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ABSTRACT 
Motivation: PIWI proteins and Piwi-Interacting RNAs (piRNAs) are 
commonly detected in human cancers, especially in germline and so-
matic tissues, and correlates with poorer clinical outcomes, suggest-
ing that they play a functional role in cancer. As the problem of com-
binatorial explosions between ncRNA and disease exposes out grad-
ually, new bioinformatics methods for large-scale identification and 
prioritization of potential associations are therefore of interest. How-
ever, in the real world, the network of interactions between molecules 
is enormously intricate and noisy, which poses a problem for efficient 
graph mining. This study aims to make preliminary attempts on bio-
network based graph mining. 
Results: In this study, we present a method based on graph attention 
network to identify potential and biologically significant piRNA-dis-
ease associations (PDAs), called GAPDA. The attention mechanism 
can calculate a hidden representation of an association in the network 
based on neighbor nodes and assign weights to the input to make 
decisions. In particular, we introduced the attention-based Graph 
Neural Networks to the field of bio-association prediction for the first 
time, and proposed an abstract network topology suitable for small 
samples. Specifically, we combined piRNA sequence information and 
disease semantic similarity with piRNA-disease association network 
to construct a new attribute network. In the experiment, GAPDA per-
formed excellently in five-fold cross-validation with the AUC of 0.9038. 
Not only that, but it still has superior performance compared to meth-
ods based on collaborative filtering and attribute features. The exper-
imental results show that GAPDA ensures the prospect of the graph 
neural network on such problems and can be an excellent supplement 
for future biomedical research. 
Contact: zhuhongyou@ms.xjb.ac.cn;leiwang@ms.xjb.ac.cn 
Supplementary information: Supplementary data are available at 
Bioinformatics online. 

1 INTRODUCTION  
Piwi-interacting RNA (piRNA) is a small, non-coding RNA that 
clusters at transposon loci in the genome and is typically 24–32 nu-
cleotides in length. Its discovery has greatly expanded the RNA 
world (Aravin, et al., 2007; Grimson, et al., 2008; Iwasaki, et al., 
2015; Malone, et al., 2009; Yin and Lin, 2007). Since the discovery 
and formal definition of piRNA in 2006, the PIWI–piRNA field has 
been developed rapidly, and its functions in developmental 

regulation, transposon silencing, epigenetic regulation, and genomic 
rearrangement are being revealed gradually (Armisen, et al., 2009; 
Leslie, 2013; Marcon, et al., 2008; Pall, et al., 2007). piRNA interact 
exclusively with PIWI proteins which belong to germline-specific 
subclade of the Argonaute family (Moyano and Stefani, 2015).  The 
best-known role of it is to repress transposons and maintain germline 
genome integrity through DNA methylation, as the depletion of 
PIWI leads to a sharp increase in transposon messenger RNA ex-
pression (Brennecke, et al., 2007; Siomi, et al., 2011). Compared 
with microRNA(miRNA) and small interfering RNA(siRNA) that 
are small RNAs, (1) longer than miRNA or siRNA; (2) only present 
in animals; (3) more diverse sequences and constitute the largest 
class of noncoding RNA; (4) testes-specific (Houwing, et al., 2007; 
Leslie, 2013; Moazed, 2009; Rajasethupathy, et al., 2012; Siomi, et 
al., 2011).  

