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Abstract 18 

Background 19 

African rice, Oryza glaberrima, is an invaluable resource for rice cultivation and for the improvement of biotic and 20 

abiotic resistance properties. Since its domestication in the inner Niger delta ca. 2500 years BP, African rice has 21 

colonized a variety of ecologically and climatically diverse regions. However, little is known about the genetic basis of 22 

quantitative traits and adaptive variation of agricultural interest for this species.  23 

Results 24 

Using a reference set of 163 fully re-sequenced accessions, we report the results of a Genome Wide Association Study 25 

carried out for African rice. We investigated a diverse panel of traits, including flowering date, panicle architecture and 26 

resistance to Rice yellow mottle virus. For this, we devised a pipeline using complementary statistical association 27 

methods. First, using flowering time as a target trait, we demonstrated that we could successfully retrieve known genes 28 

from the rice flowering pathway, and identified new genomic regions that would deserve more study. Then we applied 29 

our pipeline to panicle- and resistance-related traits, highlighting some interesting QTLs and candidate genes (including 30 

Rymv1 for resistance and SP1, Ghd7.1, APO1 and OsMADS1 for panicle architecture). Lastly, using a high-resolution 31 

climate database, we performed an association analysis based on climatic variables, searching for genomic regions that 32 

might be involved in adaptation to climatic variations. 33 

Conclusion 34 

Our results collectively provide insights into the extent to which adaptive variation is governed by sequence diversity 35 

within the O. glaberrima genome, paving the way for in-depth studies of the genetic basis of traits of interest that might 36 

be useful to the rice breeding community. 37 

 38 
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BACKGROUND 42 

African rice, Oryza glaberrima Steud., was domesticated independently of Asian rice Oryza sativa L. (Wang et al. 43 

2014; Meyer et al. 2016; Cubry et al. 2018; Choi et al. 2019). Its domestication took place in the inner delta of the Niger 44 

river (Cubry et al. 2018), from a wild relative species, Oryza barthii A. Chev.. Its origin from this wild Sahelian species 45 

certainly explains its strong tolerance or resistance to biotic and abiotic stresses (Sarla and Swamy 2005). In the context 46 

of increasing temperatures and a more variable climate, strong tolerance to such stresses is an important objective for 47 

rice agriculture worldwide. However, knowledge of the genetic basis of phenotypic variation in African rice remains 48 

very limited. With the exception of salinity tolerance (Meyer et al. 2016), few association studies have been performed 49 

for traits of agricultural interest in this species. Genome wide association studies (GWAS) have successfully identified 50 

genes of functional importance associated with flowering time in Asian rice (Zhao et al. 2011; Huang et al. 2012; Yano 51 

et al. 2016). For Asian rice, the genetic determination of this trait is well understood (Lee and An 2015), whereas we 52 

have no information about the variation of this trait for African rice. Another trait of broad interest for rice farmers and 53 

breeder communities is the architecture of the panicle. This trait is one of the main components of yield potential, 54 

because the number of seeds per panicle is directly related to the branching complexity of the inflorescence (Xing and 55 

Zhang 2010). With increasing global movement of plant material and climate change, biotic threats to rice agriculture 56 

continue to evolve and the search for new sources of resistance to pathogens is therefore a challenging research field. 57 

Rice yellow mottle virus (RYMV) is responsible for one of the most damaging diseases of rice in Africa (Kouassi et al. 58 

2005; Issaka et al. 2012; Kam et al. 2013). Resistance genes against RYMV are mostly found in O. glaberrima, and this 59 

species may be an interesting source of quantitative trait loci (QTLs) for global rice breeding strategies (Thiémélé et al. 60 

2010). 61 

To better assess the functional variation present in African rice, we developed a genome-wide association panel and 62 

corresponding phenotypic datasets for flowering time, inflorescence architecture, and resistance to RYMV. Using 63 

several complementary statistical models for genetic association, we identified key QTLs for flowering time variation, 64 

panicle architecture, quantitative resistance to RYMV and climatic variation. 65 

RESULTS 66 

A total of 892,539 SNPs from 163 different O. glaberrima accessions was used in the GWAS. We considered that 67 

population structure was best described by four genetic groups, and we used either one or both of the groupings and the 68 

kinship matrix as cofactors to correct for confounding effects in our analyses. The phenotypic data were obtained from 69 

infield experiments or from available public databases (data in Additional file 1: Table S1). Using ANOVA as the 70 

benchmark, all methods allowed an efficient correction for false positives (QQ-plots, see Additional files 2, 3, 4, 5).  71 
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Flowering time 72 

A genome-wide association study of flowering time based on data from the early planting dates allowed us to identify 73 

1,450 SNPs statistically associated with this trait (5% FDR threshold, Table 1; Additional file 2; Additional file 6: Table 74 

S2). Most of these SNPs were at a distance of less than 25kb from each other and were clumped into 80 genomic 75 

regions containing a total of 733 annotated genes (Table 1; Additional file 7: Table S3; Additional file 8: Table S4). 76 

Corresponding analyses performed using data from the later planting date revealed associations with a slightly larger 77 

number of significant SNPs: 2,649 significant SNPs corresponding to 134 regions and 1,223 annotated genes (Table 1; 78 

Additional file 2; Additional file 6: Table S2; Additional file 7: Table S3; Additional file 8: Table S4). Two hundred 79 

and sixty-two genes representing 25 genomic regions were found for both planting dates. Several GWAS peaks co-80 

localized with known Asian rice flowering time genes either for early or late planting (Table 2; Fig. 1): OsGI and 81 

