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Abstract 

Background 

Hypothesis-free Mendelian randomization studies provide a way to assess the causal relevance of a trait 

across the human phenome but can be limited by statistical power or complicated by horizontal 

pleiotropy.  The recently described latent causal variable (LCV) approach provides an alternative method 

for causal inference which might be useful in hypothesis-free experiments.   

Methods 

We developed an automated pipeline for phenome-wide tests using the LCV approach including steps to 

estimate partial genetic causality, filter to a meaningful set of estimates, apply correction for multiple 

testing and then present the findings in a graphical summary termed a causal architecture plot.  We apply 

this process to body mass index and lipid traits as exemplars of traits where there is strong prior 

expectation for causal effects and dental caries and periodontitis as exemplars of traits where there is a 

need for causal inference. 

Results 

The results for lipids and BMI suggest that these traits are best viewed as creating consequences on a 

multitude of traits and conditions, thus providing additional evidence that supports viewing these traits 

as targets for interventions to improve health.  On the other hand, caries and periodontitis are best viewed 

as a downstream consequence of other traits and diseases rather than a cause of ill health.   

Conclusions 

The automated process is available as part of the MASSIVE pipeline from the Complex-Traits Genetics 

Virtual Lab (https://vl.genoma.io) and results are available in (https://view.genoma.io). We propose 

causal architecture plots based on phenome-wide partial genetic causality estimates as a way visualizing 

the overall causal map of the human phenome.  
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Key messages  
1) The latent causal variable approach uses summary statistics from genome-wide association studies 
to estimate a parameter termed genetic causality proportion. 
 
2) Systematic estimation of genetic causality proportion for many pairs of traits provides an alternative 
method for phenome-wide causal inference with some theoretical and practical advantages compared 
to phenome-wide Mendelian randomization. 
 
3) Using this approach, we confirm that lipid traits are an upstream risk factor for other traits and 
diseases, and we identify that dental diseases are predominantly a downstream consequence of other 
traits rather than a cause of poor systemic health. 
  
4) The method assumes no bidirectional causality and no confounding by environmental correlates of 
genotypes, so care is needed when these assumptions are not met. 
 
5) We developed an automated and accessible pipeline for estimating phenome-wide causal 
relationships and generating interactive visual summaries. 
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Introduction 

Associations between causal risk factors and disease can suggest new ways to improve health. 

Conventional epidemiological studies may uncover correlations but cannot easily disentangle non-causal 

or reverse-causal relationships where interventions on the putative risk factor will be ineffective. In this 

article, risk factors are described as “upstream” if they have effects on disease, or “downstream” if the 

putative risk factor is a marker of or a consequence of the disease, irrespective of chronology.  

Dental diseases are good examples of complex diseases which are associated with a range of poor health 

outcomes and are hypothesized to be both a cause and consequence of ill health1 but the limitations of 

conventional epidemiological methods do not exclude confounded association. In the context of recent 

calls to prioritize prevention and early interventions, address the global health problem of dental diseases 

and overcome isolation between dentistry and medicine2, 3, there is a need to locate dental diseases in 

the context of causal flow through the human phenome. Conversely, lipid biomarkers such as low-density 

lipoprotein cholesterol (LDL-C) are good examples of traits which are known to have effects on human 

health including cardiovascular disease4, 5 and may act as a positive control for contemporary 

epidemiological methods which aim to identify causal relationships. 

In recent years techniques have been proposed which use genetic data to try and assert causality in 

observational studies6 and these are particularly valuable in situations where large scale interventional 

studies would be impractical or unethical. One example is Mendelian Randomization (MR), an analytical 

paradigm which uses genetic variants as proxies for a risk factor in order to test for causal effects on an 

outcome7. In dental epidemiology, this method has been used to examine the effects of potentially 

modifiable risk factors like Vitamin D and body mass index on caries and periodontitis8, 9, to assess the 

possible impact of periodontitis on hypertension10 and undertake bi-directional analysis to test for causal 

relationships between dental diseases and cardio-metabolic traits in both directions11. To date, these 

studies have only explored a small number of traits and the bespoke experimental design used for each 

study makes it difficult to compare estimates for different diseases. Dental diseases may therefore serve 

as a model for complex traits where it would be helpful to perform a causal inference analysis in a 

systematic manner across the whole phenome.  

