
Supplementary Information for
Evolution of contribution timing in public goods games

Bryce Morsky ∗, Marco Smolla †, and Erol Akçay ‡
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A Analysis of a fixed-time condition model

Consider a fixed-time threshold model, i.e. θ is fixed. In addition to the monomorphic equilibria
p∗ = 0, 1, there are polymorphic equilibria when f(θ − δ) = f(θ). This case, however, is trivial,
since the dynamics devolve to pn+1 = pn. So, considering the case where f(θ− δ) 6= f(θ), we have

∣∣∣∣ dφdpn
∣∣∣∣ =

∣∣∣∣ f(θ − δ)f(θ)

(p̄f(θ − δ) + (1− p∗)f(θ))2

∣∣∣∣ =⇒
∣∣∣∣ dφdpn

∣∣∣∣
pn=0

=

∣∣∣∣f(θ − δ)
f(θ)

∣∣∣∣ , ∣∣∣∣ dφdpn
∣∣∣∣
pn=1

=

∣∣∣∣ f(θ)

f(θ − δ)

∣∣∣∣ , (1)

where

φ(pn) = pn+1 =
pnf(θn)

pnf(θn − δ) + (1− pn)f(θn)
(2)

is the discrete map. Therefore, if f(θ − δ) < f(θ), then p∗ = 0 is stable. If f(θ − δ) > f(θ), then
p∗ = 1 is stable.

With respect to the spatial version of this model, one of the two strategies will have a higher
growth rate (except if they are exactly equal) and will therefore dominate. Thus, the spatial model
will be qualitatively the same as the non-spatial one.

B Numerical methods

To numerically solve the reaction-diffusion model, we use the method of lines. We discretize space
into anL×L lattice with n1,j,k and n2,j,k the number of delayers and non-delayers at position (j, k),
and consider periodic boundaries. The finite difference scheme for the diffusion operator is
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∇2ni,j,k ≈
(
ni,j+1,k − 2ni,j,k + ni,j−1,k

h2
+
ni,j,k+1 − 2ni,j,k + ni,j,k−1

h2

)
(3)

=
1

h2
(ni,j+1,k + ni,j−1,k + ni,j,k+1 + ni,j,k−1 − 4ni,j,k).

To numerically solve this system, we use Julia’s DifferentialEquations package (Rackauckas and
Nie, 2017) with solver Rodas4P, a Rosenbrock method (Hairer and Wanner, 1996). Our code is
available at https://github.com/erolakcay/contributiontiming.

C Analysis of the fixed contribution threshold model

C.1 Stability analysis

Here we discuss the equilibria and the stability of our discrete time model presented in the main
text where the public good is produced when a fixed threshold contribution is reached (the time of
which depends on the group composition). In addition to the monomorphic equilibria p∗ = 0, 1,
there are polymorphic equilibria when f(θ∗ − δ) = f(θ∗). To determine stability, let us first define
the maps pn+1 = φ1(pn, θn) (Eq. 2) and θn = φ2(pn). Noting that θn is determined via the condition

α =

∫ θn

0

pnf(t− δ) + (1− pn)f(t)dt (4)

as a function of pn, we may simplify the model into a one dimensional map, pn+1 = φ1(pn, φ2(pn)).
To check for stability, we differentiate with respect to pn and find∣∣∣∣dφ1dpn

∣∣∣∣
pn=1

=

∣∣∣∣∂φ1∂pn
+
∂φ1
∂φ2

dφ2
dpn

∣∣∣∣
pn=1

(5)

where (recalling that θ∗ = φ2(p∗))

∂φ1
∂pn

∣∣∣∣
pn=p∗

=
f(θ∗ − δ)f(θ∗)

(p∗f(θ∗ − δ) + (1− p∗)f(θ∗))2
, (6)

∂φ1
∂φ2

∣∣∣∣
pn=p∗

=
p∗(1− p∗)(f ′(θ∗ − δ)f(θ∗)− f ′(θ∗)f(θ∗ − δ))

(p∗f(θ∗ − δ) + (1− p∗)f(θ∗))2
. (7)

To find dφ2(pn)/dpn, differentiate Eq. 4 with respect to pn and rearrange, i.e.