Recently, emerging evidence suggests that piRNA and PIWI pro-
teins are abnormally expressed in various cancers (Assumpcao, et 
al., 2015; Cheng, et al., 2011; Chu, et al., 2015; Ng, et al., 2016; 
Romano, et al., 2017; Zou, et al., 2016). Therefore, the function and 
potential mechanism of piRNA in cancer become one of the im-
portant research directions in tumor diagnosis and treatment. For ex-
ample, Fu et al. found that abnormal expression of piR-021285 pro-
moted methylation of ARHGAP11A at the 5'-UTR/first exon CpG 
site, thereby promoting mRNA apoptosis and inhibiting apoptosis 
of Breast cancer cells (Fu, et al., 2015). Subsequently, Tan et al. 
found that down-regulation of piRNA-36712 in breast cancer in-
creases SLUG levels, while P21 and E-cadherin levels were reduced, 
thereby promoting the malignant phenotype of cancer (Tan, et al., 
2019). piR-30188 binds to OIP5-AS1 to inhibit glioma cell progres-
sion while low expression of OIP5-AS1 reduces CEBPA levels and 
promotes the malignant phenotype of glioma cells which discovered 
by liu et al. (Liu, et al., 2018). Also glioblastoma, Jacobs et al. found 
that piR-8041 can inhibit the expression of the tumor cell marker 
ALCAM / CD166, with the clinical role of targeted therapy(Jacobs, 
et al., 2018). In addition, piRNA is directly or indirectly involved in 
the formation of liver cancer. In 2016, Rizzo et al. found that 
hsa_piR_013306 accumulates only in hepatocellular carcinomas 
(Rizzo, et al., 2016). 

piRNA is gaining enormous attention, and tens of thousands of 
them have been identified in mammals and are rapidly accumulating. 
In order to accelerate research in this field and provide access to 
piRNA data and annotations, multiple databases such as piRNA-
Bank (Sai Lakshmi and Agrawal, 2007), piRBase (Wang, et al., 
2018), piRNAQuest (Sarkar, et al., 2014) have been successively 
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established. Subsequently, the role of piRNA and PIWI proteins in 
the epigenetics of cancer is constantly being discovered, and some 
of them can serve as novel biomarkers and therapeutic targets. Tak-
ing this as an opportunity, an experimentally supported piRNA-dis-
ease association database called piRDisease (Muhammad, et al., 
2019) was proposed, which made it possible to predict potential as-
sociations on a large scale. Although many disease-related ncRNA 
prediction model have been proposed and gradually developed, pre-
dictors for disease-related piRNA is relatively unexplored (Li, et al., 
2019; Wang, et al., 2019; Wang, et al., 2019; Zheng, et al., 2019; 
Zheng, et al., 2019). 

In this paper, we propose a piRNA-disease association predictor 
based on attention-based graph neural network, called GAPDA. The 
study has three main contributions: (i) Introducing a graph neural 
network based on self-attention strategy, Graph Attention Network 
(GAT), which calculates the hidden representation of each node by 
attending over its neighbors. This GAT-based approach gathers the 
merits of representational learning and network-based approaches. 
(ii) An abstract network topology apply to small sample data is pro-
posed. With the association as a node, it can expand the numerous 
heterogeneous network to replace the piRNA-disease association 
network. (iii) Different from traditional collaborative filtering and 
attribute-based methods, the proposed method integrates disease se-
mantic information and piRNA sequence information, improves 
prediction accuracy and has higher coverage. On the association da-
taset piRDisease, GAPDA achieves an AUC of 91.45% with an ac-
curacy of 84.49%. Compared with traditional methods, this method 
has higher precision. In general, the proposed method can provide 
new impetus for cancer mechanism research, provide new research 
ideas for small sample data sets, and determine the prospects of at-
tention-based Graph Neural Networks on such issues. In addition, 
we hope that this work will stimulate more association prediction 
research based on graph neural network. 

2 MATERIALS AND METHODS 

2.1 Benchmark dataset 
With the rapid increase of PIWI-interacting RNA (piRNA) related 

research, the contribution of piRNA in disease diagnosis and prog-
nosis gradually emerges. These manually managed, complex and 
heterogeneous information may lead to data inconsistency and inef-
ficiency, it put data analysis into a dilemma. To this end, the piRDis-
ease database, which integrates experimentally supported associa-
tion between piRNAs and disease, was proposed in 2019 
(Muhammad, et al., 2019). Azhar et al. developed piRDisease v1.0 
by searching more than 2,500 articles, which provided 7939 piRNA-
disease associations with 4,796 piRNAs and 28 diseases. The base-
line set by simple filtering is named GPRD, as shown in Table 1. 