OsMADS51 on chromosome 1; Hd6/OsMADS14/OsPHYC and ETR2 on chromosome 3; Hd3a/RFT1 on chromosome 6; 82 

and RCN1 on chromosome 11. When we compared the list of genes found in our study for flowering time with an 83 

expert list based on bibliography (Additional file 9: Table S5), we found a five-fold significant enrichment (G test 84 

associated p-value = 7e10-4), showing that our GWAS approaches were effective in retrieving known genes. 85 

GO term enrichment analysis performed on the complete list of genes found five significantly (p-value < 0.05) enriched 86 

GO terms using classic Fisher and weighted tests, two for cellular components (Golgi apparatus and peroxisome) and 87 

three for molecular functions (motor activity, carbohydrate binding and transcription factor activity) (Additional file 10: 88 

Table S6). An additional GO term was found for biological processes (Cellular processes) with the weighted test only. 89 

Panicle morphological traits 90 

Using six morphological traits, all association methods led to comparable numbers of significant associations (Table 1). 91 

The CATE model produced the highest number of significant SNPs for four of the six morphological traits. A total of 92 

1,010 significant SNPs was detected for at least one panicle morphological trait, except for spikelet number for which 93 

no significant SNP was found (Table 1; Additional file 3; Additional file 6: Table S2). Ninety-seven unique genomic 94 

regions associated with one or more morphological traits were defined (Table 1; Additional file 7: Table S3). Nine of 95 

the 97 unique regions were associated with more than one trait: one for secondary branch number (SBN) and primary 96 

branch average length (PBL) (rOg-PAN-18), three for primary branch number (PBN) and rachis length (RL) (rOg-97 

PAN-25, rOg-PAN-58, rOg-PAN-92), two for PBN and secondary branch internode average length (SBintL) (rOg-98 

PAN-8, rOg-PAN-56), two for RL and SbintL (rOg-PAN-78, rOg-PAN-88) and one for PBN, RL and SBintL (rOg-99 

PAN-90). The 88 remaining regions were each associated with a single trait: 32 for RL, 20 for PBN, 10 for PBL, 1 for 100 

primary branch internode average length (PBintL) and 25 for SBintL. Among the 97 associated regions, 858 annotated 101 
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genes were identified (Table 1; Additional file 8: Table S4). GO term analysis revealed no significant enrichment of 102 

gene categories in the regions of significant SNPs (Additional file 10: Table S6). 103 

Some genes already known to be involved in panicle development control co-localized with genomic regions associated 104 

with panicle morphological traits, examples including: ABERRANT PANICLE ORGANIZATION1 (APO1) which 105 

colocalizes with the region rOg-PAN-59 identify for the SBintL trait; SHORT PANICLE1 (SP1) with the rOg-PAN-91 106 

region (PBL); OsMADS1/LEAFY HULL STERILE1 (LHS1) with the rOg-PAN-22 region (RL); and 107 

Ghd7.1/Hd2/OsPRR37 with the rOg-PAN-65 (RL) region (Table 2). 108 

RYMV resistance 109 

Our association study of quantitative RYMV resistance detected a total of 2,199 associated SNPs (Table 1; Additional 110 

file 4; Additional file 6: Table S2). These SNPs defined 257 genomic regions containing 2,248 annotated genes (Table 111 

1; Additional file 7: Table S3; Additional file 8: Table S4). The EMMA model revealed a much higher number of 112 

significant SNPs compared to the other models, 1,831 SNPs and 177 regions being detected only with this model. 113 

Regions that were the most consistent across the different statistical methods were observed on chromosome 3 (rOg-114 

RYMV-125, position 10.5Mb, Additional file 7: Table S3), chromosome 4 (rOg-RYMV-159/rOg-RYMV-160, position 115 

25-25.3Mb), chromosome 6 (rOg-RYMV-200, position 15.1Mb) and chromosome 11 (rOg-RYMV-63, position 9,0-116 

9.2Mb; rOg-RYMV-77/rOg-RYMV-78, position 26.2-26.8Mb). 117 

We detected significant associations in the vicinity of two known resistance genes: RYMV1, located in rOg-RYMV-159 118 

on chromosome 4; and RYMV3, located in rOg-RYMV-77 on chromosome 11 (Albar et al. 2006; Pidon et al. 2017) 119 

(Fig. 2; Table 2). Analysis of GO terms (Additional file 10: Table S6) revealed enrichment in genes from the Golgi 120 

apparatus, known to be involved in both the replication of some plant viruses and in intracellular trafficking and cell-to-121 

cell movement (Pitzalis and Heinlein 2018). 122 

Environment-related variables 123 

In order to study association with environmental variables, we downloaded climatic variables for 107 geolocalised 124 

accessions (Cubry et al. 2018) from the worldclim v1.4 database (Hijmans et al. 2005). The first two axes of the PCA of 125 

bioclimatic data (BioPC1 and BioPC2) explained 49.91% and 26.32%  of the variance of all variables. BioPC1 was 126 

mainly explained by bio4 (temperature seasonality) and bio17 (precipitation of driest quarter) while BioPC2 was mainly 127 

explained by bio9 (mean temperature of driest quarter) and bio11 (mean temperature of coldest quarter). We evaluated 128 

the statistical association of genetic polymorphisms with the first and second axes of the PCA. No significant 129 

association was detected with BioPC1. BioPC2 allowed the identification of 52 SNPs (Table 1; Additional file 5; 130 
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Additional file 6: Table S2) and 17 regions encompassing 128 annotated genes (Additional file 7: Table S3; Additional 131 

file 8: Table S4). Among the identified genes, we found a cation/proton exchanger-encoding gene (LOC_Os02g04630, 132 