There are practical challenges meaning that MR may not be the preferred approach for a phenome-wide 

causal experiment in this context.  At its heart, MR experiments rely of vertical pleiotropy, that is to say a 

genotype with effects on trait A is associated with trait B because trait A affects trait B. It can be difficult 

to distinguish this from horizontal pleiotropy, where a genetic variant has biological effects on both trait 

A and trait B. Many genetic variants have horizontally pleiotropic effects, leading to false positive findings 

or over-estimation in effect sizes at true positive associations in classical MR experiments11, 12. Several 

estimation techniques have been developed which use the distribution of causal effect estimates across 

multiple variants in an attempt to detect and account for13-15 or at least reduce the impact of horizontal 

pleiotropy16. These methods may however introduce additional assumptions about the distribution of 

effect estimates17, 18 and run into problems when these assumptions are not met19, suggesting each 

estimate produced using these methods may need interpretation on a case by case basis to assess 

whether the assumptions are reasonable. In addition, MR experiments can produce spurious findings due 

to sample overlap 20 which can be problematic in phenome-wide studies, as the same underlying 

population in a consortium or biobank may contribute to the available genetic evidence for many different 

traits. Finally, MR experiments use information from a small number of genetic variants and discard 
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information from most of the genome, meaning that statistical power may be limited for a phenome-wide 

experiment for traits such as dental diseases which have relatively few robust single variant association 

signals. 

An alternative analytical paradigm – the latent causal variable (LCV) method – has recently been proposed. 

LCV uses information aggregated across the whole genome to infer potentially causal relationships 

between complex human traits and diseases21. In conjunction with large-scale genetic association studies 

made possible by resources such as UK Biobank22 and automated pipelines for quality control and analysis 

such as the Complex-Traits Genetics Virtual Lab (CTG-VL)23, this method now provides an opportunity to 

obtain information on potentially causal relationships efficiently and at phenome-wide scale. Here we 

introduce CTG-VL’s newly implemented capability to perform a phenome-wide scan across hundreds of 

traits using the LCV method and the visualization of the results using causal architecture plots. We 

showcase this method using GWAS data for body mass index, lipid levels, dental caries and periodontitis 
11. 

 

Methods 

Conceptual overview  

The genetic correlation between two traits represents the correlation in genetic effect sizes at common 

genetic variants across traits24. The latent causal variable (LCV) approach initially estimates the genetic 

correlation between traits A and B using a modified linkage disequilibrium score regression technique, 

which can detect and account for sample overlap in genetic association studies24, and subsequent stages 

are only informative when there is detectable genetic correlation. Next, the model fits a single unobserved 

variable (termed L) which is causal for trait A and trait B and mediates the observed genetic correlation 

between traits A and B. To distinguish between horizontal and vertical pleiotropy the LCV model compares 

the correlation between L and trait A with the correlation between L and trait B and estimates a parameter 

termed genetic causality proportion (GCP). Positive values of GCP suggest vertical pleiotropy where trait 

A lies upstream of trait B and interventions on trait A are likely to affect trait B while negative GCP values 

indicate that B lies upstream of trait A. GCP values near 0 imply that the genetic correlation between traits 

A and B is mediated by horizontal pleiotropy and interventions on traits A or B are unlikely to affect the 

other trait. A detailed description of the LCV method is provided in the original publication21.  
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Figure 1: Use of a latent variable for causal inference. The genetic effects on trait A and B (purple arrows) 

are correlated in all scenarios. This could be due to horizontal pleiotropy (1A, true causal pathway drawn 

in black), vertical pleiotropy (1B, true causal pathway drawn in black) or a combination of both processes. 