GPRD. Currently, research on the relationship between piRNA 
and disease is in the ascendant, so the degree of some piRNAs are 
only 1 in the association network. Too many nodes with the de-
gree=1 affect the performance of the network-based approach. 
Therefore, in GPRD, we only retained 501 piRNAs with the degree 
greater than 1 and constituted 1212 associations. The training da-
taset 𝑇 can be defined as: 

𝑇 = 𝑇# ∪ 𝑇%																																																		(1) 

where 𝑇# is a positive subset of the piRNA-disease association 
construct in GPRD, and 𝑇% is a negative subset containing 1212 as-
sociations which were randomly extracted from all 11022 uncon-
firmed associations between piRNA and disease. 

Table 1. The details of benchmark dataset GRPD 
Benchmark dataset piRNA Diseases Associations 

GPRD 501 22 1212 

2.2 Construct new piRNA-disease association network 
The structure of the network. At present, ncRNA-related associa-
tions with experimental verification are very limited, so the net-
work-based method is difficult to achieve satisfactory prediction re-
sults. In addition, It's difficult to get the desirable accuracy by attrib-
ute-based methods. In the meanwhile, biological data is often com-
plex, and network representations computed from sparse networks 
cannot cover all real-world behavior information. Therefore, a 
method of enriching the hidden representations contained in sparse 
network is urgently needed. To this end, we propose a simple net-
work construction method with association as a node. The new as-
sociation adjacency matrix 𝐴 based on 𝑛 associations is calculated 
as follows: 

𝐴 = ,
𝑎.,. ⋯ 𝑎.,%
⋮ ⋱ ⋮
𝑎%,. ⋯ 𝑎%,%

3																																									(2) 

where 𝑛 is the number of associations in the training dataset 𝑇. 
The element 𝑎5,6 is set to 1 if the 𝑖-th association is related with the 
𝑗-th association, otherwise 0. In particular, the links between asso-
ciations is various. The process is shown in Figure 1. In this paper, 
we utlize piRNA and disease as link vectors, respectively, and de-
fine them as follows: 

𝛼5,6: = ;1							𝑖𝑓	𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛(𝑖). 𝑝𝑖𝑅𝑁𝐴 = 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛(𝑗). 𝑝𝑖𝑅𝑁𝐴	
0								𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																																																																															

(3) 

𝛼5,6K = ;1				𝑖𝑓	𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛(𝑖). 𝑑𝑖𝑠𝑒𝑎𝑠𝑒 = 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛(𝑗). 𝑑𝑖𝑠𝑒𝑎𝑠𝑒
0					𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																																																																																		

(4) 

According to the above formula, a plurality of superimposable ad-
jacency matrices can be obtained to enrich the structural information 
of the network, like 𝐴:  composed of 𝛼5,6:  and 𝐴K composed of 𝛼5,6K . 
Since the size of the abstracted adjacency matrix is uniform, they 
can be stacked by weighting. For the sake of simplicity, we only 
performed a addition operation on the adjacency matrix 𝐴:  and the 
adjacency matrix 𝐴K. Therefore, the element 𝛼5,6:K of the adjacency 
matrix 𝐴:K is calculated as follows: 

𝛼5,6:K = N1													𝑖𝑓	𝛼5,6
: = 1	𝑜𝑟	𝛼5,6K = 1	

0												𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																						
																																				(5) 
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Fig. 1.  Explanation of the network reconstruction in node-level. 
Node attributes. The attribute of the node is mainly composed of 

two parts: piRNA sequence features and disease semantic features. 
These two attribute information are described in detail below. The 
specific structure and function of RNA is determined by the se-
quence carrying the genetic information, so describing the sequence 
as a descriptor is an effective way to characterize its function. 𝑘-
mers is a common alignment algorithm that the basic principle is to 
divide a sequence into sub-sequences of length 𝑘 and count its fre-
quency. Recent studies show that ncRNAs of related function often 
have related 𝑘-mer contents (Kirk, et al., 2018). For example, 3-mer 
of piRNA can be expressed as CCC, CCG, ..., GGG. Herein, the 𝑘-
mer deconstructs and reconstructs the piRNA functional features to 
obtain piRNA descriptor 𝐹𝑒𝑎𝑡𝑢𝑟𝑒(𝑝S) where 𝑝S is piRNA with se-
rial number 𝑎. The process is shown in Figure 2. 

