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Abstract 

Especially for the high-dimensional data collected in neuroscience, nonparametric statistical tests 

are an excellent alternative for parametric statistical tests. Because of the freedom to use any 

function of the data as a test statistic, nonparametric tests have the potential for a drastic increase 

in sensitivity by making a biologically-informed choice for a test statistic. In a companion paper 

(Geerligs & Maris, 2020), we demonstrate that such a drastic increase is actually possible. This 

increase in sensitivity is only useful if, at the same time, the false alarm (FA) rate can be 

controlled. However, for some study types (e.g., within-participant studies), nonparametric tests do 

not control the FA rate (see Eklund, Nichols, & Knutsson, 2016). In the present paper, we present 

a family of nonparametric randomization and permutation tests of which we prove exact FA rate 

control. Crucially, these proofs hold for a much larger family of study types than before, and they 

include both within-participant studies and studies in which the explanatory variable is not under 

experimental control. The crucial element of this statistical innovation is the adoption of a novel 

but highly relevant null hypothesis: statistical independence between the biological and the 

explanatory variable. 
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Introduction 

Nonparametric statistical tests are an excellent alternative for several parametric 

statistical tests, especially when analyzing the high-dimensional biological data 

that are typically collected in cognitive and medical neuroscience. This is for two 

reasons: (1) their false alarm rate control does not depend on auxiliary 

assumptions or asymptotic arguments, and (2) every function of the data can be 

used as a test statistic, which creates the opportunity for a drastic increase in 

sensitivity. Especially the first reason has received a lot of attention, and this is 

because the probability distribution of the biological data often violates the 

auxiliary assumptions of the normal theory framework that underlies parametric 

statistical tests. Violation of these auxiliary assumptions often results in an 

inflated false alarm (FA) rate (the probability of falsely rejecting the null 

hypothesis). This has recently been demonstrated in a large-scale simulation study 

using data of published neuroimaging studies (Eklund et al., 2016).  

 

The main motivation for the present paper is the potential for a drastic increase in 

sensitivity by using a test statistic that incorporates prior knowledge about the 

signal (the effect) and the noise between which one wants to discriminate. In a 

companion paper (Geerligs & Maris, 2020), we demonstrate that such a drastic 

increase is actually possible. Specifically, Geerligs and Maris (2020) introduce the 

so-called min(p) method for combining a set of basic test statistics with different 

sensitivity profiles (e.g., narrow strong effects and widespread weak effects). This 

min(p) method produces a single test statistic with a much broader sensitivity 

profile, encompassing the sensitivity profiles of the more specialized basic test 

statistics. In a simulation study, Geerligs and Maris (2020) demonstrated that a 

test statistic can be produced with a much higher sensitivity than the sensitivities 

of the existing methods for the statistical analysis of fMRI data.  

 

Crucially, an increase in sensitivity is only useful if, at the same time, the 

specificity is controlled. Specificity is typically quantified as the FA rate. 

Unfortunately, FA rate control is not always guaranteed for a nonparametric test. 

For example, in the simulation study by Eklund et al. (2016), a permutation test 

for a within-participants design (called "one-sample" test by Eklund et al., 2016) 

did not control the FA rate. However, in the same simulation study, it was also 
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shown that a permutation test for a between-participants design (called "two-

sample" test by Eklund et al., 2016) did control the FA rate.  

 

Besides the failure of the permutation test to control the FA rate for all study 

designs, Eklund et al. (2016) also demonstrated that different preprocessing 

pipelines (corresponding to different default options in the major fMRI analysis 

packages) result in very different empirical FA rates. Thus, the empirical FA rate 

not only depends on standard settings, such as the cluster-forming threshold 

(which can be set by all packages), but also on settings that cannot be controlled 

in at least some of the packages (Bowring, Maumet, & Nichols, 2018). This state 

of affairs is worrisome, especially in times when scientists experience the pressure 

to demonstrate the replicability of their results.   