OsCAX4), an auxin-responsive gene (LOC_Os03g53150, OsAUX) and a MADS-box gene (LOC_Os03g11614, 133 

OsMADS1) (Table 2). GO term enrichment tests detected only one GO term as significantly over-represented, 134 

GO:0005576 (Cellular Components / extracellular region) (Additional file 10: Table S5). 135 

When considering maximum temperature variables (Tmax), 73.56% and 17.90% respectively of the variance was 136 

explained by the first PCA axis (TmaxPC1) and second PCA axis (TmaxPC2). No association was found with 137 

TmaxPC1, while TmaxPC2 allowed us to detect 228 regions including 1,946 annotated genes (Table 1; Additional file 138 

7: Table S3 and Additional file 8: Table S4). GO term analysis revealed several GO terms as being significantly 139 

enriched, including seven terms for Biological Processes (cell differentiation, cellular protein modification process, 140 

cellular component organization, embryo development, signal transduction, regulation of gene expression and response 141 

to external stimulus), two terms for Cellular Components (mitochondrion and plasma membrane) and five terms for 142 

Molecular Functions (receptor activity, kinase activity, nucleotide binding, translation factor activity/RNA binding and 143 

transferase activity) (Additional file 10: Table S5). One genomic region, rOg-Tmax-36, co-localized with a known QTL 144 

for seedling cold tolerance in O. sativa (Kim et al. 2014). 145 

DISCUSSION 146 

Overlap of flowering time and panicle architecture genetic networks between African and Asian crop species  147 

The flowering pathway is a well described pathway in Asian rice O. sativa, with several known key genes (Tsuji et al. 148 

2011; Hori et al. 2016). Based on our expert list of known flowering genes, we were able to show that our method 149 

significantly retrieved genes involved in the variability of this trait. We detected candidate regions that co-localize with 150 

some previously described flowering genes. Among them, Hd3a and RFT1 are florigen genes homologous to 151 

Arabidopsis thaliana FT (Komiya et al. 2008). Hd6 is a flowering repressor, causing late flowering under Long Day 152 

(LD) conditions (Ogiso et al. 2010). Overexpression of OsMADS14, a homolog of A. thaliana AP1, has been shown to 153 

be responsible for extreme early flowering in Asian rice (Jeon et al. 2000). OsMADS51 is a type I MADS-box gene that 154 

has been shown to promote flowering in Short Day (SD) conditions (Kim et al. 2007). OsGI is an ortholog of the A. 155 

thaliana GIGANTEA gene and its over-expression in rice leads to late flowering under both SD and LD conditions 156 

(Hayama et al. 2003). ETR2, encoding an ethylene receptor, has been shown to delay flowering by regulating the 157 

expression of OsGI (Wuriyanghan et al. 2009; Tsuji et al. 2011). Functional characterization of the RCN1 gene, 158 

homologous to A. thaliana TFL1, showed that this gene can promote late-flowering when overexpressed in transgenic 159 
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plants (Nakagawa et al. 2002). Finally the phytochrome OsPhyC gene encodes one of the three rice phytochromes and 160 

has been shown to be a flowering repressor (Takano et al. 2005). 161 

A large number of additional genomic regions (Additional file 7: Table S3) were identified for which further studies 162 

should be conducted in order to identify novel genetic diversity relating to the flowering pathway of African rice. The 163 

large number of regions observed is to be expected when dealing with polygenic traits and it should be noted that a 164 

comparable number of low effect QTLs was previously reported for flowering time in Asian rice on the basis of genetic 165 

mapping studies (Hori et al. 2016). 166 

Spikelet number per panicle was the main trait contributing to the diversity of panicle architecture observed in this 167 

population. No significant SNPs were identified for the SpN trait using any of the 4 models. A possible explanation for 168 

this result is that the trait might be associated with a large number of QTLs of low effect sizes, and may consequently be 169 

difficult to assess using the present GWAS panel. For panicle traits, the detected peaks were broadly characterized by 170 

relatively high p-values, suggesting that the associated morphological traits are highly polygenic with small effect sizes. 171 

Some genes previously implicated in the regulation of panicle development and/or architecture in O. sativa (Wang and 172 

Li 2011; Teo et al. 2014) were also found to be associated with panicle morphological trait variations in O. glaberrima, 173 

indicating a parallel evolution of the trait in the two species. The APO1 gene encodes an ortholog of the A. thaliana 174 

UNUSUAL FLOWER ORGAN (UFO) F-box protein and was reported to be involved in the control of rice spikelet 175 

number and panicle branching complexity through effects on meristem fate and cell proliferation (Ikeda et al. 2007; 176 

Ikeda-Kawakatsu et al. 2009). This gene was also found to be associated with QTLs relating to yield, panicle 177 

architecture complexity and lodging resistance in O. sativa (Terao et al. 2010; Ookawa et al. 2010). The 178 

OsMADS1/LEAFY HULL STERILE1 (LHS1) gene encodes a SEPALLATA-like MADS-box transcription factor (TF), 179 

which promotes the formation of spikelet/floret meristems (Jeon et al. 2000; Agrawal et al. 2005; Khanday et al. 2013). 180 

Interestingly, this gene was also identified within a major drought-tolerant QTL (qDTY3.2) (Saikumar et al. 2014) from 181 

a cross between O. sativa and O. glaberrima, corresponding to a genomic region associated with response to 182 

environmental variables (rOg-BioClim-3). SHORT PANICLE1 (SP1) encodes a putative PTR family transporter, which 183 

controls panicle size and branching complexity (Li et al. 2009). The Ghd7.1/Hd2/OsPRR37 gene encodes a PSEUDO-184 