 
Fig. 2.  The flowchart for calculating piRNA sequence features. 

It is still an urgent and tough problem to characterizate disease 
attributes. So far, methods for constructing directed acyclic graphs 
(DAG) by the Medical Subject Headings (MeSH) to quantify the 
relationship between diseases are commonly used  (Xiang, et al., 
2013). MeSH is the authoritative standard vocabulary produced by 
the National Medical Library. Because of its strict classification of 
diseases, it can deconstruct the semantic relationship of diseases. 
Taking Lip Neoplasms (LN) as an example (Figure 3), its MeSH ID 
is “C04.588.443.591.550; C07.465.409.640; C07.465.565.550”, 
and the corresponding parent nodes are Mouth Neoplasms and Lip 
Disease whose MeSH IDs are "C04.588.443.591; C07.465.565.550" 
and "C07.465.409.640", as shown in Figure 3. Similarly, Mouth Ne-
oplasms and Lip Disease also has their parent nodes, Mouth Disease 
and Head and Neck Neoplasms. According to the aforementioned 
analysis, Lip Neoplasms and other related diseases can be expressed 
as 𝐷𝐴𝐺VW = (𝐿𝑁, 𝑇VW,𝐸VW), where 𝑇VW is a collection of nodes in 
𝐷𝐴𝐺VW that contain LN, such as "Head and Neck Neoplams" and 
"Mouth Disease". Furthermore, 𝐸VW is a collection of edges between 
different nodes, such as the edge between "Stomatognathic Disease" 
and "Mouth Disease." Based on former research production (Xuan, 
et al., 2013), the semantic contribution 𝐶 of disease 𝑤 to disease 𝑑 
is calculated: 

N𝐶[
(𝑤) = 1																																																																														𝑖𝑓	𝑤 = 𝑑

𝐶[(𝑤) = 𝑚𝑎𝑥(∇ ∗ 𝐶[(𝑤`)|𝑤` ∈ 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛	𝑜𝑓	𝑤)								𝑖𝑓	𝑤 ≠ 𝑑 		(5) 

Here we set the seismic contribution decay factor ∇ to 0.5. 𝑤` is 
the child node of 𝑤. If the disease 𝑑 is farther apart from the disease 
𝑤 in the DAG, the contribution of the disease 𝑤 to the disease 𝑑 is 
lower. For example, "Neoplasms" contributes less to "Lip Neo-
plasms" than "Mouth Neoplasms". According to the semantic con-
tribution 𝐶, the semantic value 𝑉 of disease 𝑑 is calculated: 

𝑉(𝑑) = f 𝐶[(𝑤)
g∈hi

																																										(6) 

If the two diseases share more DAGs and near common ancestors, 
the two diseases are more semantically similar. Under that 

assumption, the semantic similarity scores 𝑆𝑆 for disease 𝑎 and dis-
ease 𝑏 can be defined as follows: 

𝑆𝑆(𝑎, 𝑏) =
∑ n𝐶S(𝑤) + 𝐶p(𝑤)qg∈Wr∩Wt

𝑉(𝑎) + 𝑉(𝑏)
																													(7) 

The semantic similarity score SS takes into account the existence 
of common ancestors between diseases. However, its performance 
is not unlimited. For example, "Neoplasms by site" appears in the 
DAGs of many diseases, while the "Stomatognathic Disease" of the 
same layer appears less frequently. Since " Stomatognathic Disease 
" has a higher specificity for "Lip Neoplasms", its weight should also 
be higher. To quantify such differences in weight, the second se-
mantic contribution is designed: 

𝐶`[(𝑤) = −𝑙𝑜𝑔(
𝑛𝑢𝑚(𝐷𝐴𝐺𝑠	𝑖𝑛𝑐𝑙𝑢𝑑𝑖𝑛𝑔	𝑤)