α =

∫ θn

0

pnf(t− δ) + (1− pn)f(t)dt

=⇒ 0 =

∫ θn

0

f(t− δ)− f(t)dt+
dφ2
dpn

(pnf(θn − δ) + (1− pn)f(θn)),

=⇒ dφ2
dpn

∣∣∣∣
pn=p∗

=

∫ θ∗
0
f(t)− f(t− δ)dt

p∗f(θ∗ − δ) + (1− pn)f(θ∗)
, (8)

Checking stability for the monomorphic states gives us
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∣∣∣∣dφ1dpn

∣∣∣∣
pn=0

=

∣∣∣∣f(θ∗ − δ)
f(θ∗)

∣∣∣∣ < 1,

∣∣∣∣dφ1dpn

∣∣∣∣
pn=1

=

∣∣∣∣ f(θ∗)

f(θ∗ − δ)

∣∣∣∣ < 1. (9)

If α is sufficiently high, then f(θ∗ − δ) > f(θ∗). Therefore, the monomorphic delayer state is
stable. The monomorphic non-delayer state can be stable if α is sufficiently low, since f(θ∗ − δ) <
f(θ∗). Thus, we observe contrasting bifurcations with respect toα; increasing (decreasing)α causes
instability for p∗ = 1 (p∗ = 0). The bifurcations occur at f(θ∗ − δ) = f(θ∗). Moving onto the
polymorphic state, where f(θ∗ − δ) = f(θ∗), it is unstable for

∣∣∣∣dφ1dpn

∣∣∣∣
pn=p∗

=

∣∣∣∣∣1 +
p∗(1− p∗)(f ′(θ∗ − δ)− f ′(θ∗))(

∫ θ∗
0
f(t)− f(t− δ)dt)

f(θ∗)2

∣∣∣∣∣ ≥ 1 (10)

⇐⇒
p∗(1− p∗)(f ′(θ∗ − δ)− f ′(θ∗))(

∫ θ∗
0
f(t)− f(t− δ)dt)

f(θ∗)2
> 0. (11)

Now, note that the denominator is positive, and note that
∫ θ∗
0
f(t)−f(t−δ)dt > 0, due to the delay.

Further, f(θ∗ − δ) = f(θ∗) implies that f ′(θ∗ − δ) > 0 and f ′(θ∗) < 0. Thus, the polymorphic state
is unstable.

C.2 Evolutionary invasion analysis

Let us now consider the evolution of delaying within an adaptive dynamics framework. Rare muta-
tions occur in δ such that the population has time to reach equilibrium before each new mutation.
We check the invasibility of a mutant by differentiating the relative growth rates of the mutant
to resident at the resident’s equilibrium time θ∗res (i.e. the eigenvalue Eq. 9) with respect to δ and
evaluating at δ = 0,

∂

∂δ

(
f(θ∗res − δ)
f(θ∗res)

) ∣∣∣∣
δ=0

= −f
′(θ∗res)

f(θ∗res)
,

∂

∂δ

(
f(θ∗res + δ)

f(θ∗res)

) ∣∣∣∣
δ=0

=
f ′(θ∗res)

f(θ∗res)
, (12)

for a relatively delaying and expediting mutant, respectively. A mutant can invade the equilibrium
if the corresponding equation is positive. Thus, at p∗ = 0, a mutant that expedites its schedule
relative to the resident can invade if f ′(θ∗res) < 0, i.e. θ∗res > θ†res, where θ†res is the time at which
the resident’s schedule is at its peak. A mutant that delays relative to the resident can invade if
f ′(θ∗res) > 0, i.e. θ∗res < θ†res. If θ∗res = θ†res, then f ′(θ∗res) = 0. Analysing the second derivative gives us

∂2

∂δ2

(
f(θ∗res − δ)
f(θ∗res)

) ∣∣∣∣
δ=0

=
f ′′(θ∗θ†res)

f(θ∗θ†res)
< 0,

∂2

∂δ2

(
f(θ∗res + δ)

f(θ∗res)

) ∣∣∣∣
δ=0

=
f ′′(θ†res)

f(θ†res)
< 0, (13)

which means that it is an evolutionary stable point.
Note that a mutation that is too large may not be able to invade. Assume that the schedule is

monotonically increasing until it peaks and monotonically decreasing thereafter. Then, for some
θ∗res > θ†res, there exists a θ̃ < θ†res such that f(θ∗res − δ) > f(θ∗res) for δ > θ∗res − θ̃, and can thereby
invade. A similar such situation occurs for θ∗res < θ†res.