In LCV analysis an inferred causal pathway is created which mediates the observed genetic correlation 

between traits A and B and must always pass through L. Where horizontal pleiotropy mediates the genetic 

correlation between traits A and B, the genetic correlation between L and traits A and B is similar in 

magnitude giving a GCP estimate near zero (Figure 1C, inferred causal pathway drawn in yellow, true 

causal pathway shown in 1A). In situations where L has a perfect genetic correlation with trait A, the only 

effects of genotypes on trait B must be through their effects on trait A, (1D, inferred causal pathway drawn 

in yellow, true causal pathway shown in 1B), analogous to a positive finding in a classical MR experiment 

using a valid instrument and resulting in a GCP estimate of 1.   

Using the distribution of GCP estimates to infer the causal architecture of a trait. 

If traits A and trait B are swapped the GCP estimate is unchanged in magnitude however the sign is 

reversed. In an experiment involving all pairwise comparisons between n traits this creates symmetry, 

which is to say for every positive signed GCP estimate observed in the experiment there must be an equal 

but negatively signed GCP estimate corresponding to the same pair of traits but with the order of traits 

reversed. If a randomly selected trait from group n has predominantly positive GCP estimates, this implies 

that the trait is an upstream factor of the majority of other traits in group n. Conversely, if the GCP 
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estimates are predominantly negative, this implies that the trait is a downstream factor of most other 

traits in group n and interventions on this trait are less likely to change the other traits in group n.  

We suggest that if two or more target traits are compared against the same panel of anchor traits, then 

differences in the distribution of GCP estimates between those traits provide an indication of which target 

traits may have a greater or lesser causal relevance (assuming GWAS of anchor traits are equally powered 

– see Discussion) for the human phenome, which traits represent upstream determinants of health and 

which are downstream consequences of other traits. We propose an automated pipeline for obtaining 

GCP estimates for target traits against a shared panel of anchor traits and visualizing the results in a causal 

architecture plot.  

Pipeline stages and implementation 

All traits conducted in studies of European ancestry in CTG-VL catalogue were selected. CTG-VL is a 

curated resource of genome-wide association (GWA) summary statistics and downstream analysis 23. The 

complete list of GWA summary statistics and references are available in CTG-VL. Briefly, these data were 

derived from various international genetics consortia and UK Biobank, where the inclusion criteria was a 

nominally significant (P<0.05) single nucleotide polymorphism (SNP) based heritability derived from LD-

score regression25. In total 1389 studies are currently available in CTG-VL. References for each of these 

GWAS are directly available in CTG-VL.  

Traits selection 

As a positive control, the analyses were first performed on GWAS summary statistics for high density 

lipoprotein cholesterol (HDL-C, n=188,577), low density lipoprotein-cholesterol (LDL-C, n=188,578), total 

cholesterol (TC, n=188,579), triglycerides (TG, n=188,580) 26 and body mass index (BMI) (n=339,224) 27 

where we expected to observe effects of these traits on a multitude of traits and conditions. We then 

showcase this pipeline using GWAS summary statistics of dental caries and periodontitis due to a paucity 

of existing causal evidence. Genetic association data for dental disease traits were taken from genome-

wide association studies which combined clinical data from the GLIDE consortium with genetically 

validated proxy phenotypes from UK Biobank as previously described11. Data were combined using a z-

score genome-wide meta-analysis weighted by effective sample size. The traits were a) decayed, missing 

and filled tooth surfaces (n=26,792 from nine studies in GLIDE) and dentures (ncases=77,714, 

ncontrols=383,317 in UK Biobank) and b) periodontitis (ncases=17,353, ncontrols=28,210 from seven studies) and 

loose teeth (ncases=18,979, ncontrols=442,052).  

Analysis 

The R version (URL: https://github.com/lukejoconnor/LCV) for the LCV method made available by the 

original authors 21 was implemented in CTG-VL to carry out phenome-wide scans as parts of CTG-VL’s  

MASSIVE (Massive downstream analysis of summary statistics) pipeline (URL: https://vl.genoma.io). LCV 

models were fitted in a pairwise manner comparing each test trait to each anchor trait using the 

automated implementation of the LCV method in CTG-VL. For the analysis we used the subset of genetic 

variants present in the HapMap3 consortium dataset 28 and linkage disequilibrium scores obtained from 

European ancestry samples within the 1000 genomes project data (phase 3, 2018 release, provided by 

provided by Alkes Price’s group (URL: https://data.broadinstitute.org/alkesgroup/LDSCORE/ ).  

