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12 Abstract
13 Simulating transcranial electric stimulation is actively researched as knowledge about the distribution 

14 of the electrical field is decisive for understanding the variability in the elicited stimulation effect. 

15 Several software pipelines comprehensively solve this task in an automated manner for standard use-

16 cases. However, simulations for non-standard applications such as uncommon electrode shapes or the 

17 creation of head models from non-optimized T1-weighted imaging data and the inclusion of irregular 

18 structures are more difficult to accomplish.

19 We address these limitations and suggest a comprehensive workflow to simulate transcranial electric 

20 stimulation based on open-source tools. The workflow covers the head model creation from MRI data, 

21 the electrode modeling, the modeling of anisotropic conductivity behavior of the white matter, the 

22 numerical simulation and visualization. 

23 Skin, skull, air cavities, cerebrospinal fluid, white matter, and gray matter are segmented semi-

24 automatically from T1-weighted MR images. Electrodes of arbitrary number and shape can be modeled. 

25 The meshing of the head model is implemented in a way to preserve feature edges of the electrodes 

26 and is free of topological restrictions of the considered structures of the head model. White matter 

27 anisotropy can be computed from diffusion-tensor imaging data.

28 Our solver application was verified analytically and by contrasting tDCS simulation results with another 

29 simulation pipeline (SimNIBS 3.0). An agreement in both cases underlines the validity of our workflow.

30 Our suggested solutions facilitate investigations of irregular structures in patients (e.g. lesions, 

31 implants) or of new electrode types. For a coupled use of the described workflow, we provide 

32 documentation and disclose the full source code of the developed tools.
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33 1. Introduction

34 The simulation of transcranial electric stimulation (tES) is increasingly employed when designing tES 

35 intervention studies (1) and observed behavior or neurophysiological changes are related to the 

36 simulated, subject-specific electric field (2), (3), (4). This development is motivated by increasing 

37 evidence that the individual distribution of the electrical field within each subject influences the 

38 stimulation effect (5), (6), (7). In addition, several software pipelines (8), (9), (10), (11), (12), among 

39 which SimNIBS (10) and ROAST (12) are currently most actively developed, make the simulation of tES 

40 more accessible to researchers.

41 All these pipelines implement a common, general workflow covering standard use cases, i.e. the tES 

42 simulation of healthy subjects based on their individual magnetic resonance imaging (MRI) data using 

43 rectangular or circular electrodes. The starting point of this workflow is the segmentation of the MRI 

44 data of the subjects into the electrically most important tissue classes. The obtained segmentation 

45 image is then used to create the head volume mesh, which is complemented by electrodes that need 

46 to be modeled and positioned. The simulation problem is solved using this individual head model, and 

47 results are visualized. The implementation of the outlined workflow by current tES simulation pipelines 

48 does not entirely cover use cases with suboptimal imaging data, the presence of pathological tissue in 

49 patients or alternative electrode shapes.

50 For instance, MRI data from large-scale imaging studies usually have not been primarily acquired for 

51 the purpose of computational head modeling. Performing simulation studies based on such data can 

52 become difficult due to challenges in the segmentation of low-contrast tissue such as skull using 

53 standard segmentation approaches. Following the image segmentation, a surface-based meshing 

54 approach is commonly used to create the head volume mesh. The advantage of this approach is a 

55 maximum of control over the approximation of the boundaries of the sub-compartments of the head 

56 model, which, on the other hand, must not intersect, restricting the topology of the included structures 

57 and complicating the inclusion of irregular tissue such as lesioned tissue. ROAST circumvents this 
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58 restriction by applying an image-based meshing approach, which is free of any topological constraints 

59 (12), with the drawback of less accurate feature edges, for example of the electrodes. The shape of the 

60 electrodes commonly can be selected from a set of standard shapes including rectangular, circular or 

61 ring electrodes. Means for modeling non-standard shaped electrodes such triangular electrodes are 

62 usually not provided. Finally, the visualization of the simulation results is typically realized in MATLAB 

63 (8), (12), (11), GMSH (13) or a custom tool (9) and thus relatively limited.

64 In this work, we present approaches to address the above-mentioned non-standard use-cases when 

65 simulating tES on an individual basis. Segmentation routines were selected based on the robustness of 

66 the structure segmentation of T1-weighted MRI data using JIST (14) a plugin of MIPAV (15) to benefit 

67 from a wide range of image manipulation and segmentation algorithms. We introduce an extension to 

68 the image-based meshing approach presented in (12) by combining it with a surface-based meshing 

69 approach for an accurate electrode representation. The 3D modeling software Blender (16) allows 

70 highly flexible modeling of electrodes of arbitrary shapes. We suggest the use of ParaView (17) for a 

71 versatile visualization of the simulation results. We describe the information flow among the involved 

72 tools, which are arranged around OpenFOAM (18), a comprehensive, finite-volume-method-based 

73 framework for the numerical simulations. The simulation was verified analytically and by contrasting 

74 the numerical results with those of SimNIBS 3.0. A general agreement between both approaches 

75 underlines the validity of our suggested solutions. The scripts and the custom source code along with 

76 the documentation are readily available (from https://gitlab.imn.htwk-leipzig.de/bkalloc1/tdcs-

77 pipeline.git) allowing a coupled used of the entire toolset as well as usage of single tools only.

78
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79 2. Methods

80 The process of simulating tES involves the head and the electrode modeling, solving the underlying 

81 electrostatic problem, and the visualization.  

82 The head model creation comprises the segmentation of the head MR image and the subsequent 

83 volume mesh generation. Here, image segmentation is performed using the Java Image Science Toolkit 

84 (JIST) (14) a plugin of the Medical Image Processing, Analysis, and Visualization (MIPAV) toolbox (15). 

85 The volume mesh is generated using a combined image- and surface-based meshing approach 

86 implemented as a custom application that uses the Computational Geometry Algorithms Library (CGAL) 

87 API, version 4.13.1 (19). A plugin for the 3D modeling software Blender 2.79 (16) implements the 

88 modeling and positioning of the electrodes. OpenFOAM 7.0 (18) provides the tools to define the 

89 conductivity values of the mesh compartments. Additionally, information from diffusion-weighted 

90 imaging (DWI) data can be incorporated to model the anisotropic conducting behavior of white matter 

91 tissue, and are processed in MRTrix 3 (20). A plugin developed for the visualization software ParaView 

92 5.6 (21) manages the calculation of the conductivity tensors derived from the diffusion tensors. The 

93 finite volume calculations involved in solving the underlying Maxwell’s equation are performed by a 

94 custom solver application implementing the OpenFOAM API. Finally, the resulting electric field may be 

95 visualized in ParaView. Fig. 1 illustrates the entire workflow. 