 

In the present paper, we demonstrate that nonparametric statistical tests have a 

much larger scope than is often assumed. Specifically, we describe a 

nonparametric test that controls the FA rate for a wide range of study designs, 

including the within-participants design for which the one-sample test of Eklund 

et al. (2016) did not achieve this. In addition, the FA rate is also controlled for 

studies in which the explanatory variable (see further) is not under experimental 

control. To demonstrate this FA rate control, it is necessary to introduce a novel 

but highly relevant null hypothesis: statistical independence between the 

biological and the explanatory variable. The terms “biological” and “explanatory 

variable” require some explanation. In most papers and handbooks, instead of 

“biological” and “explanatory variable”, the authors use the terms “dependent” 

and “independent variable”. However, these terms would create too much 

semantic overlap with the term “statistical independence”. The terms “biological” 

and “explanatory variable” have the advantage that their meaning is very close to 

our target field of application: neuroimaging and neuroscience. 

 

In the remainder of this paper, we first give a brief overview of the differences 

between parametric and nonparametric statistical tests. Next, we describe how to 

perform a randomization test for random effects in studies with a within-

participants manipulation of the explanatory variable. This description serves as a 
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motivation for the remainder of the paper, which is more formal. This more 

formal part is divided in three sections:  

1. Randomization tests for studies with a between-units manipulation of the 

explanatory variable 

2. Randomization tests for studies with a within-participants manipulation of 

the explanatory variable 

3. Permutation tests for studies in which the explanatory variable is not under 

experimental control (which we call a “natural explanatory variable” in the 

following).  

 

Parametric versus Nonparametric Statistical Tests  

Below, is a four-point schema that specifies how a statistical test is performed. 

This schema is valid for both parametric and nonparametric statistical tests: 

1. Evaluate some test statistic that is a function of both the biological and the 

explanatory variable. For example, in an independent samples t-statistic, 

the participant-specific average magnetic resonance (MR) signal in a given 

voxel could be the biological variable, and the participant’s membership to 

some group (e.g., patient or control, old or young) could be the 

explanatory variable.  

2. Derive or construct a probability distribution of this test statistic under 

some null hypothesis. This distribution will be called the reference 

distribution. 

3. Calculate the probability under the reference distribution of observing a 

test statistic that is more extreme than the observed value of the test 

statistic. This probability is typically called the p-value. 

4. Reject the hypothesis of statistical independence if that p-value is less than 

some nominal value (typically, 0.05 or 0.01). 

Valid statistical tests must control the false alarm (FA) rate. That is, the 

probability of falsely accepting the null hypothesis must be less than the nominal 

value mentioned in point 4. Good statistical tests must be valid and also have a 

high power (sensitivity), that is, a high probability of rejecting the null hypothesis 

when it is in fact false. 
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Nonparametric statistical tests differ from the parametric ones in two aspects. 

First, valid nonparametric tests can be constructed for arbitrary test statistics, and 

therefore are not limited to the family of tests statistics that has been derived 

under the normal distribution (T-test, F-test, …). This freedom creates the 

possibility to incorporate biophysically motivated constraints in the test statistic, 

such as clustering over the spatial, temporal, and spectral dimensions of the data 

(Maris & Oostenveld, 2007). Additionally, this freedom also creates the 

opportunity to combine test statistics with different sensitivity profiles (e.g., 

cluster-based tests with different cluster-defining thresholds), which increases the 

width of the sensitivity spectrum. This is demonstrated in a companion paper 

(Geerligs and Maris, 2019).   

 

A second important difference with the parametric statistical tests pertains to the 

reference distribution. In the parametric framework, the reference distribution of a 

test statistic is derived from assumptions about the data whereas in the 

nonparametric framework it is constructed from the observed data. In the present 

paper, we distinguish between randomization and permutation tests. The reference 

distribution for a randomization test is called the randomization distribution, and 

the one for a permutation test is called the permutation distribution. A 

randomization test requires that the units (participants, event times, …) are 

assigned to the experimental conditions on the basis of a randomization 

mechanism (typically, calls to a pseudo-random number generator). Thus, a 

randomization test involves an explanatory variable that is under experimental 

control. This is not necessarily the case for a permutation test, which can also be 

applied to a natural explanatory variable (e.g., gender, disease status, age, 

accuracy), of which the values are observed instead of assigned.   