Post-processing 
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LCV estimates are only informative when there is evidence for genetic correlation between the target trait 

and anchor trait. First, traits with evidence for a non-zero genetic correlation (Benjamini-Hochberg’s FDR 

< 5%) were carried forward. Next, we ran LCV analyses to estimate GCP in the remaining traits and again 

applied a Benjamini-Hochberg’s FDR < 5% to the GCP p-value (H0: GCP =0).  

Causal architecture plots 

To visualize a target trait in the context of the human phenome we propose a visual summary termed a 

causal architecture plot (Figure 2). Each marker indicates an anchor trait where there is detectable genetic 

correlation with the target trait so plots with a complex target trait with few markers may indicate low 

heritability or an underpowered GWAS. The Y axis represents the strength of evidence for causal 

relationship between the target trait and anchor trait with a red line indicating which relationships pass 

multiple test correction, allowing differences between traits with limited causal relevance or widespread 

causal relevance to be identified. A symmetrical funnel plot indicates equal numbers of upstream and 

downstream factors for the target trait (e.g. Figure 2A, Figure 2D), while an asymmetrical funnel indicates 

the causal direction is predominantly from the anchor traits to the target trait (e.g. Figure 2E) or from the 

target trait to the anchor traits (Figure 2E), as shown by the different shaded zones (Figure 2F). The 

markers are colored to show the strength and direction of genetic correlation, which also indicates 

whether causal relationships are in a trait-increasing or trait-decreasing direction. Finally, the size of 

markers provides an indication about the precision of the LCV estimates and labels provide the names of 

the anchor traits with strongest evidence for causal association.  

 

Figure 2: Interpretation of causal architecture plots. Each dot represents a test trait tested against the 

anchor trait and the red line represents the statistical significance threshold (FDR < 5%). A) Schematic 

showing regions of the plot which represent non-causal relationships (grey), upstream (pink) and 

downstream (yellow) causal relationships, B) Under-powered experiment, C) well-powered experiment 

for a trait with limited causal relevance, D) The trait has many causal relationships in both upstream and 
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downstream directions, E) A trait which is causally affected by other upstream traits F) A trait with 

downstream effects. 

Results 

Lipid traits 

We observed that LDL, HDL, TG and TC produced causal architecture plots showing only downstream 

effects on several traits (Figure 3). Table 1 summarizes the number of causal relationships estimated by 

LCV per each trait and Supplementary Table 1-4 show the complete list of results. HDL had many causal 

relationships in a trait-decreasing (risk reducing for disease traits) direction while effects of TG were 

predominantly in a trait-increasing direction. TC and LDL had relatively few genetic correlations however 

a large proportion of these were partially due to causal effects, again, predominantly in a downstream 

direction. 

 

Figure 3: Comparison of the causal architecture of lipid traits. Only traits with a genetic correlation at FDR 

< 5% are shown. The red dashed line corresponds to the statistical significance threshold (FDR < 5%) for 

genetic causality proportions. 
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Table 1: Summary of the results of the LCV method for each trait 

Trait Number of genetic 
correlations with FDR < 
5%. 

Number of potentially 
causal relationships 
(FDR < 5%) 

Upstream/downstream 
traits  

HDL 253 140 2/140 

LDL 14 12 0/12 

TC 23 18 0/18 

TG 186 96 2/94 

BMI  647 133 23/110 

Caries 527 71 71/0 

Periodontitis 398 32 29/3 

*Each trait was tested against the same panel of 1,389 partially heritable traits in CTG-VL catalogue. All 

the results with FDR < 5% are provided in Supplementary Table 1-7 and full results are browsable using 

CTG-View platform (URL: https://view.genoma.io). 

BMI, caries and periodontitis 

In part, the ability of LCV to resolve clear differences between the four lipid traits might be helped by the 

relatively simple genetic architecture of these traits. By contrast, complex traits such as BMI which are 

affected by many different biological processes may provide a more realistic control for comparison 

against caries and periodontitis. 