Now, in our examples, we set the schedules to be normal distributions. Thus, expediting the
schedule will reduce the total amount of energy over the individual’s lifetime, and increase θ∗res.
Therefore, if θ∗res < θ†res, mutants can invade until θ∗res = θ†res, at which point evolution halts. This
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effect does not necessarily occur in the other direction. Though delaying will decrease θ∗res, θ†res.
However, a reasonable constraint is that one cannot delay indefinitely, and therefore beyond some
time all energy is zero. In this case, θ∗res will decrease until it reaches the peak, at which point
evolution halts. Note that if we use a different schedule such that the total energy for an individual
remains constant regardless of shifts in timing (i.e. shifts move the peak, but f(0 − δ) is fixed for
all δ), then for α such that θ∗res < θ†res, the schedule approaches the delta function at t = 0. And, for
α such that θ∗res > θ†res, the schedule approaches the delta function at t =∞.

D Analysis of the Lotka-Volterra DAE

D.1 Stability analysis

Here we will analyze our Lotka-Volterra model, which is a differential-algebraic equation (DAE)
(Beardmore and Song, 1998). The model features a carrying capacity K, interspecific competition,
and an algebraic constraint. Further, we show that this system exhibits bistability, like the discrete
system.

The Lotka-Volterra DAE equations are

ṅ1ṅ2
0

 = Φ =


n1
θ

(
f(θ − δ)− (f(θ − δ)n1 + f(θ)n2)

K

)
n2
θ

(
f(θ)− (f(θ − δ)n1 + f(θ)n2)

K

)
∫ θ
0
n1f(t− δ) + n2f(t)dt− α(n1 + n2)

 , (14)

where n1 and n2 are the delayer and non-delayers, respectively. Following the derivation in Crow
et al. (1970), the change in the proportion of delayers in a Lotka-Volterra equation is

ṗ = p(f(θ − δ)− pf(θ − δ)− (1− p)f(θ)). (15)

Now, scaling by 1/(ptf(θ − δ) + (1− pt)f(θ)) > 0, we have

ṗ ≈ pt(f(θ − δ)− ptf(θ − δ)− (1− pt)f(θ))

ptf(θ − δ) + (1− pt)f(θ)
= pn+1 − pn (16)

=⇒ pn+1 =
pnf(θ − δ)

pnf(θ − δ) + (1− pn)f(θ)
. (17)

To consider stability, we must first find the index of the DAE (Campbell and Gear, 1995). Dif-
ferentiating the algebraic equation with respect to time and rearraranging with respect to θ̇, we
find

dφ3
dt

= ṅ1

(∫ θ

0

f(t− δ)dt− α

)
+ ṅ2

(∫ θ

0

f(t)dt− α

)
+ θ̇(n1f(θ − δ) + n2f(θ)) = 0 (18)

=⇒ θ̇ =
ṅ1

(
α−

∫ θ
0
f(t− δ)dt

)
+ ṅ2

(
α−

∫ θ
0
f(t)dt

)
n1f(θ − δ) + n2f(θ)

. (19)
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If n1f(θ − δ) + n2f(θ) 6= 0, we have an index one DAE.
To check stability for the equilibia, we linearize Φ, taking the Jacobian of Φ at an equilibrium,

J(n∗1, n
∗
2, θ
∗) (Riaza, 2004). LettingM be the mass matrix, we then find the eigenvalues of the matrix

pencil

{M,J(n∗1, n
∗
2, θ
∗)} =



1 0 0

0 1 0

0 0 0

 ,


∂φ1
∂n1

∂φ1
∂n2

∂φ2
∂θ

∂φ2
∂n1

∂φ2
∂n2

∂φ2
∂θ

∂φ3
∂n1

∂φ3
∂n2

∂φ3
∂θ



∣∣∣∣∣∣∣∣∣∣∣n1=n
∗
1

n2=n
∗
2

θ=θ∗


. (20)

Checking stability for the monomorphic equilibria we have

det(J(0,K, θ∗)− λM) =

∣∣∣∣∣∣∣∣∣
1

θ∗
(f(θ∗ − δ)− f(θ∗))− λ 0 0

−f(θ∗ − δ)
θ∗

−f(θ∗)