 

Randomization and permutation tests can be motivated in different ways (Maris & 

Oostenveld, 2007; Pesarin, 2001; Raz, Zheng, Ombao, & Turetsky, 2003; 

Winkler, Ridgway, Webster, Smith, & Nichols, 2014). In this paper, we will 

motivate them from the perspective of testing the null hypothesis of statistical 

independence between the biological and the explanatory variable. Specifically, 

we will prove that a decision on the basis of a randomization or permutation p-

value controls the FA rate under this null hypothesis. We will present our main 
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theoretical results (pertaining to FA rate control) first for randomization tests. 

Only in the last section, we will describe how these results can be generalized to a 

particular class of permutation tests, which are specific for natural explanatory 

variables. This class of permutation tests partially overlaps with the popular 

existing permutation tests for neuroimaging data (Eklund et al., 2016; Nichols & 

Holmes, 2002), but they are not identical. These popular existing permutation 

tests will be denoted as “sign-flipping tests”. Sign-flipping tests are motivated by 

the null hypothesis of symmetric error distributions (Nichols & Holmes, 2002; 

Winkler et al., 2014). As will be outlined in the following, this differs from the 

motivation of the randomization and permutation tests that we will introduce.  

 

A Randomization Test Alternative for the Sign-

Flipping Test 

This section serves as a motivating example. Specifically, we will demonstrate 

how to perform a statistical test that controls the FA rate for a study type for 

which this has not been demonstrated before. The formal proof of this FA rate 

control will be given later. 

 

The Design of the Study 

We consider a multi-participant study in which every participant is observed in all 

experimental conditions of interest. These experimental conditions are the levels 

of the explanatory variable, and therefore we denote this study type as one in 

which the explanatory variable is manipulated within participants. As always, the 

research question pertains to differences between the experimental conditions in 

the measured biological variable. There are several variants of this study type, and 

the most typical ones are the trial-based (also called “blocked design”) and the 

event-based (also called “event-related design”) variant. For the present paper, the 

difference between these variants is not crucial, and therefore we will use “event 

time” both to denote the start of a trial (which lasts for several scans) and a single 

scan. 

 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 9, 2020. ; https://doi.org/10.1101/685560doi: bioRxiv preprint 

https://doi.org/10.1101/685560
http://creativecommons.org/licenses/by-nd/4.0/


Enlarging the Scope of Randomization and Permutation Tests Page nr. 8 of 53 

8 

For the present paper, it is important to be explicit about how the event times are 

assigned to the experimental conditions (A and B). In most studies, the researcher 

makes a deliberate choice about the number of event times that must be assigned 

to each of the experimental conditions, and this number usually is chosen to be 

equal for each of these conditions. Next, the order of the experimental conditions 

across the event times is determined. There may be a single order that is used for 

all participants (e.g., AABBABAB), or there may be multiple orders (e.g., 

AABBABAB and BBAABABA). In the latter case, there are two ways to assign 

the participants to one of these orders: (1) at random (typically, by calling a 

pseudorandom number generator), or (2) on the basis of the researcher’s judgment 

(e.g., alternating the one and the other condition order).  For the randomization 

test that will be introduced in the following, it is necessary that there are multiple 

orders and that the participants are assigned at random to one of them.  

 

It is possible that one of the two conditions (say, B) is a so-called null event. A 

null event corresponds to the absence of some event of interest A (typically, a 

stimulus). A statistical test that is sensitive to the difference between A and the 

null event B, is called “testing against zero”. For the randomization test that will 

be introduced in the following, testing against zero is performed by comparing 

two condition orders (e.g., AABBABAB and BBAABABA) in which one 

condition corresponds to a null event.  

 

The scenario described above involves a single set of event times for all 

participants and two possible condition orders to which a participant can be 

assigned. This is only the simplest of the scenarios for which our method is valid. 