RESPONSE REGULATOR (PRR) protein associated with a QTL displaying pleiotropic effects on spikelet number per 185 

panicle, plant height and heading date (Liu et al. 2013). 186 

Several association studies of panicle morphological trait diversity have been recently conducted for O. sativa (Bai et al. 187 

2016; Crowell et al. 2016; Rebolledo et al. 2016; Ta et al. 2018; Yano et al. 2019). Only a few overlaps of GWAS 188 

candidates were observed between the two rice crop species. As for the flowering time analysis, a large number of 189 

specific genomic regions (Additional file 7: Table S3) were identified. For these regions, further studies should lead to 190 
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the precise identification of genetic elements governing panicle diversity in African rice. Among the genes located in 191 

these specific regions, some were previously functionally characterized in O. sativa but without any observations of a 192 

direct relationship with panicle development, examples including: OsIPT2 (ADENOSINE PHOSPHATE 193 

ISOPENTENYLTRANSFERASE), encoding a cytokinin biosynthetic gene regulated by OsARID3 which is essential for 194 

shoot apical meristem (SAM) development in rice (Xu et al. 2015); VERNALIZATION INSENSITIVE 3-LIKE 1 195 

(OsVIL1) which is involved in flowering time through OsLF and GhD7 genes (Jeong et al. 2016); and the ent-kaurene 196 

synthase genes OsKS1 and OsKS2, which are involved in GA biosynthesis and associated with a GWAS mega locus 197 

related to panicle and yield traits in O. sativa (Sakamoto and Matsuoka 2004; Crowell et al. 2016). Other genes may be 198 

of interest on the basis of their annotations and the known functions of their orthologs, examples including: OsGRF5 199 

and GRF7, two members of the GROWTH-REGULATING FACTOR or GRF small gene family encoding TFs 200 

associated with SAM maintenance and flowering time in rice (Omidbakhshfard et al. 2015); and AP2_EREBP77 and 201 

OsRAV2, two members of the RELATED TO ABI3 AND VP1 or RAV subfamily of AP2/ERF TFs, homologous to the 202 

TEM genes from A. thaliana that affect FT induction through the photoperiod and GA pathways (Swaminathan et al. 203 

2008). 204 

Quantitative resistance to RYMV in O. glaberrima and major resistance genes 205 

The large number of significant SNPs associated with RYMV resistance may reflect the highly quantitative nature of 206 

partial resistance. However 83% of significant SNPs were detected only by the EMMA method (1,831 SNPs), 207 

suggesting that a high number of false positive SNPs was detected with this method. 208 

The regions identified as being associated with resistance against RYMV did not overlap with QTLs of partial 209 

resistance against RYMV previously identified in O. sativa (Boisnard et al. 2007), suggesting that different genes and 210 

pathways may lead to resistance. However, two major resistance genes against RYMV, RYMV1 and RYMV3, were 211 

found to be associated with quantitative resistance. RYMV1 encodes a translation initiation factor that acts as a 212 

susceptibility factor through its interaction with the genome-linked protein (VPg) of RYMV, which is required for viral 213 

infection (Albar et al. 2006; Hébrard et al. 2010). Several different alleles conferring high resistance are known 214 

(Thiémélé et al. 2010). The main candidate resistance gene for RYMV3 belongs to the family of nucleotide-binding 215 

domain and leucine-rich repeat containing (NLR) genes (Pidon et al. 2017), many of which are involved in pathogen 216 

recognition and effector-triggered immunity (de Ronde et al. 2014). NLR genes are known to be frequently organized 217 

into clusters and several additional NLR genes, annotated in the close vicinity of the RYMV3 candidate gene, might also 218 

be good candidates for quantitative resistance. Translation initiation factors and NLRs are known to act as determinants 219 

of high and monogenic resistance (de Ronde et al. 2014; Sanfaçon 2015). Moreover, a role in quantitative resistance has 220 

been clearly established for NLRs (Wang et al. 1999; Hayashi et al. 2010) and suggested for translation initiation 221 
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factors (Nicaise et al. 2003; Marandel et al. 2009). The RYMV1 and RYMV3 loci, or adjacent NLR gene loci, might thus 222 

harbor both alleles with quantitative effects and alleles with strong effects on RYMV resistance. Similarly, even if the 223 

RYMV2 major resistance gene to RYMV was not found to be associated with partial resistance in this study, a previous 224 

analysis strongly suggested that RYMV2 might be involved in partial resistance to RYMV in the species O. sativa 225 

(Orjuela et al. 2013). 226 

In addition to the above, genes encoding protein domains implicated previously in virus resistance, such as lectin 227 

(Yamaji et al. 2012) or methrin-TRAF domains (Cosson et al. 2010), were also found to be located in or close to 228 

significantly associated regions (Additional file 8: Table S4) and may constitute interesting candidates. Further studies 229 

should be conducted on these candidate genes, as well as on the additional genomic regions identified (see Additional 230 

file 7: Table S3) in order to describe the diversity of resistance pathways to RYMV in African rice. 231 

Relationship between environment-related variables and O. glaberrima diversity 232 

We did not find any significant association between the first PCA axis and either the set of bioclimatic variables or the 233 

monthly average maximal temperature. This could be explained by a high correlation between the first PCA axis and 234 

population genetic structure (Frichot et al. 2015). Correcting for confounding effects did not allow us to detect 235 

association at SNPs displaying allelic frequencies that correlated with such a structure. For the second PCA axis, several 236 

significant associations were found and interesting genes were identified, including genes related to drought or cold 237 

tolerance. Among the most interesting candidates, OsCAX4 is a salt-tolerance gene (Molla et al. 2015), OsAUX is an 238 

auxin-responsive gene that has been found to be significantly over-expressed in cold-tolerant seedlings (Dametto et al. 239 