θ∗
− λ 0∫ θ∗

0
f(t− δ)dt− α 0 f(θ∗)K

∣∣∣∣∣∣∣∣∣
=

(
λ− 1

θ∗
(f(θ∗ − δ)− f(θ∗))

)(
λ+

f(θ∗)

θ∗

)
f(θ∗)K = 0, (21)

=⇒ λ1 =
1

θ∗
(f(θ∗ − δ)− f(θ∗)) < 0, λ2 = −f(θ∗)

θ∗
< 0, (22)

det(J(K, 0, θ∗)− λM) =

∣∣∣∣∣∣∣∣∣
−f(θ∗ − δ)

θ∗
− λ −f(θ∗)

θ∗
0

0
1

θ∗
(f(θ∗)− f(θ∗ − δ))− λ 0

0
∫ θ∗
0
f(t)dt− α f(θ∗ − δ)K

∣∣∣∣∣∣∣∣∣
=

(
λ+

f(θ∗ − δ)
θ∗

)(
λ− 1

θ∗
(f(θ∗)− f(θ∗ − δ))

)
f(θ∗ − δ)K = 0, (23)

=⇒ λ1 = −f(θ∗ − δ)
θ∗

< 0, λ2 =
1

θ∗
(f(θ∗)− f(θ∗ − δ)) < 0, (24)

λ1 and λ2 are negative, since f(θ∗ − δ) > f(θ∗) at n∗1 = K. Therefore, n∗1 = K is stable. Similarly,
f(θ∗) > f(θ∗ − δ) at n∗2 = K, and so it is also stable. Considering the polymorphic equilibrium
(where f(θ∗ − δ) = f(θ∗)), we have

det(J(n∗1, n
∗
2, θ
∗)− λM) =

∣∣∣∣∣∣∣∣∣
f(θ∗)n∗1
θ∗K

− λ f(θ∗)n∗1
θ∗K

n∗1n
∗
2

θ∗K
(f ′(θ∗ − δ)− f ′(θ∗))

f(θ∗)n∗2
θ∗K

f(θ∗)n∗2
θ∗K

− λ n∗1n
∗
2

θ∗K
(f ′(θ∗)− f ′(θ∗ − δ))∫ θ∗

0
f(t− δ)dt− α

∫ θ∗
0
f(t)dt− α n∗1f(θ∗ − δ) + n∗2f(θ∗)

∣∣∣∣∣∣∣∣∣
=

(
f(θ∗)

θ∗
− λ
)(

λf(θ∗)K − n∗1n
∗
2

θ∗K
(f ′(θ∗ − δ)− f ′(θ∗))

(∫ θ∗

0

f(t− δ)− f(t)dt

))
= 0, (25)

=⇒ λ1 =
f(θ∗)

θ∗
> 0, λ2 =

n∗1n
∗
2(f ′(θ∗ − δ)− f ′(θ∗))

(∫ θ∗
0
f(t− δ)− f(t)dt

)
θ∗f(θ∗)K2

< 0, (26)
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since f ′(θ∗ − δ)− f ′(θ∗) > 0 and
∫ θ∗
0
f(t− δ)dt− f(t)dt < 0. Thus, the polymorphic equilibrium is

unstable.

D.2 Evolutionary invasion analysis

The adaptive dynamics analysis of the Lotka-Volterra DAE gives the same qualitative analysis as
the discrete model. Taking the dominant eigenvalue of Eq. 22 and differentiating, we find

∂

∂δ

(
f(θ∗res − δ)

θ∗res

) ∣∣∣∣
δ=0

= −f
′(θ∗res)

θ∗res
,

∂

∂δ

(
f(θ∗res + δ)

θ∗res

) ∣∣∣∣
δ=0

=
f ′(θ∗res)

θ∗res
, (27)

for a delaying and non-delaying mutant, respectively, where θ∗res is the equilibrium time for the
resident. When θ∗res = θ†res, the time at which the resident’s schedule peaks, we have

∂2

∂δ2

(
f(θ∗res − δ)

θ∗res

) ∣∣∣∣
δ=0

=
f ′′(θ†res)

θ†res
< 0,

∂2

∂δ2

(
f(θ∗res + δ)

θ∗res

) ∣∣∣∣
δ=0

=
f ′′(θ†res)

θ†res
< 0, (28)

E Further numerical results

E.1 Initial conditions: Gaussian random field

To explore the effects of spatial correlation in the initial conditions, p was drawn from an L × L
Gaussian random field normalized to [0, 1] (and N = 5 across space). We generated the Gaussian
random field by R’s gstat package (Pebesma, 2004; Gräler et al., 2016). These results show that
initial clustering by types can promote polymorphisms, allowing groups to reach a monomorphic
population at the carrying capacity before being invaded by the other type.