In general, what is required for the validity of our method is that, for every 

participant, the event times can be partitioned into two or more sets, each of which 

corresponds to one condition. These event times and their partitioning may be 

different for different participants, resulting in different participant-specific sets of 

possible condition orders. We will return to this in a later section (Randomization 

Tests for Studies with a Within-Participants Manipulation of the Explanatory 

Variable). 
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The Existing Statistical Tests 

The existing statistical tests for this study type involve two steps: in the first step, 

the effect is quantified separately for every participant, and in the second step, 

these participant-specific effect quantifications are combined in a test statistic for 

which a p-value is calculated. There are many ways to quantify an effect. 

Nowadays, this quantification typically involves a participant-specific general 

linear model (GLM) analysis. This analysis returns condition-specific regression 

coefficients for the regressors that model the hemodynamic responses evoked by 

the events of interest. The effect quantification then typically is taken as the 

difference (contrast) between these condition-specific regression coefficients. 

Note that one of the two experimental conditions can also correspond to a null 

event. In the existing statistical tests, this null event may or may not be included 

in the effect quantification (by including a null event regressor in the GLM). As 

will be described later, in the statistical tests we propose, the null event is always 

included in the effect quantification. 

 

With more than two experimental conditions, the effect quantification typically 

takes the form of an F-statistic, which depends on the ratio between the between-

condition and the within-condition variance. The difference between two and 

more experimental conditions is irrelevant for our comparison of the parametric 

and the different nonparametric statistical tests on which we focus in this section. 

Therefore, we will only consider studies with two experimental conditions.  

 

Next, a statistical test is performed, using as ingredients the participant-specific 

effect quantifications. In the parametric framework, this statistical test usually is a 

one-sample t-test, which tests the null hypothesis that the expected value of the 

effect quantification equals zero. This one-sample test is also called a paired- or a 

dependent samples t-test, in which “paired” and “dependent” refers to the fact that 

every participant is observed in two conditions. In the nonparametric framework, 

one usually performs a sign-flipping test (Nichols & Holmes, 2002; Winkler et al., 

2014). The reference distribution of this test is obtained by randomly flipping the 

signs of the participant-specific effect quantifications. Both the parametric and the 

nonparametric statistical tests have their problems, and these will now be 

discussed. 
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The Problems with Parametric Statistical Inference 

It is well known that the FA rate control of a parametric statistical test depends on 

so-called auxiliary assumptions. For the one-sample t-test, these auxiliary 

assumptions are normality and between-participants statistical independence of 

the difference scores. (As an aside, all statistical tests, both parametric and non-

parametric, assume between-participants statistical independence, and therefore 

we will not explicitly mention this auxiliary assumption anymore.) Fortunately, as 

a result of the central limit theorem, parametric statistical tests provide asymptotic 

control of the FA rate: with increasing sample size, their FA rate approaches the 

nominal alpha level. Although there are no objective guidelines for the required 

sample size to achieve a particular degree of FA rate control, it is often stated that 

one-sample t-test is robust against deviations from normality. 

 

The situation is more serious when, instead of scalar observations, high-

dimensional data are observed. An MR scan produces one signal per voxel, of 

which there are several thousands. Because there is one statistic per voxel-specific 

signal, there is a huge multiple comparisons problem (MCP). A common way to 

deal with this MCP is by calculating a function of these voxel-specific statistics, 

and using the function value as the actual test statistic on which the statistical 

decision (accept or reject the null hypothesis) is based. Popular functions are the 

maximum and the minimum, as well as functions that involve thresholding and 

clustering, such as the maximum cluster size and the maximum cluster sum.  

  

In the parametric framework, these test statistics are then evaluated under 

reference distributions that are derived from the theory of Gaussian (or Student T) 

random fields (Friston et al., 1994). FA rate control using these reference 

distributions is only asymptotic. Specifically, for cluster-based statistical tests, 

only with an increasing cluster-forming threshold, the empirical FA rate 

approaches the nominal alpha level. By means of simulations, Eklund et al. (2016) 

demonstrated that the cluster-forming thresholds corresponding to voxel-level FA 

rates of 0.05 and 0.01 resulted in an unacceptably high empirical FA rate. 
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The Problems with Nonparametric Statistical Inference 