𝑛𝑢𝑚(𝑑𝑖𝑠𝑒𝑎𝑠𝑒)
)																													(8) 

Similarly, the second semantic similarity scores 𝑆𝑆‘ for disease 𝑎 
and disease 𝑏 can be defined as follows: 

𝑆𝑆`(S,p) =
∑ n𝐶`S(𝑤) + 𝐶`p(𝑤)qg∈Wr∩Wt

𝑉(𝑎) + 𝑉(𝑏)
																											(9) 

Both 𝑆𝑆 and 𝑆𝑆′ are unilateral in principle. In order to combine 
the advantages of two semantic similarity scores, the comprehensive 
semantic similarity 𝑆 is calculated: 

𝑆(𝑎, 𝑏) = 𝑚𝑎𝑥n𝑆𝑆(𝑎, 𝑏), 𝑆𝑆`(𝑎, 𝑏)q																										(10) 
In this study, the degree of semantic association between disease 

𝑑p and other diseases was used as the descriptor 𝐹𝑒𝑎𝑡𝑢𝑟𝑒(𝑑p) for 
the disease. 

 
Fig. 3.  The directed acyclic graphs (DAG) of Lip Neoplasms. 

2.3 Gaussian interaction profile kernel similarity 
The Gaussian interaction profile kernel similarity(GIP) is a com-

monly used collaborative filtering algorithm. According to previous 
studies, the method can calculate the similarity matrix between 
ncRNAs and diseases from the known adjacency matrix (van 
Laarhoven, et al., 2011). In detail, the similarity between piRNA 𝑝S 
and piRNA 𝑝p can be defined as follows: 

G#(𝑝S, 𝑝p) = 𝑒𝑥𝑝(−𝜓#||𝑉(𝑝S) − 𝑉(𝑝p)||~)																					(11) 
where 𝑉(𝑝S) is a two-dimensional vector composed of the rela-

tionship between piRNA and all diseases, as is 𝑉(𝑝p). In addition, 
𝜓# as kernel width coefficient is defined as follows: 

𝜓# =
1

1
𝑛𝑢𝑚#

∑ �|𝑉(𝑝�)|�
~%���

��.

																																 (12) 

𝑛𝑢𝑚# is the number of piRNAs. Similarly, the similarity between 
piRNA 𝑑S and piRNA 𝑑p can also be calculated by this algorithm: 

G[(𝑑S, 𝑑p) = 𝑒𝑥𝑝 �−𝜓[�|𝑉(𝑑S) − 𝑉(𝑑p)|�
~�										 (13) 

𝜓[ =
1

1
𝑛𝑢𝑚[

∑ ||𝑉(𝑝�)||~
%��i
��.

																														 (14) 
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𝑛𝑢𝑚[ is the number of diseases. In this paper, it is compared as a 
traditional method with the proposed method. In this study, the de-
gree of Gaussian association between piRNA 𝑝S and other piRNAs 
was used as the descriptor 𝐹𝑒𝑎𝑡𝑢𝑟𝑒′(𝑝S) for the disease. And, the 
degree of Gaussian association between disease 𝑑p and other dis-
eases was used as the descriptor 𝐹𝑒𝑎𝑡𝑢𝑟𝑒′(𝑑p) for the disease. 

