEGLAB 

(12, 13). GC was calculated on the image-aligned data to best capture delay period 

activity just before the image onset. For each cluster, in each subject, we used the 20 

electrode that showed the largest change in alpha power relative to baseline (based on 
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the electrode selection procedure above). First, we downsampled the data to 125 Hz. 

Second, we linearly detrended the data, then normalized it (divided the detrended data 

by its standard deviation). Next, we performed multivariate autoregressive modelling 

(MVAR) using a model order of 10, which corresponded to the first minimum Akaike 

information criterion value. Two models were fitted for each subject: one for the pre-drug 5 

baseline, and one under drug influence. For each sound (A1, A2 and A3), we calculated 

GC using a window length of 550 ms and a step size of 30 ms. We validated our models 

through checks for whiteness of residuals, percent consistency and model stability. All 

models were stable and had an average of 86% consistency. We calculated mean GC at 

each frequency (linear intervals) by averaging over the delay period (-625 ms to -275 ms; 10 

see section “Alpha Power Calculation” for justification of window length). 

Hierarchical Drift-Diffusion Model (HDDM) 

We used a drift-diffusion model (DDM) (14), where there are two possible choices 

(correct/incorrect responses of the match trials) in our predictive coding task. According 

to this model, decision-making involves the accumulation of evidence (drift process) from 15 

a starting point to one of two (upper or lower) thresholds, representing the choices. The 

accumulation rate is known as the drift rate, 𝑣; and the starting point can be biased 

towards one of the choices (in our study, by the predictive value of the sound), reflected 

in a bias parameter, z. We used HDDM software (http://ski.clps.brown.edu/hddm_docs/) 

(15) for hierarchical Bayesian estimation of the parameters of the drift-diffusion model. 20 

The hierarchical approach allows estimates of the group level and individual subject level 

parameters simultaneously. Particularly with fewer trials per condition, this method has 
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been shown to provide more reliable estimates of parameters and is less susceptible to 

outliers (14) than more traditional approaches to DDMs (16, 17) .  

To directly link the causal relationship between the sound and its paired greeble image to 

behavior and drift-diffusion parameters, we included the estimates of causal relationship 

and transitional probability as predictor variables of the bias, z, of the model. That is, we 5 

estimated posterior probability densities not only for basic model parameters, but also the 

degree to which these parameters are altered by variations in the psychophysical 

measures (DP, causal power, causal support and transitional probability). In these 

regressions, the bias parameter is given by, 𝑧(𝑡) = 	bF +	bE	𝐶𝑃(𝑡), where CP is either DP, 

causal power, causal support or transitional probability, bF is the intercept, and t is the 10 

trial number. Here, the slope, bE, is weighted by the value of the psychophysical measure 

on that trial. The regression across trials allows us to infer how the bias changes 

depending on the psychophysical measure. For example, if these psychophysical 

measures are positively correlated to bias, then increased causal strength or transitional 

probability will yield faster RTs. We fit four different versions of the model: (i) DP Model, 15 

where bias was estimated from the DP and updated after each trial; (ii) Causal Power 

Model, where bias was estimated from the causal power and updated after each trial; (iii) 

Causal Support Model, where bias was estimated from the causal support and updated 

after each trial; and (iv) Transitional Probability Model, where bias was estimated from 

the transitional probability and updated after each trial. We also modeled our data where 20 

drift rate varied according to causal strength or transitional probability. We used the 

Deviance Information Criterion (DIC) for model comparison (18). The DIC is a measure 
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of model fit (i.e., lack thereof) with a penalty for complexity (i.e., the number of parameters 

used to fit the model to the data) (19). Models with lower DIC are better models. Models 

where bias was manipulated instead of drift rate had significantly lower DIC. For the rest 

of our analyses, we used models where bias varied with causal strength or transitional 

probability and drift rate was kept constant at the default values, as this yielded the lowest 5 

DIC. 

We used Markov Chain Monte Carlo chains with 20,000 samples and 5000 burn-in 

samples for estimating the posterior distributions of the model parameters. We assessed 

chain convergence by visually inspecting the autocorrelation distribution, as well as by 

using the Gelman-Rubin statistic, which compares between-chain and within-chain 10 

variance. This statistic was near 1.0 for the parameters, indicating that our sampling was 

sufficient for proper convergence. We analyzed parameters of the best model (model with 

lowest DIC) using Bayesian hypothesis testing, where the percentage of samples drawn 

from the posterior fall within a certain region (e.g., > 0). Posterior probabilities ³ 95% were 

considered significant. Please note that this value is not equivalent to p-values estimated 15 

by frequentist methods, but they can be coarsely interpreted in a similar manner. 

All the model comparisons were estimated on the psychophysics data as these had the 

greatest number of trials per condition. This ensures robust estimation of the best model. 