It is often claimed that nonparametric tests allow for testing a null hypothesis 

without relying on auxiliary assumptions. However, it is not always clear what is 

actually meant by this claim. Ideally, it means that, by means of a formal 

(mathematical) proof, it is shown that the FA rate of the statistical test is 

controlled under a null hypothesis that makes no assumptions about the 

parametric shape of the probability distribution that generates the data. Although 

there is theoretical work on the FA rate control of the sign-flipping test starting 

from the null hypothesis of symmetric error distributions (Nichols & Holmes, 

2002; Winkler et al., 2014), no such formal proof has been given for this 

particular test. Therefore, statements about its FA rate control are typically based 

on simulation studies, such as those by Eklund et al. (2016). These authors 

demonstrated that the sign-flipping test in general failed to control the FA rate: 

depending on the dataset examined and the test statistic that was used (cluster- or 

non-cluster-based), the empirical (i.e., simulation-based) FA rate varied between 

0.8 percent (too conservative) and 40 percent (too liberal). Eklund et al. (2016) 

attributed this failure to the asymmetry of the error distributions.  

 

However, for some nonparametric tests, the empirical FA rate is controlled. 

Specifically, Eklund et al. (2016) demonstrated empirical FA rate control for a 

permutation test that involves the two-sample t-test. This is a nonparametric test 

for studies with a between-participants manipulation of the explanatory variable 

(e.g., patients-versus-controls, old-versus-young, treatment-versus-placebo). 

Different from a study with a within-participants manipulation, every participant 

is now observed in only a single condition. The reference distribution of this two-

sample permutation test is obtained by randomly permuting the biological data 

over the different experimental conditions. Crucially, decisions based on the 

resulting permutation p-value control the empirical FA rate.  

 

Thus, depending on the nonparametric test, the empirical FA rate is either 

controlled (the two-sample permutation test) or is not controlled (sign-flipping 

test). In this paper, we will present an alternative for the sign-flipping test, and 

will also give a formal proof of this alternative’s FA rate control. This proof is 

highly similar to a proof of the FA rate control of the two-sample permutation 
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test, which we will also give. Both proofs demonstrate FA rate control under the 

null hypothesis of statistical independence between the biological data and the 

explanatory variable.  

 

A Randomization Test Alternative for the Sign-Flipping Test that 

Controls the FA Rate 

We propose a randomization test for a study with a within-participants 

manipulation of the explanatory variable. This test has two essential ingredients: 

(1) multiple condition orders that reflect the effect of interest, and (2) random 

assignment of participants to these condition orders. Starting with the first 

ingredient, the multiple condition orders are obtained from a partitioning of the 

event times in as many partitions as the number of experimental conditions. Every 

partition of event times is then assigned to one experimental condition. For 

example, in a study with 8 event times and 2 experimental conditions (A and B), 

the two partitions of event times could be {1,2,5,7} and {3,4,6,8}, and this would 

result in the following pair of condition orders: [AABBABAB, BBAABABA]. 

This scheme generalizes to studies with more than two conditions: with k 

experimental conditions, there are k partitions of the event times and k condition 

orders. For simplicity, in the following, we restrict ourselves to two conditions. 

 

The FA rate of the randomization test is controlled for all pairs of condition 

orders. However, the precise null hypothesis that is tested does depend on the pair 

of condition orders. This is clear from the fact that the condition orders can be 

chosen such that possible confounds are either prevented or allowed for. In studies 

with a within-participants manipulation of the explanatory variable, both order 

and expectancy confounds can occur, but it is also easy to control for them. 

Specifically, the condition orders can be chosen such that (1) the conditions are 

uncorrelated with their order (e.g., one condition should not dominate the first or 

the second half of the experiment), and (2) the condition orders contain no 

obvious regularity that induces expectancy effects in the participant (e.g., 

alternating conditions). 
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The second essential ingredient of the randomization test is the random 

assignment of participants to the possible condition orders. This is similar to a 

randomized between-participants experiment in which the participants are 

randomly assigned to the conditions, whereas here they are randomly assigned to 

the possible condition orders. Typically, this random assignment involves calls to 

a pseudo-random number generator. This random assignment is essential, because 

the randomization mechanism that is used for the assignment will also be used for 

calculating the randomization p-value (see further).   