2.4 Graph Attention Networks 
Graph Attention Network (GAT) is a graph neural network based 

on self-attention mechanism proposed by Yoshua Bengio et al. in 
2018 (Veličković, et al., 2017). The main contribution is to construct 
a hidden self-attention layer to specify different weights to different 
nodes in a neighborhood without any time-consuming matrix oper-
ations (such as inversion) or a priori knowledge of the graph struc-
ture. The input to the graph attention layer is 𝑛 node features of 
length 𝐻, 𝑓 = �𝑓., 𝑓~, 𝑓�,… , 𝑓%�, 𝑓5 ∈ 𝑅�. 𝑓5 is the initial feature of 
the 𝑖 -th node. And, the output of the layer is produced as 𝑓′ =
�𝑓′., 𝑓′~, 𝑓′�,… , 	𝑓′%�, 𝑓′5 ∈ 𝑅�` , where 𝐻  and 𝐻′  have different 
dimensions. 𝑓′5 is the projected feature of the 𝑖-th node. In order to 
implement self-attention mechanism, a shared linear transformation 
parameter matrix 𝑊 ∈ 𝑅��×� is designed to be applied to each node. 
Therefore, the attention coefficient 𝑒�(𝑦) of node 𝑥 to node 𝑦 can 
be calculated as follows:  

𝑒�(𝑦) = 𝑎𝑡𝑡n𝑊𝑓�,𝑊𝑓�q																																													(15) 
Here 𝑎𝑡𝑡  denotes a mapping, 𝑅�` × 𝑅�` → 𝑅 . It converts two 

vectors of length F' into a scalar as the attention coefficient. In addi-
tion, self-attention assigns attention to all nodes in the graph, which 
obviously loses structural information. Therefore, a method called 
masked attention is proposed: 

𝜃�(𝑦) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥�n𝑒�(𝑦)q =
𝑒𝑥𝑝n𝑒�(𝑦)q

∑ 𝑒𝑥𝑝n𝑒�(𝑡)q�∈W�
 

=
𝑒𝑥𝑝(𝑙𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝜆h[𝑊𝑓�||𝑊𝑓�]))

∑ 𝑒𝑥𝑝n𝑙𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝜆h[𝑊𝑓�||𝑊𝑓�])q�∈W�

									 (16) 

Where 𝑁� is the set of neighbor nodes of node 𝑥. 𝑠𝑜𝑓𝑡𝑚𝑎𝑥� is 
utlized to normalize the attention coefficient 𝑒�(𝑦)  to obtain the 
weight coefficient 𝜃�(𝑦). 𝜆  is the weight coefficient vector of the 
graph attentional layer, and the length is 2𝐹′. 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 is the ac-
tivation function. 𝑇 represents transposition and || represents con-
nection operation. Therefore, the embedding of node x can be fused 
by the projected node features of neighbors with different weights, 
as follows: 

𝑓′� = ∂ �f 𝜃�(𝑡) · 𝑊𝑓�
�∈W�

�																																											 (17) 

In order to solve the problem of large variance of the graph data 
caused by the scale-free of the heterogeneous graph, mult-head at-
tention is performed to make the training process more stable. Spe-
cifically, features of 𝑚 independent attention mechanisms are inte-
grated to achieve specific embedding: 

𝑓′� = ∂�
1
𝐾
f f 𝜃�(𝑡) · 𝑊𝑓�

�∈W�

¡

��.
�																																 (18) 

2.5 Method overview 
GAPDA. In this study, we propose a novel method called GAPDA 
to predict biologically significant, yet unmapped associations be-
tween piRNA and disease on a large scale. GAPDA is generally 
composed of five components, the process shown in Figure 5. First, 

we construct piRNA and disease feature descriptors based on se-
quence information, disease semantic information, and Gaussian in-
teraction profile kernel similarity information. Therefore, the final 
feature 𝑓 is defined as follows: 
𝑓(𝑝S, 𝑑p) = 

n𝐹𝑒𝑎𝑡𝑢𝑟𝑒(𝑝S), 𝐹𝑒𝑎𝑡𝑢𝑟𝑒′(𝑝S), 𝐹𝑒𝑎𝑡𝑢𝑟𝑒(𝑑p), 𝐹𝑒𝑎𝑡𝑢𝑟𝑒′(𝑑p)q		(19) 

 
Fig. 4.  The flowchart for self-attention in node-level. 

Second, based on the existing associated network, an abstract net-
work topology is constructed to expand the information contained 
in the network. Third, the reconstructed abstract network topology 
is combined with the final descriptor 𝑓 to obtain a new piRNA-dis-
ease association attribute network. Fourth, the network embedding 
in node-level is learned via the attention-based graph neural network. 
Finally, the degree of association between piRNA and disease pairs 
is scored. In particular, the predicted scores of piRNA and disease 
pairs are directly proportional to the probability of association. 