For BMI, genetic correlations with 647 traits were identified, of which 133 were partially due to causal 

relationships. The majority of GCP estimates were positively signed, suggesting that BMI may impact many 

other traits (Figure 4A) however there were also several negatively signed relationships, suggesting that 

BMI it itself could potentially be amenable to several different interventions. The upstream trait with 

greatest evidence for causal effect was a BMI-increasing effect of employment as a heavy goods vehicle 

driver, while the downstream trait with greatest evidence was ‘vascular/heart problems diagnosed by 

doctor’, where a lower BMI was associated with greater odds of reporting no vascular or heart problems 

(Figure 4A and Supplementary Table 5). 

For dental caries proxied by DMFS/dentures there were detectable genetic correlations with 527 traits, 

of which 71 supported a partially causal relationship (Figure 4B). All GCP estimates were negatively signed, 

suggesting that DMFS/dentures is a downstream consequence of these traits rather than a causal risk 

factor. Traits with evidence for partial genetic causality included harmful effects of variables capturing 

dietary habits, smoking, hypertensive diseases and obesity while a protective effect was observed for 

variable representing skilled employment and education (Figure 4B and Supplementary Table 6).  

For periodontitis proxied by the combination of periodontitis/loose teeth 398 genetic correlations were 

detected at FDR < 5%, of which a relatively small faction (32) were modelled to be partially due to causal 

relationships. The predominant direction was negatively signed (29 out of 32 traits), again suggesting the 

predominant direction of causality is from other traits to periodontitis (Figure 4C). The 5 traits with the 

strongest evidence for partial genetic causality were a) a harmful effect of drug or alcohol use for anxiety 

on periodontitis b) a protective effect of fairer skin color on periodontitis c) a harmful effect of peripheral 

artery disease on periodontitis, d) an effect of periodontitis on dietary preference (proxied by preferred 
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type of milk) and e) a protective effect of a variable representing absence of problematic alcohol 

consumption. Periodontitis appeared to have a causal effect with other dental problems and increase in 

the use of dentures. 

 

 

 

 

 

 

Figure 4. Comparison of the causal architecture of BMI, caries and periodontitis. BMI, B) Caries proxied by 

DMFS/dentures, C) Periodontitis proxied by periodontitis/loose teeth. All the statistically significance 

results (FDR < 5%) are shown in Supplementary Tables 5-7 and can be queried at https://view.genoma.io. 

Discussion 

Previous approaches to obtaining phenome-wide causal maps have been based around the Mendelian 

Randomization paradigm29. The LCV method has attractive properties for phenome-wide analysis as it is 

robust to sample overlap, has greater statistical power than MR17 and is unconfounded by horizontal 

pleiotropy21. We developed a pipeline to automate LCV analysis and visualize results in causal architecture 

plots and applied this to lipid traits and BMI as positive controls, and to caries and periodontitis as 

exemplars of complex traits where there is a need for additional causal evidence. The results suggest that, 

at a high level, dental diseases are embedded in the human phenome but best viewed as a downstream 

marker of biological events and a consequence of other diseases rather than as a driver of biological 

changes which lead to large or widespread changes in other traits. The results therefore support the 

current drive to target upstream determinants of dental diseases3 and potentially provide a framework 

for prioritizing subsets of traits which have greater or reduced causal relevance for detailed 

epidemiological analysis or translational research. Specifically, the results for caries and periodontitis 

prioritize socio-economic status, cardiovascular health, diet and mental health/alcohol use as traits which 

could be targeted to improve dental health. Conversely, the results for HDL-C confirm that interventions 

on HDL-C are likely to have downstream effects on many traits and diseases, and that BMI is a trait with 

many causal relationships in both upstream and downstream directions. We suggest that this pipeline 

may be helpful to researchers undertaking initial characterization of a phenotype, and have implemented 

it as part of CTG-VL, a freely available online resource (URL : https://vl.genoma.io) 

The LCV method requires GWA summary statistic data and needs to identify a genetic correlation between 

the target trait and anchor trait for the results to be meaningful. It was therefore only possible to examine 

traits which have been studied using a large enough GWAS to yield a stable heritability estimate. While 

this captures many important diseases, risk factors and intermediate traits reflected by the large number 

of anchor traits, there are natural limitations to the results which are available at this moment in time. 