2015) and OsMADS1 is located within a major drought-tolerant QTL (qDTY3.2) detected from a cross between both O. 240 

sativa and O. glaberrima (Saikumar et al. 2014). 241 

Several candidate regions have been identified that will require a more in-depth study in order to gather variations of 242 

interest for breeding purposes (see Additional file 7: Table S3). This is especially true for the temperature-related 243 

candidates, the latter being likely targets for genetic improvement in the context of a changing climate. 244 

CONCLUSIONS 245 

We report on the results of an extensive Genome Wide Association Study carried out for several traits on African rice. 246 

Analysis of the well-studied character of flowering time enabled us to retrieve a significant number of previously 247 

identified genes, thus validating our approach. We also carried out the first GWAS analysis to date of climate variables 248 

in relation to African rice, obtaining a list of candidate regions that should be the subject of further studies in order to 249 

detect functional variation linked to local adaptation and resistance or tolerance to abiotic stresses. 250 
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The RYMV resistance and panicle architecture traits for which we report significant associations are key agronomic 251 

traits that should interest farmers and breeders. Further studies aiming at identifying adaptive polymorphisms among the 252 

candidates found in this study and functional validation of candidate genes  will be needed to reinforce our results. 253 

 254 

MATERIAL AND METHODS 255 

Genotypic data 256 

Single nucleotide polymorphisms (SNPs) from 163 high-depth re-sequenced O. glaberrima accessions were used in this 257 

study (Cubry et al. 2018). SNPs were identified based on mapping to the Oryza sativa japonica cv. Nipponbare high 258 

quality reference genome in terms of assembly and annotation (Kawahara et al. 2013). The bioinformatic mapping 259 

pipeline, software and SNP filtering steps that were used are described in Cubry et al. (2018). 260 

SNPs with more than 5% missing data (minor fraction of total SNP set) were filtered out (Cubry et al. 2018). As 261 

missing data can reduce the power of association studies (Browning 2008; Marchini and Howie 2010), we imputed the 262 

remaining missing data based on a matrix factorization approach using the “impute” function from the R package LEA 263 

(Frichot and François 2015). This approach uses the results f ancestry estimation from a sparse non-negative matrix 264 

factorization (sNMF) analysis to infer missing genotypes (Frichot et al. 2014). In sNMF, we set K to infer four clusters 265 

and kept the best out of 10 runs based on a cross entropy criterion. 266 

Phenotyping of flowering time and panicle morphology 267 

Phenotyping of flowering time and panicle morphology was performed near Banfora (Burkina-Faso) under irrigated 268 

field conditions at the Institut de l’Environnement et de Recherches Agricoles (INERA) station in 2012 and 2014. 269 

Plants were sown at two different periods in the same year: the first at beginning of June (“early sowing”) and second in 270 

mid-July (“late sowing”). A total of 15 plants per plot of 0.5 m2 were grown. The field trials followed an alpha-lattice 271 

design with two replicates (Patterson and Williams 1976) per date of sowing per year. Each single block included 19 272 

accessions (i.e. 19 plots). In total, 87 O. glaberrima accessions were planted in 2012 and 155 in 2014. 273 

Flowering date (DFT) was scored when 50% of the plants for a given accession harbored heading panicles. Fourteen 274 

days after heading date, the three main panicles from three central plants per plot per repeat were collected (i.e. nine 275 

panicles/accession/repeat) from the early sowing. Each panicle was fixed on a white paper board, photographed and 276 

phenotyped using the P-TRAP software (AL-Tam et al. 2013). We estimated rachis length (RL), primary branch 277 

number (PBN), primary branch average length (PBL), primary branch internode average length (PBintL), secondary 278 
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branch number (SBN), secondary branch internode average length (SBintL) and spikelet number (SpN). All statistical 279 

analyses of the dataset were performed using R packages ade4, corrplot and agricolae (R software version 1.2.1335) as 280 

described in Ta et al. (2018). 281 

RYMV resistance phenotyping 282 

Resistance was evaluated based on ELISA performed on infected plants cultivated in the greenhouse, under controlled 283 

conditions. As high resistance to RYMV is widely accepted for African rice, we excluded highly resistant accessions, 284 

i.e. in which no virus can be detected with ELISA (Thiémélé et al. 2010; Orjuela et al. 2013; Pidon et al. 2017), and we 285 

focused only on quantitative resistance. We therefore assessed resistance on a set of 125 accessions. Two varieties were 286 

used as susceptibility controls, IR64 (O. sativa ssp. indica) and Nipponbare (O. sativa ssp. japonica), and one as a high 287 

resistance control, Tog5681 (O. glaberrima). Three replicate experiments of all varieties were performed. In each 288 

experiment, plants were organized in two complete blocks with four plant replicates per accession. 289 

Plants were mechanically inoculated three weeks after sowing, as described in Pinel-Galzi et al. (2018) with CI4 isolate 290 

of RYMV (Pinel et al. 2000). Four discs of 4 mm diameter were cut on the last emerged leaf of each plant 17 and 20 291 

days after inoculation (dai) and discs from the four plants of the same repeat were pooled. Samples were ground with a 292 

QIAGEN TissueLyser II bead mill and resuspended in 750 µL 1X PBST (Phosphate buffer saline with Tween 20). 293 