 
Fig. 5.  The flowchart of GAPDA for predicting piRNA-disease association. 

3 EXPERIMENTAL RESULTS 

3.1 The performance of GAPDA on the benchmark 
dataset 
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In this part, we choose 𝛼5,6:  as an element for abstract network topol-
ogy. In order to evaluate the performance of the proposed method, 
it is applied to the benchmark database GPRD. 

 
Fig. 6.  (A) ROC curves performed by GAPDA on GPRD dataset. (B) PR 
curves performed by GAPDA on GPRD dataset. 

Figure 6 depicts the ROC curve generated on the baseline data 
and the average AUC of five-fold cross-validation is 0.9038. In de-
tail, the AUCs of GAPDA are 0.9115, 0.8943, 0.9109, 0.9167, 
0.8859. In addition, Table 2 lists the results of the detailed evalua-
tion criteria, with the average accuracy (Acc.) of 0.8569, the prec-
sion (Pre.) is 0.8550, the Recall (Rec.) is 0.8638 and the F1-score is 
0.8577. Their standard deviations are 0.92%, 3.56%, 4.16%, 0.92%, 
respectively. From the results, the lowest accuracy in the five exper-
iments reached 0.8395, and the highest accuracy reached 0.8642. 
Meanwhile, this experiment relies on the network structure to make 
predictions, and the prediction results obtained by different attribute 
networks have error. Overall, our approach yielded convincing re-
sults, suggesting that GAPDA can provide powerful candidates for 
piRNA as a biomarker and has the potential to drive disease diagno-
sis and to identify disease mechanisms. 

Table 2. Five-fold cross-validation results performed by GAPDA 
on GPRD dataset. 

Testing set Accuracy Precision Recall F1-score 

1 0.8642 0.8391 0.9012 0.8690 

2 0.8395 0.8022 0.9012 0.8488 

3 0.8636 0.8729 0.8512 0.8619 

4 0.8554 0.9095 0.7893 0.8451 

5 0.8616 0.8514 0.8760 0.8635 

Average 
0.8569 
±0.0092 

0.8550 
±0.0356 

0.8638 
±0.0416 

0.8577 
±0.0091 

3.2 Comparison with Attribute-based and Collabora-
tive Filtering methods 

In the association prediction model of ncRNA and disease, attrib-
ute-based (Att-based) and collaborative filtering-based (CF-based) 
methods are common. In order to better evaluate the performance of 
the proposed method, we compare it with these two methods. The 
results are shown in Table 3. The evaluation indicators of GAPDA 
are higher than the other two traditional methods, especially the ac-
curacy. Therefore, the attention-based approach has better perfor-
mance than traditional attribute-based and collaborative filtering-
based approaches. In addition, other evaluation parameters are 
higher than the average performance. There are many reasons for 
the superior performance of GAPDA. First, the two traditional 

methods only consider attribute information or network information, 
and do not combine the two sources of heterogeneous knowledge. 
However, the proposed method combines four kinds of information 
into an attribute network, which can well quantify the characteristics 
of the association. Second, the introduction of attention mechanisms 
allows the hidden representation of nodes to be computed through 
neighbor behavior. This operation can effectively improve the per-
formance of the model. Third, the new abstract network topology 
we built also helps improve performance. In the real world, net-
works are often heterogeneous. This method abstracts existing net-
works into adjacency matrix with uniform size, which is conducive 
to the fusion between heterogeneous networks. In addition, the re-
sults are represented as a histogram for a more intuitive comparison 
(Figure 7). 

Table 3. Comparison of different types of prediction method on 
GPRD dataset. 

Method AUC AUPR Accuracy Precision Recall F1-score 

Att-based 0.8725 0.8465 0.8200 0.8247 0.8143 0.8189 

CF-based 0.9032 0.8822 0.8280 0.8329 0.8260 0.8272 

GAPDA 0.9038 0.8944 0.8569 0.8550 0.8638 0.8577 

 
Fig. 7.  Comparison of results of Att-based, CF-based method and GAPDA 
on GPRD dataset. 