96

97

Fig 1, Data- and workflow. Schematics depicting the dataflow between the individual processing 

steps and the involved tools as well as the expected input and output data of the individual stages.
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98 2.1 Set-up of the volume conductor model

99 2.1.1 MRI head segmentation

100 Accurate segmentation of the MR image is crucial since the segmented structures represent the 

101 individual compartments of the volume conductor model. Segmentation errors - especially 

102 discontinuities of the segmented skull or cerebrospinal fluid (CSF) - impair the simulation results (22). 

103 In our approach, we segment the scalp, the skull, the air-filled sinuses of the skull, the subarachnoid 

104 CSF, the CSF in the ventricles, the gray matter (GM) and the white matter (WM) only from T1-weighted 

105 MRI data. The involved segmentation process is described in our previous work (23). In short, we rely 

106 on robust, atlas-based segmentation techniques and image-processing capabilities implemented in 

107 JIST, a plugin of MIPAV. The segmentation of the scalp and skull structure of the image is achieved 

108 through the Simultaneous Truth And Performance Level Estimation algorithm (24). The intracranial 

109 compartments are segmented using the topology-preserving segmentation algorithm Multi-object 

110 Geometric Deformable Model (25) and the gyrification of the segmented GM surface is enhanced by 

111 the Cortical Reconstruction Using Implicit Surface Evolution method (26). We use a pseudo-CT template 

112 (27) to segment the air cavities in the skull. The quality of the generated segmentation images is 

113 improved by morphological image operations. The individual segmentation images are combined to a 

114 single image that contains a distinct, unique numeric label per segmented structure and is exported in 

115 the ANALYZE file format. 

116 2.1.2 Electrode modeling and positioning

117 In our workflow a complete electrode model is implemented, which defines the electrodes 

118 geometrically in shape and position as well as their physical conductivity and the applied current, 

119 thereby realistically modeling the current shunt (28). The power source is represented by equipotential 

120 surfaces at the outer boundaries of the electrode. An optional gel layer may be modeled. 

121 A custom Blender plugin geometrically models rectangular electrodes and positions them according to 

122 the international 10-20 system in a semi-automatic way. Necessary inputs are 1) a geometrical 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 9, 2020. ; https://doi.org/10.1101/2020.01.09.900035doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.09.900035
http://creativecommons.org/licenses/by/4.0/


7

123 representation of the outer boundary of the scalp segmentation in the Stereolithography (STL) file 

124 format, 2) the extents of the electrode and 3) its location in 10-20 coordinates. Furthermore, the user 

125 must provide four fiducial points, namely the nasion, inion and the tragi of the ears, on the scalp 

126 surface by interactively aligning two reference lines and selecting the corresponding points on these 

127 lines. The user interface is shown in Fig. 2 A.

128

129

130

131

132

133

134

135

136

137

138

139

140 To create the geometrical surface representation of the outer scalp boundary from the binary scalp 

141 segmentation image the Marching Cubes-based (MC) “Contour Filter” in ParaView is used. In Blender, 

142 the plugin initially performs a Laplacian smoothing of the input scalp surface to mitigate its relatively 

143 coarse structure due to the MC algorithm. Then, the location of the 10-20 coordinates on the 

144 smoothed scalp surface is computed using the user-defined fiducial points. The smooth scalp surface 

145 is clipped by the means of constructive solid geometry (CSG) at the specified location with a cube of 

146 the specified extent. The position of this cube may be manually varied if the location of the electrode 

147 falls outside the standard 10/20 grid. An arbitrary shape of the electrode (see Figs. 2 B - D) can be 

148 achieved by replacing that cube with a volume of the desired shape. The clipped surface patch is 

Fig 2, Electrode Modeling. A) The user interface of our Blender plugin for electrode positioning and 

modeling purposes. Necessary input parameters constitute the electrode dimensions, position 

according to the 10-20 system, and a geometrical representation of the outer boundary of the scalp 

segmentation in the STL file format. A stepwise workflow to define fiducial points (nasion, inion, 

tragi of the ears) for the computation of the 10-20 coordinate grid on the individual head is provided 

by the GUI. The rectangular cube is generated according to the defined dimension and position of 

the electrode and will be used to create the electrode by the means of constructive solid geometry 

(CSG). B) Result obtained with our plugin: a standard rectangular patch electrode located at C3. A 

smooth representation of the skin is generated, and the electrode is extruded based on the result of 

the CSG operation of the cube and this skin surface. C) A ring electrode shape created by a non-

standard workflow. The cube was replaced by a cylinder with a hole. D) Triangular electrode 

obtained by a non-standard workflow. The cube was replaced by a triangular prism.
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149 extruded in 1 mm steps to the desired electrode thickness. This avoids long, thin triangles at the 

150 sidewalls of the electrode representation which are unfavorable for the subsequent volume meshing. 

151 To model a gel layer this process is executed twice, and the electrode representation is moved on top 

152 of the gel layer. The geometry of the electrodes, the gel layer, and the smooth skin surface are 

153 exported as STL files.

154 The CSG operation may result in small, unfavorably clipped triangles at the edges of the electrode and 

155 the gel layer that impede the subsequent volume mesh generation. Therefore, their geometry must 

156 be cleaned in Meshlab (29) by unifying duplicate vertices and applying the “Quadratic Edge Collapse 

157 Decimation” simplification filter. The smoothed skin surface, the cleaned electrodes, and the gel layer 

158 are converted to the Object File Format (OFF). 

159 2.1.3 Volume meshing

160 An unstructured tetrahedral mesh constitutes the computational domain, i.e. the head model. We 

161 approach the task of generating this mesh by applying a combination of an image-based meshing and 

162 a surface-based meshing algorithm, both relying on Delaunay triangulation that is implemented in the 

163 Computational Geometry Algorithms Library (CGAL), version 4.13.1. The surface-based meshing is 

164 applied to the electrodes and the scalp structure and can be further utilized for any following internal 

165 structure that does not impede a strictly nested arrangement of the mesh compartments. Structures 

166 that violate a nested arrangement, such as the ventricles or lesioned tissue, can be meshed using the 

167 image-based algorithm. Apart from the electrodes, the head mesh can be generated purely by image-

168 based meshing, as well as it is possible to create it solely using the surface-based approach. Compared 

169 to surface-based meshing approaches where the mesh is generated from intermediate surfaces that 

170 describe the boundaries of the mesh and its individual sub-compartments, image-based approaches 

171 create the volume mesh from a labeled image and determine the boundaries of structures of different 

172 labels via a bisection algorithm. In our case, which combines image-based and surface-based meshing, 

173 the resulting mesh includes sub-compartments for every label found in the image and for every input 

174 surface. 
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175 We created a C++ tool based on the mesh_hybrid_mesh_domain example of the CGAL library. The tool 

176 combines the CGAL domain classes Labeled_image_mesh_domain_3 and 

177 Polyhedral_mesh_domain_with_features_3 into a single hybrid domain to simultaneously employ an 

178 image-based meshing together with a feature-preserving, surface-based meshing. As input, the tool 

179 requires an ANALYZE label image of the subject comprising only the structures, for which the image-

180 based meshing should be used, as well as the OFF surface descriptions of the electrodes, the scalp and 

181 any structure, for which the surface-based meshing approach is favored. The feature edges of the 

182 electrodes are only preserved if the scalp is provided as a surface too.