For example, risk factors or outcomes such as the oral microbiota composition, oral health quality of life, 

dental anxiety and satisfaction with dental appearance and function may be causally related to dental 

diseases but are not represented by current genome-wide association studies. For dental diseases 
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specifically, this illustrates the need to ensure that oral and dental health is represented in epidemiological 

studies using current methods to avoid perpetrating the under-representation of dentistry in the next 

generation of epidemiological research. As the number of curated GWAS summary statistics in CTG-VL 

catalogue increases over time, this limitation will become less important. It will become possible to 

construct more detailed causal architecture plots for any given target trait, and it may be possible to move 

from single-trait causal profiles towards multi-trait visualization which present an overall causal map of 

the human phenome. 

While this pipeline is primarily intended to give an overview of a trait, it may also highlight specific findings 

which warrant further investigation. One interesting pair of findings were that hair colour appears to be 

an upstream determinant of dental caries and that skin colour appears to be a risk factor for periodontitis. 

These findings may have a biological explanation (for example both ancestry and skin colour are 

associated with periodontitis in observational studies30, 31, skin color is associated with caries in children 

with a possible mechanism related to vitamin D32 and hair keratins have a role in enamel formation which 

might predispose to caries33, 34). Alternatively, the findings may also reflect complexity introduced by the 

scale and sampling frame of UK Biobank. Although the LCV model is more robust than MR to biasing 

effects from sources such as horizontal pleiotropy and sample overlap, the LCV model can become biased 

by correlation between genetic variation and environmental factors which affect disease17, 35. This 

aggregation might be due to factors such as ancient ancestry36, genetic nurture effects37 or sampling 

phenomena38 and is a concern in the UK Biobank sample39 where much of the data used in this experiment 

were obtained. Interpreted in this light, it is possible that environmental factors which are more prevalent 

in groups of people with certain hair type or skin color are a cause of dental diseases. This example may 

therefore illustrate some of the challenges created by population stratification but also the opportunities 

for genetic information to inform research about social and environmental factors which may affect 

disease.  

Previous studies using the MR method have found some evidence for causal effects of caries and 

periodontitis on cardiovascular health traits10, 11 which was not recapitulated using the LCV method. In 

part, this may be because LCV aims to captures the overall or predominant direction of causality mediated 

by a single latent variable and may therefore be a poor fit to systems with complex features such as 

polytonicity, non-linear effects or bidirectional causality. We suggest that the causal architecture plots are 

used to provide an overall causal context to a trait as an adjunct to other methods to assert causality 

which have different strengths and limitations. Despite this, profiles for lipid traits were obtained under 

the same analytical conditions but appear strikingly different, providing a clear indication that the method 

can resolve major differences in causal architecture between diseases.  

It is important to recognize some limitation of this work. Here, we presented a pipeline to do a phenome-

wide scan of potential causal associations. However, it is important to note that the current set of GWAS 

do not encompass the complete phenome and this is biased towards well powered GWAS and thus 

restricted to common diseases and traits. As the range of GWAS studies increases with time, this limitation 

will become less important. It is also important to recognize that GCP estimates are also tied to the 

statistical power of the GWAS, thus impacting the ability to detect causal effects for specific traits. Low 

statistical power of GWAS does not however bias the model towards positive or negative values of GCP, 

so the split of upstream/downstream estimates will still be informative even when there are relatively 

few causal effects identified. Finally, the model assumes that the GWAS for both traits and reference LD 

data are drawn from the same underlying population, which at present limits this pipeline to analysis of 
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studies of European ancestry participants. As the number of GWAS studies in diverse populations 

increases and additional reference datasets become available, it may be possible to extend this method 

to other populations. 

In summary, we present a pipeline to estimate and visualize genetic causality proportions across traits 

with GWAS summary statistics implemented in CTG-VL. All the results are freely available for download in 

https://view.genoma.io. 
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