Virus content was estimated by DAS-ELISA (Pinel-Galzi et al. 2018). Preliminary tests on a subset of samples were 294 

performed to assess the dilution that best discriminated between samples. ELISA tests were finally performed at 295 

dilutions of 1/1,000 for 17 dai sampling date and 1/2,500 for 20 dai sampling date. As virus content was highly 296 

correlated between 17 and 20 days after infection (R2=0,81), the resistance level was estimated as the mean of the two 297 

sampling dates. 298 

Environmental variables 299 

For accessions with geographical sampling coordinates, we retrieved information for 19 climate-related variables 300 

(referred to here as bio) from the WORLDCLIM database at a 2.5 minute resolution (Hijmans et al. 2005). We also 301 

retrieved the average monthly maximum temperature (referred to here as Tmax). We first performed a Principal 302 

Component Analysis (PCA) on each set of variables to build uncorrelated composite variables. PCA were performed 303 

using R software (Frichot and François 2015). Association studies were performed using the first two components of 304 

each PCA. 305 
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Association studies 306 

For each trial, SNPs displaying a minimal allele frequency (frequency of the minor allele) lower than 5% were filtered 307 

out. We first adjusted a simple linear model (Analysis of variance, ANOVA) to associate phenotype and genotype. This 308 

simple method did not take into account any putative confounding factor and allowed us to assess whether taking into 309 

account relatedness and/or population structure could reduce false positive rates. Two classes of methods accounting for 310 

confounding factors were used: 1) mixed models using kinship matrix and/or population structure (Yu et al. 2006); and 311 

2) latent factor methods (Frichot et al. 2013). We used both mixed linear models MLM (Zhang et al. 2010) as 312 

implemented in GAPIT R package (Lipka et al. 2012) and EMMA (Kang et al. 2008) as implemented in R package 313 

EMMA. For EMMA, the kinship matrix was estimated using the emma.kinship function. For MLM (Q+K model), the 314 

kinship (K matrix) was computed using the Van Raden method and the first three principal components of a PCA of 315 

genomic data were used as the Q matrix. Finally, we used latent factor methods (Frichot et al. 2013) that jointly 316 

estimated associations between genotype and phenotype and confounding factors. We used the R packages LFMM2 317 

(Caye et al. 2019) and CATE (Wang et al. 2017) to perform these analyses. For LFMM2, we first made the estimation 318 

of the confounding factors by using a subset of SNPs obtained by applying a 20% MAF filter, and we considered four 319 

latent factors (Cubry et al. 2018). We then used the resulting confounding matrix for the analysis of genotype/phenotype 320 

association. For CATE, we considered all SNPs and we assumed four confounding factors in the association model. The 321 

results of all analyses were graphically represented by using a QQ-plot to assess confounding factor correction and 322 

Manhattan plots (R package qqman, Turner 2014). We used a false discovery rate (FDR) of 5% to select candidate 323 

SNPs for each method. FDR estimation was realized using the R package qvalue (Storey et al. 2019). 324 

GWAS analysis was performed separately for each year and trial (see Additional file 1: Table S1). P-values obtained 325 

for the same traits or the same planting data were combined across experiments using Fisher’s method (Sokal and Rohlf 326 

2012). The final list of candidate SNPs was established for each trait by considering SNPs detected by at least one 327 

method. Annotation of retained candidate SNPs was performed using the SNPeff annotation data for MSU7 (Kawahara 328 

et al. 2013), considering genes within the region 25kb upstream and 25kb downstream from each detected SNP. We 329 

used the funRiceGenes database (http://funricegenes.ncpgr.cn; Yao et al. 2018) to extract gene symbols and associated 330 

functional information whenever possible. 331 

Finally, for flowering traits, we established a list of known genes of particular interest from published data (Tsuji et al. 332 

2011; Hori et al. 2016). This “expert” list was then used to assess the performance of our GWAS approach to retrieve 333 

these potential candidates. We used a G-test to assess enrichment of candidates in our list of identified genes. 334 

Gene ontology (GO) term enrichment tests for biological process, cellular component and molecular function terms 335 

were performed using the Fisher exact test implemented in the R package TopGO (Alexa et al. 2006). 336 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 8, 2020. ; https://doi.org/10.1101/2020.01.07.897298doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.07.897298
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

 337 

List of abbreviations 338 

ANOVA – Analysis of Variance 339 

BioPC1 – First principal component of PCA on bioclimatic variables 340 

BioPC2 – Second principal component of PCA on bioclimatic variables 341 

dai – Days after inoculation 342 

DFT – Days to flowering 343 

ELISA – Enzyme-linked immunosorbent assay 344 

FDR – False discovery rate 345 

GO – Gene ontology 346 

GWAS – Genome wide association study 347 

INERA – Institut de l’environnement et de recherches agricoles 348 

LD – Long days 349 

NLR – Nucleotide binding leucine rich repeat 350 

PbintL – Primary branch internode average length 351 

PBL – Primary branch average length 352 

PBN – Primary branch number 353 

PCA – Principle component analysis 354 

QTL – Quantitative trait locus 355 

QQ-plot – quantile-quantile plot 356 

RL – Rachis length 357 

RYMV – Rice yellow mottle virus 358 

SbintL – Secondary branch internode average length 359 

SBN – Secondary branch number 360 

SD -Short days 361 

SpN – Spikelet number 362 

SNP – Single nucleotide polymorphism 363 

TF – Transcription factor 364 

TmaxPC1 – First principal component of PCA on maximal temperature variables 365 

TmaxPC2 – Second principal component of PCA on maximal temperature variables 366 
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Table 1. Numbers of significant SNPs, regions and genes found to be associated with the different traits. 599 