183 To create the boundary surfaces for the surface-based volume meshing, we suggest a three-stage 

184 process. The initial boundary surface descriptions are generated from the segmentation label image 

185 by employing the Contour filter in ParaView, which is based on the Marching-cubes algorithm. Second, 

186 to take full advantage of the accurate preservation of boundaries of the surface-based meshing, the 

187 coarse output surfaces of the Contour filter must be smoothed in Meshlab using the Taubin smoothing 

188 algorithm ( . The smoothed scalp surface as a result of 𝜆 = 0.5, 𝜇 =‒ 0.53, #𝑠𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔 𝑠𝑡𝑒𝑝𝑠 = 50)

189 the electrode placement procedure does not require additional smoothing. Finally, the quality of the 

190 smoothed surface meshes must be improved by clearing defects (e.g. self-intersecting triangles) using 

191 the MeshFix tool (v.2.1) (30) and by employing a custom tool leveraging the isotropic remeshing 

192 functionality of CGAL’s Polygon_mesh_processing class. 

193 To minimize the deviations from the boundaries of the labeled structures during the image-based 

194 meshing a small tolerance parameter   at 1 mm voxel size) for the bisection (10 ‒ 6≅0.00044 𝑚𝑚

195 algorithm is used. Following the initial mesh generation, four optimizations can be optionally enabled. 

196 Two global optimizers (Optimized Delaunay Triangulation smoother, Lloyd smoother) minimize the 

197 total mesh energy. Two local optimizers improve the dihedral angles of the worst cells in the mesh or 

198 eliminate triangles with a poor radius-edge ratio, so-called slivers, respectively. For further information 

199 on these four optimizers, please refer to the CGAL documentation 
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200 (https://doc.cgal.org/latest/Mesh_3/group__PkgMesh__3Functions.htm). We use the API of GMSH 

201 v.4.3 (31) to export the resulting volume mesh to the GMSH file format version 2.

202 The generated mesh is subsequently converted to the OpenFOAM format and optimized for the later 

203 computations using the OpenFOAM utilities gmshToFoam, transformPoints, and renumberMesh 

204 (details in Fig.1). 

205 2.1.4 Conductivity values
206 We use the OpenFOAM setFields tool to uniformly set a distinct isotropic tensor value for all elements 

207 of each sub-compartment of the mesh. This value is computed as the product of the unitary matrix 

208 and the corresponding scalar conductivity value:

209 𝜎𝑇𝑖𝑠𝑠𝑢𝑒 = 𝜎𝑇𝑖𝑠𝑠𝑢𝑒 ⋅ [1 0 0
0 1 0
0 0 1].

210 To incorporate anisotropic conductivity information of the white matter, we adopted the volume-

211 constraint method (32). This approach assumes a shared principal direction between a diffusion tensor 

212 and its corresponding conductivity tensor but different eigenvalues representing a fixed anisotropy 

213 ratio between the principal and auxiliary directions. The calculation of the eigenvalues is based on the 

214 scalar conductivity value of the white matter , an anisotropy ratio of 1:10 and must satisfy the 𝜎𝑊𝑀

215 conditions 1) , 2)  to ensure that no unreasonable conductivity values 𝜎 2
𝑊𝑀 = 𝜎𝑚𝑎𝑖𝑛 ⋅ 𝜎𝑎𝑢𝑥 𝜎𝑎𝑢𝑥 =

𝜎𝑚𝑎𝑖𝑛

10

216 are estimated. The conductivity tensor is determined by the both-sided multiplication of the matrix S 

217 of the eigenvectors of the diffusion tensor and a diagonal matrix

218 𝜎𝑇 = 𝑆 ⋅ 𝑑𝑖𝑎𝑔(𝜎𝑚𝑎𝑖𝑛, 𝜎𝑎𝑢𝑥,𝜎𝑎𝑢𝑥) ⋅ 𝑆𝑇.

219 The DWI data are preprocessed using MRtrix 3 (20).  First, the signal to noise ratio of the DWI data is 

220 improved (dwidenoise (33), (34)). Subsequently, artifacts due to eddy currents and due to motion are 

221 corrected (dwipreproc (35), (36)). For skull-stripping, a binary mask of the intracranial tissue is 

222 generated (dwi2mask (37)). Tensor estimation is realized through dwi2tensor (38). The resulting tensor 

223 image is used to compute the fractional anisotropy (FA) map (tensor2metric (39), (40)). Both the FA 

224 map as well as the tensor image are cleaned from possible NaN values using fslmaths. The FA map is 
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225 registered to the T1-weighted brain image of the subject linearly using FSL FLIRT (41), (42) and non-

226 linearly with FSL FNIRT (43), (36). The calculated transformations are utilized to co-register the 

227 diffusion tensor image using the tool vecreg which preserves the relative orientation of the tensors 

228 upon transformation. The computation of the conductivity tensors is implemented as a ParaView 

229 plugin. They are subsequently transferred to the OpenFOAM mesh of the respective head model in 

230 ParaView and finally exported in the OpenFOAM field format using another custom plugin. The field 

231 values are transferred to the already prepared field of isotropic conductivity tensors, overwriting the 

232 values of the white matter compartment.

233 2.1.5 Boundary conditions

234 A Dirichlet Boundary condition for the electrical potential of +/- 5 V is assigned to the outer boundaries 

235 of the anode and cathode respectively, regardless of the desired current strength. During post-

236 processing, the electrical field strength magnitude is corrected according to the actual current density 

237 integrated at the contact surfaces of both electrodes with the scalp. The outer boundaries of the 

238 electrodes are, thus, modeled as equipotential surfaces. Since the surrounding air is not explicitly 

239 modeled and virtually acts as an insulator, a zero gradient Neumann boundary condition is applied for 

240 the electrical potential at the scalp surface.

241 2.2 Solving the electrostatic problem

242 The electrical field strength E and the field of the electrical current density J are computed according 

243 to the quasi-static form of Maxwell’s equations which provide a sufficient approximation for tDCS, tACS, 

244 and tRNS (44). Their solution is derived by our solver application using the OpenFOAM API.

245 2.2.1 Quasi-static form of Maxwell’s equations

246 The electrical potential field  induced by the electrodes subject to the conductivity  of the volume 𝜙 𝜎

247 conductor is described by Laplace’s equation E is obtained by the component-wise ∇(𝜎 ⋅ ∇ ⋅ 𝜙) = 0. 