The best-fitting model was then used to analyze data from different conditions: pre-drug 

baseline, under dexmedetomidine, under ketamine and recovery from ketamine. To 20 

directly link EEG spectral power to behavior and drift-diffusion parameters, we used the 

HDDM, but now included the right frontal cluster power estimate (aligned to image onset) 
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in the alpha band as the predictor variable of the bias, z, of the model; i.e., in the 

regression equation above, CP was now alpha power. 

Event-related Potentials 

We used ERPLAB (https://erpinfo.org/erplab) (20) to run event-related potential (ERP) 

analysis. First, we cleaned epoched data (aligned to the sound onset for auditory ERPs 5 

and to visual image onset for visual ERPs) using the pop_artmwppth.m function of 

ERPLAB with a moving window of 200 ms (2-3% of trials for each subject were excluded). 

We then averaged over trials to generate an average ERP for each subject. Based on 

previous literature (21–24), we chose channel 9 (Cz electrode) for auditory ERPs and 

channel 178 (T6) for visual ERPs. For auditory ERPs, we calculated the N200 response 10 

(negative peak amplitude between 200-300 ms) for each sound. We calculated the N170 

response (negative peak amplitude between 150-200 ms) for the predicted (A1-V1) and 

not-predicted (A2-V1) image, V1. The predicted response was subtracted from the not-

predicted response to calculate the mismatch negativity (MMN). 

EEG Signal Decoding 15 

We used the spectral power of EEG signals across four frequency bands, theta (5-7 Hz), 

alpha (8-14Hz), beta (15-30 Hz) and gamma (31-40 Hz), for the decoding analysis. We 

calculated the sum of squared absolute power in each frequency band for each electrode 

cluster (RF, LC, RC and OC), thus generating 16 features for each trial as the input 

dataset. For each 20 ms time bin, we trained a Support Vector Machine (SVM) model to 20 

classify the EEG data into three classes: highly predictive (HP), moderately predictive 
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(MP) and not-match predictive (NP). We denote 𝑦T(𝑡) ∈ {0,1,2} as the identifier of the 

condition at time bin 𝑡, where 0, 1, and 2 denotes HP, MP and NP respectively. The SVM 

classifier is implemented by a nonlinear projection of the training data 𝐱(𝑡) feature space 

𝒳 into a high dimensional feature space ℱ using a kernel function 𝜙. So with 𝜙:𝒳 ⟶ ℱ 

being the mapping kernel, the weight vector 𝐰 can be expressed as a linear combination 5 

of the training trials and the kernel trick can be used to express the discriminant function 

as 

𝑦(𝐱(𝑡); ζ(𝑡)) = ae(𝑡)ϕ𝐱(𝑡) + 𝑏(𝑡) = h𝑎i(𝑡)𝜑(𝐱i(𝑡), 𝐱(𝑡))
H

ikE

+ 𝑏(𝑡)																							(5) 

where ζ(𝑡) = {a(𝑡), 𝑏(𝑡)} is the new parameter at time bin 𝑡 with a(𝑡) and b(𝑡) as weights 

and biases of the mapped features space ℱ. We used the radial basis function (RBF) 10 

kernel that allows nonlinear decision boundary implementation in the input space. The 

RBF kernel holds the elements 

𝜑n𝐱i(𝑡), 𝐱(𝑡)o = exp(−h(𝑡)‖𝐱i(𝑡) − 𝐱(𝑡)‖s)																					(6) 

where h(𝑡) is a tunable parameter at each time bin. Model hypermeters consisting of 

regularization penalty (𝐶(𝑡)) and h(𝑡) were selected by grid search through 10-fold cross 15 

validation. F-score at each time bin and for each label was calculated as 

𝐹 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 								(7) 

where 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒			(8) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒	(9) 20 
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As we penalized the mapped weights of the classifier at each time bin, we used 

normalized absolute values of the weights as a measure to deduce each feature’s 

contribution to classify the outputs. 

Statistical Analysis 5 

We performed statistical analysis of trials from testing phases, and used the learning 

phase only to confirm that the participants learned the correct associations. To only 

include the trials where the causal power of HP, MP and NP trials have differentiated (Fig. 