Significant SNPs were detected with the different models using the Fisher combination method and based on a FDR 5% 600 

threshold. The "All methods" column indicates the number of SNPs detected with at least one method. Fifty kb 601 

windows around these SNPs defined independent genomic regions associated with each trait. 602 

 603 

 Significant SNPs Regions Genes 

Trait EMMA GAPIT LFMM CATE All methods   

BioPC1 0 0 0 0 0 0 0 

BioPC2 47 0 38 42 52 17 128 

TmaxPC1 0 0 0 0 0 0 0 

TmaxPC2 2,308 78 1,559 1,656 2,378 228 1,946 

Early Sowing 850 0 1,343 1,044 1,450 80 732 

Late Sowing 251 0 2,042 2,535 2,649 134 1,223 

RYMV 2,171 387 197 156 2,264 257 2,248 

SpN 0 0 0 0 0 0 0 

PBN 0 0 0 257 257 25 243 

SBN 1 0 0 0 1 1 10 

RL 243 0 0 0 243 38 361 

PBL 0 0 56 54 57 12 91 

PBintL 1 0 0 1 1 1 9 

SBintL 123 0 281 454 455 30 266 
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Table 2. List of the main candidate genes identified in regions associated with RYMV resistance, flowering time, panicle architecture and climate variation. 604 

 605 

Trait Region Chrom. Locus name (MSU) Gene symbol Annotation Function References 

RYMV 
resistance 

rOg-RYMV-77 11 LOC_Os11g43700  RGH1A_C_putative_C_expressed candidate for 
resistance to 
RYMV, NLR gene 

Pidon et al. 2016 doi: 10.1007/s00122-
017-2853-0 

 rOg-RYMV-159 4 LOC_Os04g42140 Rymv1|eIF(is
o)4G 

eukaryotic_initiation_factor_iso-
4F_subunit_p82-
34_C_putative_C_expressed 

resistance to 
RYMV 

Albar et al. 2006 doi: 10.1111/j.1365-
313X.2006.02792.x 

Flowering 
time 

rOg-Flower-2 1 LOC_Os01g08700 OsGI GIGANTEA_C_putative_C_expre
ssed 

Circadian 
rhythm/Flowering 
activator 

Hayama et al. 2002 doi: 
10.1093/pcp/pcf059 

 rOg-Flower-29 1 LOC_Os01g69850 OsMADS51 OsMADS65_-_MADS-
box_family_gene_with_MIKC_A_
type-box_C_expressed 

SD activator Kim et al. 2007 doi: 
10.1104/pp.107.10329
1 

 rOg-Flower-71 3 LOC_Os03g54160 OsMADS14 OsMADS14_-_MADS-
box_family_gene_with_MIKCc_ty
pe-box_C_expressed 

Floral transition Kim et al. 2007 doi: 
10.1104/pp.107.10329
1 

 rOg-Flower-71 3 LOC_Os03g54084 OsPhyC phytochrome_C_C_putative_C_ex
pressed 

LD repressor   

 rOg-Flower-72 3 LOC_Os03g55389 Hd6|CK2α casein_kinase_II_subunit_alpha-
1_C_putative_C_expressed 

LD repressor Ogiso et al. 2010 doi: 
10.1104/pp.109.14890
8 

 rOg-Flower-83 4 LOC_Os04g08740 ETR2 ethylene_receptor_C_putative_C_e
xpressed 

Ethylene receptor Wuriyanghan et al. 
2009 

doi: 
10.1105/tpc.108.0653
91 

 rOg-Flower-114 6 LOC_Os06g06320 Hd3a osFTL2__FT-
Like2_homologous_to_Flowering_
Locus_T__gene 

Florigen Kojima et al. 2002 doi: 
10.1093/pcp/pcf156 

 rOg-Flower-114 6 LOC_Os06g06300 RFT1 osFTL3__FT-
Like3_homologous_to_Flowering_
Locus_T__gene 

Florigen Kojima et al. 2002 doi: 
10.1093/pcp/pcf156 

 rOg-Flower-168 11 LOC_Os11g05470 RCN1 RCN1__Centroradialis-
like1_homogous_to_TFL1__gene 

Similar to 
phosphatidylethan
olamine-binding 
protein 

Nakagawa et al. 
2002 

doi: 10.1046/j.1365-
313X.2002.01255.x 

Panicle rOg-PAN-22 3 LOC_Os03g11614 OsMADS1|LH
S1|AFO 

OsMADS1_-_MADS-
box_family_gene_with_MIKCc_ty
pe-box_C_expressed 

Spikelet meristem 
determinancy and 
floral organ 

Jeon et al. 2000 doi: 
10.1105/tpc.12.6.871 
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identity 

 rOg-PAN-59 6 LOC_Os06g45460 APO1|OsAPO
1|SCM2 

OsFBX202_-_F-
box_domain_containing_protein_C
_expressed 

Inflorescence 
form, Loading 
resistance and 
grain yield 

Ikeda et al. 2007 doi: 10.1111/j.1365-
313X.2007.03200.x 

 rOg-PAN-65 7 LOC_Os07g49460 Ghd7.1|Hd2|
OsPRR37|DT
H7 

response_regulator_receiver_doma
in_containing_protein_C_expresse
d 

Heading date, 
inflorescence form 
and grain yield 

Liu et al. 2013 doi: 
10.1111/jipb.12070 

 rOg-PAN-91 11 LOC_Os11g12740 SP1 peptide_transporter_PTR2_C_puta
tive_C_expressed 

Panicle elongation Li et al. 2009 doi: 10.1111/j.1365-
313X.2009.03799.x. 