248 partial derivation of   A linear relationship between E and J by  exists as 𝜙, 𝐸 =‒ ∇ ⋅ 𝜙. 𝜎 𝐽 = 𝜎 ⋅ 𝐸.
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249 2.2.2 The solver application

250 Our solver application computes the electrical current density J and the electrical field strength E using 

251 the finite-volume method (FVM).

252 First,  is computed using a Gauss discretization scheme with linear interpolation for the Laplace 𝜙

253 operator at a residual of . The solution is iterated to correct for non-orthogonality in the mesh 10 ‒ 6

254 until the residual of the whole solution falls below . Next, the gradient field E of  is determined 10 ‒ 5 𝜙

255 using the least-squares gradient scheme. J is the product of E and the electrical conductivity . 𝜎

256 Finally, E and J are scaled by the ratio  of the user-defined input current strength Itarget and 𝑠 =
𝐼𝑡𝑎𝑟𝑔𝑒𝑡

𝐼𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

257 the actual current strength Imeasured as determined by the summation of the current density across the 

258 surface area where the electrodes contact with the scalp surface.  

259 2.3 Visualization

260 Post-processing is handled by ParaView for which OpenFOAM provides a plugin to read the results. All 

261 figures relating to simulation results have been created in ParaView. 

262 3 Results

263 We demonstrate a 3-step verification attempt of the proposed workflow. First, our solver application 

264 was tested using an analytically verifiable, 3-layered sphere model (45). Second, we utilized two 

265 reference head models, which were generated in SimNIBS 3.0, to conduct tDCS simulations in both, 

266 OpenFOAM and SimNIBS to compare the results using identical head models. While other simulation 

267 pipelines are equally valid for comparing purposes, we chose the SimNIBS pipeline because of the 

268 availability of test datasets. Finally, both head models were reproduced from their original MR image, 

269 respectively, using our modeling workflow and a tDCS simulation in OpenFOAM was performed. The 

270 simulation result obtained using these custom head models were compared to the previous results.
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271 In addition, we demonstrate the capability to model anisotropic conductivity, the modeling of 

272 alternative electrode shapes, namely small circular electrodes that are used for Laplacian-tDCS, as well 

273 as the inclusion of irregular structures, lesions of the white matter, into the head model.

274 3.1 Analytical test case: 3-layer sphere model

275 We implemented the analytical solution to the tES problem with point electrodes in a 3-layered sphere 

276 according to (45), (46) in Python and contrasted the result with the numerical simulation results 

277 obtained by our solver application. Table 1 provides an overview of the model parameters. Since the 

278 analytical case assumes a point electrode, which cannot be modeled in OpenFOAM, we simulated a 2 

279 mm smaller sphere in OpenFOAM and used the analytical values greater than the 85th percentile of 

280 the boundary of this sphere as the Dirichlet boundary condition of the numerical simulation. The 

281 spherical domain consisted of 15.1 M. tetrahedra.

282

283

284

285

286 We found an overall agreement in the distribution of the electrical potential between the analytical 

287 (Fig. 3A) and numerical solution resulting in a normalized root-mean-square deviation of only 2.1% 

288 across the entire domain. The norm of the numerically calculated electrical potential tends to decline 

289 slightly stronger as compared to the analytically derived potential (Fig. 3B). 

290

291

292

293

294

Layer 1
(Scalp)

Layer 2
(Skull)

Layer 3
(Brain)

Radii (mm) 92 (90 in the numerical simulation) 85 80
Conductivity (S/m) 0.465 0.01 0.33

Table 1, Parameters of the 3-layerd spherical head model.

Fig 3, Analytical 3-layered sphere model. A) Center slice of the analytical result field, illustrating 

the distribution of the electrical potential between the two opposing point electrodes. B) 

Comparison of the electrical potential calculated analytically according to (45) (blue graph) with the 

numerical solution derived by OpenFOAM (red graph).
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Fig 4, Electrode configuration. Display of the anodal, dual and occipital electrode configuration of 

both head models, Almi and Ernie, used for comparison with SimNIBS.

295 3.2 Comparison to SimNIBS

296 Our workflow was evaluated using the Almi5 and Ernie test datasets from SimNIBS. Simulation results 

297 were compared to that of SimNIBS.

298 3.2.1 Comparison of the solver application using the same head model

299 We utilized SimNIBS 3.0 to create the head models of the two test data sets from their T1- and T2-

300 weighted imaging data. Each head model included the tissues skin, skull, CSF, GM, and WM. 

301 Compartments representing air were treated as a perfect insulator and were thus not part of the 

302 computational domain.  For each head model, we tested three electrode setups, a bihemispheric setup 

303 over the primary motor cortices of both hemispheres, referred to as the dual setup, (10-20 positions: 

304 C3 and C4), an anodal setup (10-20 positions: C3, right supraorbital close to Fp2) and an occipital setup 

305 (10-20 positions: Cz, Oz) (Fig. 4). In all cases, square-shaped electrodes with 25 cm2 dimensions were 

306 modeled as a complete electrode model with equipotential surfaces at the outer boundaries. Isotropic 

307 conductivities were adopted from the SimNIBS GUI (Table 2). The input current strength was 2 mA.

308

309

310

311

312

313

314 Visual comparison of the computed electrical field strength to the field obtained by SimNIBS revealed 

315 a comparable field pattern with hotspots at the same locations across both head models and all 

316 electrode montages (Fig. 5). The magnitude of the electrical field within the gray matter mesh 

317 compartment was on average higher in our results across both models and all electrode montages 

318 (Table 3). See tables 4 & 5 and Figs. 6 – 9 for a more detailed overview of the relative difference in 

319 magnitude of the electrical field strength as well as the angle difference across all conditions. The 

Structure Skin Skull Cerebrospinal 
fluid

Grey 
matter

White 
matter

Electrode 
material

Conductivity, 
𝑺
𝒎 0.465 0.01 1.654 0.275 0.126 1.0

Table 2 Scalar conductivity values. The conductivity values of the different head model 

compartments used for tDCS simulations both in OpenFOAM and SimNIBS.
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Fig 5, Electrical field pattern. Comparison of distribution pattern of the electrical field strength in 

both head models and all electrode montages between the OpenFOAM result and the SimNIBS 

result. Areas above the 90th percentile of the electrical field strength are defined as hotspots and 

marked in black.