 

We now list the remaining steps of the randomization test: 

1. Collect the data. These data are depicted schematically in Figure 1. The 

figure is schematic and applies to both scalar and high-dimensional 

biological data; the structure of the data arrays is not shown in the figure. 

Note that there are only two possible condition orders, but that the 

participants can have different time courses of triangle heights. This 

corresponds to individual differences in the responses to the stimuli.   

 

Figure 1: Schematic representation of the data of a study with a within-

participants manipulation of the explanatory variable. Every timeline (row) 

corresponds to one participant and every triangle to one event. The colors of the 

triangles denote the experimental conditions (red=A, green=B), and their heights 

denote the amplitude of the biological data.  

 

2. Separately for every participant, quantify the effect of the experimental 

conditions (A versus B). This has been described in the previous.  
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3. Calculate a test statistic. This could be the one-sample t-statistic that is 

used in the parametric framework, but it could also be the simple average 

of the effect quantifications, calculated over participants. 

4. Calculate a randomization p-value for the observed test statistic. This 

randomization p-value is calculated under a reference distribution that is 

obtained by randomly reassigning the participants to one of the two 

condition orders, while keeping the observed biological data fixed. Thus, 

for calculating this reference distribution, we make use of the same 

randomization mechanism that was used for the initial (prior to the data 

collection) assignment of the participants to the condition orders. Every 

random re-assignment is then combined with the observed biological data, 

and the test statistic is recalculated as if this re-assignment were the initial 

assignment. By repeating these steps (random re-assignment and 

recalculation) a large number of times (in principle, an infinite number of 

times), we obtain the randomization distribution, the reference distribution 

of a randomization test. 

5. If the randomization p-value is less than some nominal alpha level, reject 

the null hypothesis of statistical independence between the biological data 

and the explanatory variable (here, represented by the two condition 

orders).   

 

A Comparison Between the Randomization and the Sign-Flipping 

Test 

There are two important differences between the randomization and the sign-

flipping test. First, the randomization test requires two condition orders whose 

contrast reflects the effect of interest. The sign-flipping test, on the other hand, 

can be applied both when a single or when multiple condition orders are used.    

 

The second difference between the two tests is that the randomization test requires 

that the condition orders are randomly assigned to the participants, whereas the 

sign-flipping test can also be applied if they are assigned using a non-random 

mechanism. The random assignment requirement follows from the fact that 

statistical independence (our null hypothesis) is only defined between two random 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 9, 2020. ; https://doi.org/10.1101/685560doi: bioRxiv preprint 

https://doi.org/10.1101/685560
http://creativecommons.org/licenses/by-nd/4.0/


Enlarging the Scope of Randomization and Permutation Tests Page nr. 15 of 53 

15 

variables, and not between a random and a fixed (non-random) variable. Thus, the 

null hypothesis of statistical independence dictates random assignment, and this 

results in a randomization test.   

 

In the following two sections, we will present the theoretical concepts that 

motivate the use of the randomization test. Specifically, we will give a proof of its 

FA rate control under the null hypothesis of statistical independence between the 

biological data and the explanatory variable. For the sake of clarity, we will first 

give this proof for studies in which the explanatory variable is manipulated 

between participants. In the section thereafter, we will show that this proof also 

applies to studies in which the explanatory variable is manipulated within 

participants. Finally, in the last section, we will demonstrate how a permutation 

test allows a test of the null hypothesis of statistical independence between the 

biological data and a natural explanatory variable. 

 

Randomization Tests for Studies with a Between-

Units Manipulation of the Explanatory Variable  

In this section, we will describe randomization tests that can be applied to both 

single- and multi-participant studies with a between-units manipulation of the 

explanatory variable. We make use of the concept of a unit because this allows for 

a general description that applies to both single- and multi-participant studies. In a 

single-participant study, the units are event times, and in a multi-participant study, 

they are participants.  