Environment rOg-BioClim-2 2 LOC_Os02g04630 OsCAX4 sodium_Fcalcium_exchanger_prot
ein_C_putative_C_expressed 

Salt tolerance gene Molla et al. 2015 doi: 10.1186/s12870-
015-0498-1 

 rOg-BioClim-3 3 LOC_Os03g11614 OsLG3b|OsM
ADS1|LHS1|A
FO 

OsMADS1_-_MADS-
box_family_gene_with_MIKCc_ty
pe-box_C_expressed 

candidate for 
drought tolerance 

Saikumar et al. 
2014 

doi: 
10.1016/j.fcr.2014.03.
011 

 rOg-BioClim-4 3 LOC_Os03g53150 OsIAA13|OsiI
AA1|OsAUX 

OsIAA13_-_Auxin-
responsive_Aux_FIAA_gene_fami
ly_member_C_expressed 

differentially 
expressed 
between cold-
sensistive and 
cold-tolerant 
genotypes during 
seed germination 

Dametto et al. 
2015 

doi: 
10.1016/j.plantsci.20
15.05.009 
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FIGURE CAPTIONS 606 

Figure 1. Manhattan plots of LFMM association results for flowering time assessed for early (upper pane) and 607 

late (lower pane) sowing. The red line indicates the 5% FDR threshold. Known Asian rice flowering genes found in 608 

the vicinity of significant SNPs are indicated. 609 

 610 

Figure 2. Details of Manhattan plots obtained with LFMM on regions associated to RYMV resistance on 611 

chromosome 4 (A) and 11 (B). The 5% FDR threshold is represented by a red horizontal line. Positions of the major 612 

resistance genes RYMV1 and RYMV3 are indicated by plain blue lines and positions of other NLR genes on chromosome 613 

11 are indicated by dotted blue lines. 614 

ADDITIONAL FILE CAPTIONS 615 

Additional file 1_Table S1. Phenotypic data used for genome-wide association analyses. Flowering time (DFT), 616 

rachis length (RL), primary branch number (PBN), primary branch average length (PBL), primary branch internode 617 

average length (PBintL), secondary branch number (SBN), secondary branch internode average length (SBintL) and 618 

spikelet number (SpN) were evaluated in field conditions in 2012 and 2014. Resistance to RYMV was evaluated in 619 

greenhouse conditions during three experiments (RYMV1, RYMV2, RYMV3) shifted of about 1-2 months. 620 

Environmental data were extracted from the worldclim database at available sampling locations. A Principal 621 

Component Analysis was then performed on i) the whole set of variables and ii) only maximal temperature related ones. 622 

The two first axes of both these PCA were then used for association analyses and are reported in this table. 623 

  624 

Additional file 2. Manhattan plots and QQ plots for flowering time. Association analysis was performed on both 625 

early and late plant sowings. The 5% FDR thresholds are indicated by red lines. 626 

 627 

Additional file 3. Manhattan plots and QQ plots for panicle architecture related traits. Association analysis was 628 

performed independently for each trait and repetition. P-values obtained for each replicate were then combined using a 629 

Fisher method to obtain final p-values for each trait. The 5% FDR thresholds are indicated by red lines. 630 

 631 

Additional file 4. Manhattan plots and QQ plots for RYMV resistance. The three replicates of phenotypic 632 

evaluation were combined based on a Fisher method. The 5% FDR thresholds are indicated by red lines. 633 

 634 

Additional file 5.  Manhattan plots and QQ plots for environmental data. The 5% FDR thresholds are indicated by 635 

red lines. 636 

 637 

Additional file 6_Table S2. List of the SNPs associated with eleven different phenotypic traits. Significant SNPs 638 

were identified based on four different models (EMMA, CATE, LFMM and GAPIT), the Fisher method to combine 639 

several repetitions of phenotypic data and a 5% FDR threshold. For each trait, the p-values obtained with the different 640 

models are indicated if significant. 641 

 642 

Additional file 7_Table S3. List of the genomic regions associated with five different categories of phenotypic 643 

traits. Regions were defined based on 50 kb windows around the significant SNPs detected with any of the four 644 

models. Overlapping regions were combined into a single one. The chromosome (Chr), the starting (Position 1) and 645 
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ending (Position 2) positions, the size of the region (Intervals) in base pairs and the number of significant SNPs 646 

included (Sign_SNPs_nb) are indicated. Sheets ”RYMV”, “Tmax”, BioClim” concerned the regions identified for the 647 

resistance to RYMV, the maximum temperature related variables and the whole set of bioclimatic variables, 648 

respectively. The sheet “Flowering” concerned regions identified with the early sowing flowering time (Early) or the 649 

late sowing flowering time (Late) traits, as indicated in the two last columns. The sheet “Panicle” concerned regions 650 

identified with rachis length (RL), primary branch number (PBN), primary branch average length (PBL), primary 651 

branch internode average length (PBintL), secondary branch number (SBN), secondary branch internode average length 652 

(SBintL) and spikelet number (SpN), as indicated in the last columns. 653 

 654 

Additional file 8_Table S4. List of genes located in each of the regions associated with five categories of 655 

phenotypic traits. 656 

 657 

Additional file 9_Table S5. Expert list of genes previously described as involved in flowering time in Asian rice 658 

and test of enrichment of the list of genes detected by our association analysis. Fold-enrichment and G-test 659 

associated p-value are reported. 660 

 661 

Additional file 10_Table S6. GO terms tables. GO term analyses were run independently for each trait (TmaxPC2, 662 

BioPC2, Flowering Time, Panicle, and RYMV). Results are shown for each trait and for the three GO term categories 663 

(Biological processes, Cellular components, Molecular functions). 664 
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