320 deviation in direction was more pronounced in the area of the gray matter mesh compartment 

321 underneath the electrodes in all cases with a 99th percentile peak value in angle difference of 40.56° in 

322 the occipital electrode configuration of the Almi test case. We contrasted the magnitude of the 

323 electrical field along a sampling line between the respective electrode pair of each condition through 

324 the entire head model (Figs. 10 & 11). This assessment confirmed that our simulation slightly 

325 overestimates the magnitude of the electrical field in the intracranial compartments. Interestingly, this 

326 trend reverses for skin and skull, where a small underestimation can be observed. No major difference 

327 between head models and electrode conditions was noticeable. The simulation time was 

328 approximately 4 minutes in all cases.

329

330

331

332

Anodal Dual OccipitalHead 
Model

Ty
pe 90th 

pctl.
95th 
pctl.

99th 
pctl.

90th 
pctl.

95th 
pctl.

99th 
pctl.

90th 
pctl.

95th 
pctl.

99th 
pctl.

.098 .116 .159 .1 .118 .16 .082 .096 .129OF 
sim Mean: .054 [SD: .033] Mean: .056 [SD: .032] Mean: 0.052 [SD: .023]

.079 .09 .115 .078 .089 .111 .069 .078 .098
SN 

mesh SN 
Sim Mean: .046 [SD: .024] Mean: .046 [SD: .022] Mean: .045 [SD: .017]

.12 .135 .164 .121 .139 .17 .11 .123 .148

Er
ni

e

Custom 
mesh

OF 
sim Mean: .072 [SD: .036] Mean: .0.73 [SD: .034] Mean: .072 [SD: .027]

.112 .131 .168 .115 .134 .17 .095 .11 .136OF 
sim Mean: .061 [SD: .036] Mean: .063 [SD: .035] Mean: .059 [SD: .026]

.099 .112 .137 .097 .11 .134 .086 .097 .118
SN 

mesh SN 
sim Mean: .056 [SD: .029] Mean: .056 [SD: .028] Mean: .055 [SD: .022]

.152 .174 .218 .17 .2 .252 .145 .163 .199

Al
m

i

Custom 
mesh

OF 
sim Mean: .091 [SD: .044] Mean: .096 [SD: .051] Mean: .088 [SD: .04]

333

334

335

336

337
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Table 3 Comparison electrical field strength (SimNIBS [SN] vs. OpenFOAM [OF]). Comparison of 

the 90th, 95th, 99th percentile as well as the average magnitude of the electrical field strength in 

V/m within the gray matter mesh compartment of the head model generated by SimNIBS (“SN 

mesh”) and the head model generated using our head modeling pipeline (“custom mesh”). For the 

SN mesh, simulations in both SimNIBS and OpenFOAM have been performed. The custom mesh was 

only used in our simulation environment, not in SimNIBS.

Table 4 Absolute value of the relative difference of the electrical field strength (SimNIBS vs 

OpenFOAM). Comparison (in percent, ) of the mean and peak percentile 
𝑆𝑖𝑚𝑁𝐼𝐵𝑆 – 𝑂𝑝𝑒𝑛𝐹𝑂𝐴𝑀

𝑆𝑖𝑚𝑁𝐼𝐵𝑆 ⋅ 100

absolute value of the relative difference of the simulation results computed by SimNIBS and 

OpenFOAM within the gray matter compartment of the reference meshes.

Table 5 Angle difference of the electrical field strength (SimNIBS vs. OpenFOAM). Comparison of 

the simulation results (in degrees, ) computed by SimNIBS and OpenFOAM 
𝑎𝑐𝑜𝑠 (𝑑𝑜𝑡(𝐸𝑂𝐹, 𝐸𝑆𝑁)

|𝐸𝑂𝐹| ⋅ |𝐸𝑆𝑁| )
𝜋 ⋅ 180

within the gray matter compartment of the reference meshes.

338

339

340

341

342

343

Anodal Dual Occipital
90th 
pctl.

95th 
pctl.

99th 
pctl.

90th 
pctl.

95th 
pctl.

99th 
pctl.

90th 
pctl.

95th 
pctl.

99th 
pctl.

29.85 % 35.8 % 55.4 % 32.81 % 38.28 % 55.8 % 30.32 % 35.8 % 51.47 %Ernie Mean: 16.23 % [SD: 12.95 %] Mean: 18.44 % [SD: 14.87 %] Mean: 16.31 % [SD: 12.32 %]
26.91 % 34.89 % 66.21 % 28.2 % 34.49 % 63.29 % 20.63 % 25.34 % 35.22 %Almi Mean: 13.71 % [SD: 14.37 %] Mean: 14.9 % [SD: 15.31 %] Mean: 10.39 % [SD: 7.52 %]

344

345

346

347

348

Anodal Dual Occipital
90th 
pctl.

95th 
pctl.

99th 
pctl.

90th 
pctl.

95th 
pctl.

99th 
pctl.

90th 
pctl.

95th 
pctl.

99th 
pctl.

21.55° 26.25° 36.34° 22.37° 27.36° 37.9° 22.81° 27.73° 37.76°Ernie Mean: 11.05° [SD: 7.75°] Mean: 11.44° [SD: 8.06°] Mean: 11.72° [SD: 8.1°]
20.63° 25.35° 35.22° 21.4° 26.4° 36.83° 22.15° 27.45° 40.56°Almi Mean: 10.39° [SD: 7.52°] Mean: 10.81° [SD: 7.81°] Mean: 11.31° [SD: 8.65°]

349

350

351

352
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Fig 7, Angle difference in the electrical field strength - Almi. Heatmap of the angle difference of 

the electrical field strength between OpenFOAM and SimNIBS of all electrode configurations. 

Histograms depict angle differences in degrees of all tetrahedra within the gray matter mesh 

compartment.

Fig 8, Relative difference in electrical field strength magnitude - Ernie. Heatmap of the relative 

difference in the magnitude of the electrical field strength between OpenFOAM and SimNIBS in all 

three electrode configurations. A red color indicates a higher electrical field strength in the 

OpenFOAM result whereas blue indicates a higher value in the SimNIBS result. Histograms depict 

differences in percent of all tetrahedra within the gray matter mesh compartment.

Fig 9, Angle difference in electrical field strength - Ernie. Heatmap of the angle difference  of the 

electrical field strength between OpenFOAM and SimNIBS of all electrode configurations. 

Histograms depict angle differences in degrees of all tetrahedra within the gray matter mesh 

compartment.

Fig 10, Electrical field magnitude - Almi. Comparison of the magnitude of the electrical field 

strength along a sampling line between both electrodes between OpenFOAM (green) and SimNIBS 

(blue). A dashed line depicts the mesh regions with distinct conductivity values.

Fig 11, Electrical field magnitude - Ernie. Comparison of the magnitude of the electrical field 

strength along a sampling line between both electrodes between OpenFOAM (green) and SimNIBS 

(blue). A dashed line depicts the mesh regions with distinct conductivity values.