3.3 Comparison of different strategies to generate ab-
stract network topologies 

In Section 2.2, an abstract network topology method to recon-
struct the associated network is proposed and we design three strat-
egies to generate an abstract network topology. In Section 3.1, the 
results of 𝛼5,6:  have been described. So, in this section, we evaluate 
the other two strategies to evaluate the performance of the abstract 
network topology approach. As shown in Table 4, Table 5, and Fig-
ure 8, i) based on any abstract network topology, the performance 
of the proposed method is higher than the average of the traditional 
methods. This shows that the attribute network constructed with an 
abstract network topology can combine multiple knowledge sources 
to restore the true state of the network. This can improve model per-
formance. ii) most evaluation criteria of 𝐴K and 𝐴:K strategies are 
inferior to 𝐴: , of which 𝐴K strategy is the most obvious. The reason 
is that the elements with value=1 in the adjacency matrix 𝐴K are too 
dense, which makes its abstract network topology specificity insuf-
ficient, and 𝐴:K is similar. The above two information shows that 
different abstract network topologies affect the performance of the 
model to varying degrees, so giving them different weights can im-
prove the effectiveness. 
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Table 4. Five-fold cross-validation results performed by GAPDA (𝑨𝑫) on 
GPRD dataset. 

Testing set Accuracy Precision Recall F1-score 

1 0.8230 0.7754 0.9095 0.8371 

2 0.7798 0.7208 0.9136 0.8058 

3 0.8657 0.8865 0.8388 0.8620 

4 0.8512 0.8102 0.9174 0.8605 

5 0.7831 0.8827 0.6529 0.7506 

Average 
0.8206 
±0.0348 

0.8151 
±0.0635 

0.8464 
±0.101 

0.8232 
±0.0416 

Table 5. Five-fold cross-validation results performed by GAPDA (𝑨𝑹𝑫) on 
GPRD dataset. 

Testing set Accuracy Precision Recall F1-score 

1 0.8807 0.9004 0.8560 0.8776 

2 0.8395 0.8022 0.9012 0.8488 

3 0.8368 0.8147 0.8719 0.8423 

4 0.8533 0.8132 0.9174 0.8621 

5 0.8182 0.7831 0.8802 0.8288 

Average 
0.8457 
±0.0208 

0.8227 
±0.0404 

0.8853 
±0.0217 

0.8519 
±0.0167 

 
Fig. 8.  A) ROC curves performed by GAPDA (𝑨𝑫) on GPRD dataset. B) 
PR curves performed by GAPDA (𝑨𝑫) on GPRD dataset. C) ROC curves 
performed by GAPDA (𝑨𝑹𝑫)on GPRD dataset. D) PR curves performed by 
GAPDA (𝑨𝑹𝑫) on GPRD dataset. 

4 CONCLUSION 
Since the network of interactions between molecules in the real 
world is enormously intricate and noisy, how to efficient graph min-
ing becomes a hot spot. In this study, we propose a piRNA-disease 
association prediction framework based on the graph attention 

network to capture graph features and calculate the hidden represen-
tations of associations in the network based on neighbor nodes. In 
particular, we introduced attention-based graph neural networks into 
the field of bio-association prediction for the first time, and proposed 
an abstract network topology suitable for small samples. Supported 
by these two novel methods, GAPDA showed encouraging results 
in predicting piRNA-disease associations. In detail, in the five-fold 
cross-validation, GAPDA got an AUC of 0.9038, AUPR of 0.8774, 
and accuracy of 0.8569. In addition, we compared two traditional 
methods and different strategies to generate abstract network topol-
ogies. Experiments showed that GAPDA can be an excellent com-
plement to future biomedical research and has determined the pro-
spect of the graph neural grid on such problems. We hope that the 
proposed method can provide a powerful candidate for piRNA bi-
omarkers and can be extended to other graph-based tasks. 
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