Fig. SI-1 depicts the time series of the spatial average of the number of delaying and non-
delaying individuals. This figure explains the oscillations we observe in the time series of the
proportion of individuals. Once the carrying capacity is reached, the benefit of increased growth
has less of an effect and the system is dominated by the between type competition dynamics and
diffusion.

Fig. SI-2 depict snapshots at t = 1000 for D = 0.001. The time series are plotted in Fig. SI-3 for
D = 0.01 and in Fig. SI-4 for D = 0.001.

E.2 Initial conditions: U-shaped distribution

Fig. SI-5 depicts the time series of the spatial average of the total number of individuals, N . Figs.
SI-6 and SI-7 depict snapshots at t = 1000 for D = 0.01 and D = 0.001, respectively. Figs. SI-8 and
SI-9 depict the time series until t = 5000 for D = 0.01 and D = 0.001, respectively.
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Figure SI-2. Delayers and non-delayers co-exist for a range of parameters. Shown are the spatial
polymorphisms of delayers (yellow) and non-delayers (black) for the multi-group, multi public
goods game model for low, intermediate, and high α (columns), and where delayers delay contri-
butions with δ ∈ {10%, 30%, 50%}. D = 0.001. The initial proportion of delayers were drawn from
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Figure SI-3. 50 time series of the spatial average of p for low, intermediate, and high α (columns),
and where delayers delay contributions with δ ∈ {10%, 30%, 50%}. D = 0.01. The initial propor-
tion of delayers were drawn from a normalized Gaussian random field.
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Figure SI-4. 50 time series of the spatial average of p for low, intermediate, and high α (columns),
and where delayers delay contributions with δ ∈ {10%, 30%, 50%}. D = 0.001. The initial propor-
tion of delayers were drawn from a normalized Gaussian random field.
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Figure SI-5. 50 time series of the spatial average of the number of delaying and non-delaying
individuals for low, intermediate, and high α (columns), and where delayers delay contributions
with δ ∈ {10%, 30%, 50%}. D = 0.01. The initial proportion of delayers were drawn from the Beta
distribution with parameters (0.5, 0.5).
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Figure SI-6. Delayers and non-delayers co-exist for a range of parameters. Shown are the spatial
polymorphisms of delayers (yellow) and non-delayers (black) for the multi-group, multi public
goods game model for low, intermediate, and high α (columns), and where delayers delay contri-
butions with δ ∈ {10%, 30%, 50%}. D = 0.01. The initial proportion of delayers were drawn from
the Beta distribution with parameters (0.5, 0.5). These snapshots are taken at time t = 1000.
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Figure SI-7. Delayers and non-delayers co-exist for a range of parameters. Shown are the spatial
polymorphisms of delayers (yellow) and non-delayers (black) for the multi-group, multi public
goods game model for low, intermediate, and high α (columns), and where delayers delay contri-
butions with δ ∈ {10%, 30%, 50%}. D = 0.001. The initial proportion of delayers were drawn from
the Beta distribution with parameters (0.5, 0.5). These snapshots are taken at time t = 1000.
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Figure SI-8. 50 time series of the spatial average of p (proportion of delayers) for low, intermediate,
and high α (columns), and where delayers delay contributions with δ ∈ {10%, 30%, 50%}. D =
0.01. The initial proportion of delayers were drawn from the Beta distribution with parameters
(0.5, 0.5).
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Figure SI-9. 50 time series of the spatial average of p (proportion of delayers) for low, intermediate,
and high α (columns), and where delayers delay contributions with δ ∈ {10%, 30%, 50%}. D =
0.001. The initial proportion of delayers were drawn from the Beta distribution with parameters
(0.5, 0.5).
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