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

Fig 6, Relative difference in the electrical field strength magnitude - Almi. Heatmap of the relative 

difference in the magnitude of the electrical field strength between OpenFOAM and SimNIBS in all 

three electrode configurations. A red color indicates a higher electrical field strength in the 

OpenFOAM result whereas blue indicates a higher value in the SimNIBS result. Histograms depict 

differences in percent of all tetrahedra within the gray matter mesh compartment.
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Table 6 Mesh characteristics. Number of cells and mesh quality metrics of our version of the Almi 

and Ernie head models as well as the version generated by SimNIBS. For the subsequent finite-

volume-method calculation decisive characteristics are the number of mesh elements (#cells), the 

number of non-orthogonal faces, i.e. faces whose non-orthogonality is greater than 70°, the 

maximum non-orthogonality and the maximum skewness of the mesh elements. 

377 3.2.2 Full workflow verification

378 As a next step, we reproduced the Almi5 and Ernie head models from their original T1-weighted MR 

379 data using our head modeling workflow. Their original MR data are available from SimNIBS. 

380 Figure 12 displays the segmentation results achieved by our approach using only the T1-weighted 

381 image in comparison to SimNIBS 3.0 using the CAT12 segmentation routines on both the T1-weighted 

382 as well as the T2-weighted image of the exemplary data set “Ernie”. The computed head models were 

383 caudally more truncated. The Mesh quality (Table 6) was well suitable for OpenFOAM. The conductivity 

384 values and the three electrode montages remained unchanged. Computation times for each head 

385 model on an Intel Core i7 6700 workstation were approximately 6 hours (segmentation), 3 hours 

386 (meshing), 100 seconds (simulation). 

387

388

389

390

Almi (dual) Ernie (dual)
SimNIBS 
version

Our 
version

SimNIBS 
version

Our 
version

#cells (in million) 4.1 5.2 4.8 5.5

#non-orthogonal faces 1090 239 2301 26

Max. non-orthogonality 93.43° 81.04° 89.72° 82.12°

Max. cell skewness 10.9 2.39 3.04 1.78

391

392

393

394

395

396

397 The magnitude of the resulting electrical field strength was again compared to the previous results by 

Fig 12, Head segmentation. Comparison of our segmentation result (C) of the T1-weighted MR 

image of the Ernie test dataset (B) with the SimNIBS segmentation (A) computed from the T1- and 

T2-weighted imaging. The resulting electrical field of an anodal electrode configuration using a 

head model generated from our segmentation is displayed in Panel D.
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Fig 13, Simulation results custom mesh vs SimNIBS mesh - Ernie. Comparison of the magnitude of 

the electrical field strength of the simulation conducted using our custom head model (purple) and 

the SimNIBS generated head model (OpenFOAM result: green, SimNIBS result: blue). 

Fig 14, Simulation results custom mesh vs SimNIBS mesh - Almi. Comparison of the magnitude of 

the electrical field strength of the simulation conducted using our custom head model (purple) and 

the SimNIBS generated head model (OpenFOAM result: green, SimNIBS result: blue). 

398 sampling along a sampling line between the respective electrodes through the head models. Across all 

399 conditions, the mean and percentile-peak values of the electrical field strength in the gray matter mesh 

400 compartment were slightly overestimated (“custom mesh” vs “SN mesh” in Table 3) while the field 

401 distribution (Fig. 12D) remained comparable (Fig. 13 & 14). 

402

403

404

405

406

407

408 3.3. Extended capabilities

409 In this section, we demonstrate extended processing capabilities that can be combined with our 

410 standard workflow. We included anisotropic conductivity of the white matter in the custom Almi5 test 

411 case. Furthermore, we conducted a simulation using an alternative electrode model in the form of 

412 small circle-like electrodes in a multi-electrode setup. Finally, we demonstrate the inclusion of lesioned 

413 tissue in a head model.

414 3.3.1. Modeling anisotropic conductivity

415 To model the anisotropic conductivity of white matter, the conductivity tensors from the diffusion-

416 weighted imaging data of the Almi5 dataset were computed. In this process, we assumed a fixed ratio 

417 of 1:10 between the main and the auxiliary directions of the tensor and a conductivity of  for 0.126
𝑆
𝑚

418 the white matter. We assigned the same isotropic conductivity values to the individual mesh 

419 compartments as before except the white matter compartment to which we assigned the computed 

420 conductivity tensors. Refer to Fig. 15 for a depiction of the conductivity profile of the data set. We 

421 simulated the anodal electrode setup with two 5 cm x 5 cm patch-like electrodes placed over C3 and 

422 supraorbital, close to Fp2. The input current strength was set to 2 mA. Additionally, to demonstrate 
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Fig 16, Anisotropic test case – comparison to isotropic test case. A) Comparison of the magnitude 

of the electrical field strength along the sampling line (yellow) between the custom version of the 

Alim5 head model with isotropic and anisotropic white matter conductivity. B) Relative difference 

(in percent) in the local electrical field magnitude in the gray matter mesh compartment. C) Local 

angle difference (in degrees) of the local electrical field strength in the gray matter mesh 

compartment.

423 the image-based meshing capabilities of our meshing tool we generated the head model only using 

424 image-based meshing (except for the electrodes and the scalp to ensure the feature-preservation of 

425 the electrodes). The characteristics of the resulting mesh were as follows: 5.2 million tetrahedra, 239 

426 non-orthogonal faces, maximum non-orthogonality of 81°, maximum skewness of 2.4.

427

428

429

430

431 We sampled the magnitude of the electrical field strength along a sampling line between both 

432 electrodes through the head model and compared the magnitude of the anisotropic test case to a 

433 version of the test case using scalar conductivity values only. The difference in the magnitude was 

434 most noticeable in the intracranial compartments, where the changes in the magnitude (both in the 

435 negative and positive direction) along the sampling line were generally higher in the anisotropic case 

436 as compared to the isotropic case (Fig. 16A). Furthermore, the area underneath the electrodes 

437 experienced higher differences both in the local field angle and field magnitude of the electrical field 

438 (Fig. 16B & 16C). The mean angle difference between the isotropic and anisotropic case within the 

439 gray matter mesh compartment was 9.4° (99th percentile: 33.1°) and the mean value of the relative 

440 difference of the absolute field magnitude was 12.25 % (99th percentile: 29.16%).