1G), we excluded the first 50 trials of the testing phase in psychophysics experiments and 

the pre-drug baseline. We used all available trials for the testing phase of “under drug” 10 

and “after recovery”, as the causal power of HP, MP and NP trials were already 

differentiated from the beginning (Fig. S2, A and B). For RT analysis, we excluded RTs 

more/less than the mean +/- 3SD for each subject, and we used correct match trials. For 

delay period EEG analyses, we used both correct match and non-match trials. The data 

were analyzed using a linear mixed effect model with the predictive value of sound (HP, 15 

MP or NP; varying within subject) as the independent variable. We used contrast analysis 

to model the three categories of sounds. We used a linear (-1, 0, 1) contrast as our 

contrast of interest, and a quadratic (-1, 2, -1) contrast as the orthogonal contrast in the 

analysis. We used the same linear mixed effect model only changing the dependent 

variable with respect to hypotheses; i.e., RTs, accuracy (correct versus incorrect), 20 

average right frontal alpha power (aligned to sound onset), average GC at alpha 

frequency, or N200 amplitude in the auditory ERP. Our study conformed to the guidelines 
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set out by Ableson and Prentice (25) with regards to contrast analysis; i.e., we included 

the contrast of interest along with a paired, orthogonal contrast. Our statistical tests 

showed that contrasts of interest were significant while the orthogonal contrasts were not. 

To test if the MMN for the image is significantly less than zero, we used a paired t-test 

and FDR corrected for multiple comparisons. We used repeated measures ANOVA 5 

(Holm-Sidak corrected p-values) to test the significance of F-scores for the three 

differentially predictive conditions (HP, MP, NP) as well as the significance of each 

feature’s contribution in output classification. 
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Fig. S1. Fast RTs to predictive sounds not due to speed-accuracy trade off. Population 
average (25 subjects from psychophysics experiment) (A) RT and (B) accuracy for highly 
predictive (HP), moderately predictive (MP), and not-match predictive (NP) sounds. (C) 
Posterior probability density of b1 of hierarchical drift diffusion model from psychophysics 5 
experiment. (D) Directed graphs for calculating causal support. In graph 0, B causes E, 
but C has no relationship to either B or E. In graph 1, both B and C cause E (adapted 
from (3)).  
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Fig. S2. Ketamine blocked access to predictive information. (A) Population causal power 
values for subjects under ketamine. (B) Population causal power values after recovery 
when subjects regained access to predictive information. (C) Population causal power 
values for hypothetical condition where subjects re-learned predictive information. (D) 5 
Binned population cumulative average RT (±SE) during first 200 trials after recovery from 
ketamine (25 trials per bin) for highly predictive (HP), moderately predictive (MP), and 
not-match predictive (NP) sounds. (E) Posterior probability density of b1 for first 200 trials 
when subjects re-accessed predictive information (P=0.03).  
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Fig. S3. Early sensory processing differences cannot account for prediction strength as 
all three sounds generated similar auditory ERPs. (A) Time-frequency plot of power 5 
averaged over all electrodes and all trials. Power calculated in 0.55 s sliding windows, 
with window at 0 s representing interval -0.275 s to +0.275 s. Plot aligned to sound onset. 
(B) Auditory ERPs at Cz electrode for highly predictive (HP), moderately predictive (MP) 
and not-match predictive (NP) sounds. Linear contrast of N200 for HP, MP and NP not 
significant (p=0.15). 10 
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Fig. S4. Stronger predictions correlated with lower delay period alpha power at right 
frontal electrode cluster. Time-frequency decomposition of right frontal electrode cluster 
(RF) before drug administration (Pre) for HP (A), MP (B) and NP (C) sounds. Power 5 
calculated in 0.55 s sliding windows, with window at 0 s representing interval -0.275 s to 
+0.275 s. Plots aligned to image onset. (D) Population average RF alpha power (+SE) 
during delay period. 
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Fig. S5. Mismatch negativity disappears under ketamine. Population average visual ERP 
to V1 image at electrode 178 (T6) (A) before (Pre) and (B) under ketamine (Keta). Gray 
area in (A) highlights mismatch negativity (MMN) significantly less than zero (MMN<0; 5 
P=0.001). MMN in (B) was not significantly different from zero (MMN<0; P=0.18). P values 
FDR corrected. 
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 Effect Present (e+) 

Effect Present (V) 

Effect Absent (e-) 

Effect Absent 

Cause Present (c+) 

Cause Present (A) 

N(c+,e+) 

A1-V1 

N(c+,e-) 

A1-V2, A1-V3 

Cause Absent (c-) 

Cause Absent 

N(c-,e+) 

A2-V1, A3-V1 

N(c-,e-) 

A2-V2, A2-V3, A3-V2, A3-V3 

 

Table S1. 
2 X 2 contingency table for each sound. Generic contingency table for all sounds in black. 
N(c+,e+) represents the number of trials in which the effect occurs in the presence of the 5 
cause, N(c-,e+) represents the number of trials in which the effect occurs in the absence 
of the cause, N(c+,e-) represents the number of trials in which the cause occurs but not 
the effect, and N(c-,e-) represents the number of trials in which the cause and effect are 
absent. ‘Cause’ used in statistical sense. In green, example contingency table for sound 
A1 where N(c+,e+) are the number of trials V1 follows A1 (A1-V1); whereas N(c-,e+) 10 
would be the number of trials V1 follows A2 or A3 (A2-V1 or A3-V1) and so on. 
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