441

442

443

444

445 3.3.2. Simulating multi-electrode tDCS

446 In this test case, we changed the electrode setup to a 4 x 1 multi-electrode tDCS setup with five circular 

447 electrodes with a diameter of 5 mm. The anode was positioned approximately at C3. The four cathodes 

Fig 15, Conductivity tensors. Conductivity profile of the augmented Almi5 test case. Darker color 

depicts higher conductivity. Conductivity tensors are visualized using spherical tensor glyphs. Their 

size depicts the magnitude of the conductivity. The shape reflects the degree of anisotropy, from 

isotropic (ball shape) to highly anisotropic (ellipsoidal, rod-like). 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 9, 2020. ; https://doi.org/10.1101/2020.01.09.900035doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.09.900035
http://creativecommons.org/licenses/by/4.0/


21

Fig 17, Multi-electrode test case. Exemplary extension of the standard workflow by multi-electrode 

tDCS. Five round electrodes with a diameter of 5 mm were positioned approximately at C3 and 

resulted in a much more focal field distribution than achieved with conventional square-shaped, 

patch electrodes.

448 were positioned in 10 cm distance from the anode in a square arrangement around the cathode. A 

449 Dirichlet boundary condition of -5 V at the four cathodes and +5 V at the central anode was defined. 

450 We set the input current strength to 2 mA. Again, the image-based meshing algorithm was used for 

451 the head model generation (surface-based only for the scalp and the electrodes). The same isotropic 

452 conductivity values as before were assigned. 

453 The computation of the electrical field finished after 148 seconds. The resulting electrical field pattern 

454 is much more focal (Figure 17) with only a negligible fraction of the inbound current reaching the 

455 contralateral hemisphere as compared to the field induced by two large conventionally shaped 

456 electrodes as simulated before. This is an expected observation for multi-electrode tDCS montages. 

457 The average electric field strength across the cortex was reduced to 0.02 V/m. The 99th percentile peak 

458 electric field strength was lowered to 0.161 V/m. A larger portion of the cortex that received non-

459 negligible field strength is covered by a field strength of the 99th percentile.  

460

461

462

463

464 3.3.3 Inclusion of lesioned tissue

465 In this test case, we created a head model from the T1-weighted magnetization prepared rapid 

466 gradient echo (MRAGE) and T2-weighted fluid-attenuated inversion recovery (FLAIR) imaging data of 

467 a single subject from the local, large-scale, cross-sectional study of the Leipzig Research Centre for 

468 Civilization Diseases (LIFE) (47). Imaging parameters used for the MPRAGE image were: flip angle 9°, 

469 repetition time 2300 ms, inversion time 900 ms, echo time 2.98 ms, 1 mm isotropic resolution, 

470 acquisition time 5.1 min. The parameters of the FLAIR image were: repetition time 5000 ms, inversion 

471 time 1800 ms, echo time 395 ms, 1 mm isotropic resolution, acquisition time 7.02 min. The images 

472 were acquired on a MAGNETOM Verio scanner (Siemens, Erlangen, Germany) with a 32-channel head 
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473 receive coil and a body transmit coil. The head model was generated by our robust standard 

474 segmentation workflow using the T1-weighted imaging data. Additionally, we included white-matter 

475 lesions into the head model that were segmented before using the T2-FLAIR data. Details of the white 

476 matter lesion segmentation procedure, which relied on an adapted version of the lesion-TOADS 

477 algorithm (48), can be found in (49). We employed image-based meshing for the lesioned tissue, the 

478 ventricles and the air cavities of the skull, and applied the surface-based meshing to all other structures 

479 (scalp, skull, CSF, GM, WM, electrodes).

480 To illustrate the robustness of our segmentation and meshing approach, we compared the generated 

481 compartments of the head mesh between our approach, SimNIBS 3.0 and ROAST 2.7.1 (Fig. 18). Our 

482 approach strongly smooths the scalp structure but maintains typical characteristics of the shape of the 

483 scalp (Fig.18A). The skull is most robustly estimated by our approach, which, however, tends to 

484 overestimate the thickness of the skull occipitally, along the superior sagittal sinus (Fig.19B), and 

485 caudally. All three approaches yield a comparable gray matter compartment (Fig.18D). SimNIBS 

486 creates the visually most complete white matter compartment (Fig. 18E). Note that we included the 

487 white matter lesions as a separate compartment only in our head model (highlighted in orange) (Fig. 

488 18E, Fig. 19A).

489

490

491

492

493

494

495

496

497

498

Fig 18, Mesh compartments of the head model generated using imaging data of the LIFE study 

(47). The T1-weighted imaging data (A) of a subject from the local, large-scale cross-sectional 

imaging study, LIFE, were used to create the head model using our approach, SimNIBS 3.0 and 

ROAST 2.7.1. Our approach yielded the most robust skull segmentation (C). The skin compartment 

(B) is highly smoothed while maintaining the basic shape. The cerebrospinal fluid (D) and gray 

matter (E) mesh compartments are comparable across all three approaches.  We included white 

matter lesions (F, orange), which were segmented from an additional T2-FLAIR image, into the white 

matter compartment of our head model.
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Fig 19, Visualization of the white matter lesions and skull thickness. The white matter lesions of a 

subject exhibiting a high lesion load are highlighted in orange (A). Our atlas-based approach for 

skull segmentation tends to overestimate the thickness of the skull occipitally, along the superior 

sagittal sinus (B).

Fig 20, Simulation results using a white matter lesion head model. From the individual MR-image 

of  subject (A) with a high lesion load (Fazekas score: 3) we segmented the standard tissue (skin, 

skull, csf, gray matter, white matter, air) and the white matter lesions (B). We simulated (C) a 

bihemispheric electrode setup with quadratic 5 cm x 5 cm electrodes and a low conductivity of 0.05 

S/m for the lesioned tissue while all other tissues were set to their default values (Table 2).  For 

comparison we simulated again with the conductivity of the lesioned tissue set to that of healthy 

white matter (D). A local perturbation of the electrical field in the area of the lesions can be 

observed.

499

500

501

502

503 We conducted a tDCS simulation using the generated white matter lesion head model with the 

504 following parameters: a bihemispheric setup of quadratic  5 cm by 5 cm electrodes as before, a 2 mA 

505 input current strength, default conductivity values from Table 2 for the standard tissue and 0.05 S/m 

506 for the lesioned tissue, modeling a calcification of the tissue. We then simulated the test case again 

507 assigning the conductivity of healthy white matter to the lesioned tissue. Comparing both computed 

508 electrical fields reveals a local perturbation in the area of the lesions (Fig. 20). 

509

510

511

512

513

514

515

516

517 4 Discussion

518 We presented a set of approaches for an individualized simulation of transcranial electric stimulation. 

519 The entire workflow from segmentation, meshing, electrode modeling, simulation, and visualization is 

520 built around OpenFOAM, a finite-volume based framework for numerical simulations. A coupled use, 

521 as well as the use of single features, are equally possible. Essential features are: 1) Individual head 

522 models are created solely from T1-weighted MRI data. Despite the limited T1-contrast we robustly 

523 segment scalp, skull, subarachnoid CSF, the ventricles, GM, WM, and the air cavities in the skull, as 
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524 demonstrated using an exemplarily head image from a local, large-scale imaging study (47).  2) 

525 Combining image-based meshing with the surface-based meshing preserves the feature edges of the 

526 electrodes while avoiding any restrictions concerning the topology of tissue structures of the head 

527 model. 3) Arbitrary electrode shapes can be modeled, and their positioning is standardized according 

528 to the international 10-20 system. 4) Anisotropic tissue conductivity can be incorporated into the 

529 simulation. We demonstrated an overall agreement with an analytical 3-layer sphere model and the 

530 simulation results obtained by the simulation pipeline SimNIBS, especially when the simulations are 

531 based on the same head model, allowing comparability of the simulation results across simulation 

532 studies.

533 The combination of an image-based and a surface-based meshing algorithm realizes the head model 

534 generation. The image-based meshing holds two advantages. First, there is no restriction concerning 

535 the topology of the sub-compartments of the mesh. As the boundaries are determined directly from a 

536 labeled image, there is no requirement of overlap-free boundaries of sub-compartments (50). 

537 Therefore, the inclusion of structures that do not obey a strictly nested arrangement, for example, 

538 tumorous or lesioned tissue or holes in the skull (12), is facilitated. Second, image-based meshing is 

539 less sensitive to the quality of the input data which avoids extensive postprocessing of the 

540 segmentation images. However, boundaries may be less accurately approximated which we mitigated 

541 by setting a strict tolerance of the involved bisection algorithm. Surface-based meshing approximates 

542 boundaries most accurately and can preserve feature edges, which is, therefore, beneficial for 

543 representing any structure that does not require the flexibility of the image-based meshing, especially 

544 for the electrodes. As a consequence of the combination of both approaches, a tetrahedral volume 

545 mesh of high quality with maximum flexibility concerning the topology and maximum geometrical 

546 accuracy is obtained. 

547 Comparing the results of our solver application and the solver employed in SimNIBS using an identical 

548 head model indicated an overall agreement in the global distribution and changes of the electrical field 

549 strength. However, peak differences of up to 66.2 % and peak deviations in the local electrical field 
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550 direction of up to 40.6° were revealed in sparse locations close to the electrodes while on average the 

551 differences with the gray matter mesh compartments remained relatively small (approximately 15% 

552 difference in the field magnitude and 11° in local field direction). Since the volume mesh, the boundary 

553 conditions, and the conductivity values for the individual mesh compartments were identical, we 

554 conclude that differences arose due to the fundamentally different numerical approaches used for 

555 solving Maxwell’s equation (SimNIBS: finite-element method, OpenFOAM: finite-volume method).

556 We consider the finite-volume method implemented in OpenFOAM more sensitive to the quality of 

557 the volume mesh than the finite-element method in SimNIBS. Only by applying a limited interpolation 

558 scheme for the Laplacian term of the underlying equation of the electrical potential, the solution 

559 converged slowly when solving the tES problem in the head models created by SimNIBS. This choice of 

560 the discretization scheme resulted in a decreased convergence and thereby an increased solution time 

561 of approximately 4 minutes as compared to 100 seconds using our mesh with an even higher number 

562 of tetrahedra (SimNIBS mesh ≈ 4 M., our head model ≈ 5 M.). In addition, we partly attribute the 

563 observed differences between the solutions of the FVM solver and the FEM solver to the chosen 

564 numerical scheme. Most notably our volume meshed contained in the worst-case approximately 220 

565 non-orthogonal cells whereas the SimNIBS volume meshes exhibited more than 1000 non-orthogonal 

566 cells in the best case and had problematic cells with negative cell volume, high skew, wrong orientation 

567 and a high aspect ratio as detected by the checkMesh utility of OpenFOAM. The higher mesh quality is 

568 the result of an extensive mesh optimization phase in our meshing approach, which increases the time 

569 for the volume meshing to up to 3 hours as compared to 5 minutes without optimization.

570 Deviations in the electrical field strength when simulating with our version of the Almi5 and Ernie head 

571 models instead of the ready-to-use head model might originate from differences in the caudal extent 

572 of the head model (51) and a different segmentation of the white matter and especially of the skull 

573 (Fig. 9). While our approach for skull segmentation tends to overestimate the skull caudally and 

574 occipitally, along the superior sagittal sinus, it slightly underestimates the thickness dorsally where the 

575 electrodes are attached. The thinner skull in that region may yield an overall higher electrical field 
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576 magnitude (50). However, the general agreement in the change of the magnitude of the electrical field 

577 strength indicates that our modeling workflow does not introduce unexpected alterations to the head 

578 model.

579 The Blender plugin provides powerful means for the positioning and the modeling of the electrodes. 

580 After manually defining four fiducial points (nasion, inion, tragi of the ears) electrodes are placed 

581 automatically according to the 10-20 system. Any position outside the 10-20 system can be manually 

582 defined by moving the electrode across the scalp surface. A standard rectangular electrode is 

583 automatically modeled at the specified position. Other electrode types such as ring electrodes or 

584 triangular electrodes as applied in (52) and (53) are respectively possible, but require an adaption of 

585 the automated workflow. 

586 Our solver application was verified using an analytical 3-layered sphere model and by comparison of 

587 the simulation results with the established simulation pipeline SimNIBS. However, a verification of the 

588 obtained simulation results with in-vivo recordings of the electrical field remains an open task. 

589 Promising approaches are electrical current density measurements obtained by the means of magnetic 

590 resonance electrical impedance tomography (54) or in-vivo recordings of the electrical potential by 

591 intracranial electrodes. TDCS simulations have been validated using intracranial recordings of epilepsy 

592 patients before (55), (56). 

593 Since our workflow mainly focuses on addressing individual problems that we faced during the 

594 simulation of tDCS, it only provides a loose framework for the coupling of the suggested tools. These 

595 tools may, therefore, be easily interchanged by other tools or extended by new functionalities. 

596 However, familiarization with the individual tools and knowledge about the information flow between 

597 the tools (Fig. 1) is necessary to apply the workflow as a whole and potentially results in a higher initial 

598 effort for the setup and application as compared to fully automatized pipelines (10) (12). 

599 First simulation studies suggest that damaged brain tissue due to a stroke influences the field 

600 distribution (57). Considering pathological tissue in the head model is, therefore, a vital extension to 
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601 apply tES simulations to stroke patients. The coupled tools and the image-based meshing of our 

602 approach are prepared for this application as we demonstrated by the inclusion of white matter lesions 

603 into the head model. However, a fully automated and reliable segmentation of these irregular 

604 structures, especially stroke lesions, is still an open task for future research. 

605 The advantageous properties of our suggested approaches for head and electrode modeling, as well 

606 as segmentation, facilitate simulation studies investigating alternative electrode shapes or irregular 

607 structures of the head model such as lesions and tumors in patients, implants, holes in the skull or 

608 vascular tissue.
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