 

When the units are event times, these times may indicate either brief stimulus 

presentations lasting less than a single scan, or the start of a longer stimulus 

presentation lasting for several scans. Such longer periods are often called “trials” 

or “blocks”. We will not distinguish between such trial-based studies and studies 

with single-scan events. The data of both study types are also analyzed in the 

same way: a GLM is fitted to the data, with the core regressors being stimulus 

functions convolved with a hemodynamic response function. Trial-based studies 

and studies with single-scan events only differ with respect to their stimulus 
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functions: boxcars for trial-based, and a stick functions for studies with single-

scan events.   

 

When the units are participants, a between-units manipulation implies that all 

event times within a given participant are observed in the same experimental 

condition. This differs from studies in which the explanatory variable is 

manipulated within participants.  

 

Different from the previous section, we will now introduce some notation. This 

allows us to provide a formal proof of the FA rate control of the randomization 

tests. 

 

Notation 

The biological data is denoted by 𝑌, and the explanatory variable by 𝑋. The 

variables 𝑌 and 𝑋 are assumed to be random variables, which implies that they are 

the result of a random process. The values that were actually observed are called 

the random variables’ realizations, and they are denoted by, respectively, 𝑦 and 𝑥.  

 

One of the important facts demonstrated in this section, is that the FA rate control 

of a randomization test does not depend on any assumption about the probability 

distribution of 𝑌. However, to keep the exposition concrete, it helps if we describe 

the different situations that correspond to the two unit types. For the first unit type 

(participants), it is easy to conceptualize a nonparametric test that involves 

random permutations of participant-specific component data structures. The latter 

is not possible for the second unit type (event times). However, our randomization 

test does not require such permutations of participant-specific component data 

structures, and therefore it applies to both unit types.   

 

First, if the units are participants, then the variable 𝑌 is an array of 𝑛 smaller 

statistically independent component data structures 𝑌𝑟 (𝑟 = 1, … , 𝑛), each one 

corresponding to a single participant. This situation is depicted in Figure 2: 

Schematic representation of the data of a study with a between-units manipulation 

of the explanatory variable. Panel A depicts a study in which the units are 
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participants, each of which is represented by one stick. Panel B depicts the data of 

a single-participant fMRI study in which the units are event times. Every event is 

represented by one triangle. The colors of the sticks and the triangles denote the 

experimental conditions and their heights denote the amplitude of the biological 

data.  

A, in which the lengths of the sticks correspond to the amplitudes of the 

components 𝑌𝑟, which typically are regression coefficients. The figure is 

schematic and applies to both scalar and high-dimensional biological data; the 

structure of the data arrays is not shown in the figure.  

 

Second, if the units are event times in a single-participant fMRI study, it is not 

possible to separate 𝑌 in a set of 𝑛 smaller statistically independent component 

data structures. This is because 𝑌 now is the whole MR time series obtained from 

that participant, with the effects of the different events superimposed on each 

other. This situation is depicted in Figure 2: Schematic representation of the data 

of a study with a between-units manipulation of the explanatory variable. Panel A 

depicts a study in which the units are participants, each of which is represented 

by one stick. Panel B depicts the data of a single-participant fMRI study in which 

the units are event times. Every event is represented by one triangle. The colors of 

the sticks and the triangles denote the experimental conditions and their heights 

denote the amplitude of the biological data.  

B, in which the heights of the triangles correspond to the magnitudes of the event-

specific BOLD-responses. 

 

Figure 2: Schematic representation of the data of a study with a between-units 

manipulation of the explanatory variable. Panel A depicts a study in which the 

units are participants, each of which is represented by one stick. Panel B depicts 

the data of a single-participant fMRI study in which the units are event times. 

Every event is represented by one triangle. The colors of the sticks and the 
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triangles denote the experimental conditions and their heights denote the 

amplitude of the biological data.  

 

The explanatory variable 𝑋 is a variable of which the relation with the biological 

variable 𝑌 is of scientific interest: stimulus type, task/instruction, behavioral 

response, etc. In the context of a randomization test, the levels of this explanatory 

variable are experimental conditions to which the units are randomly assigned. 

The explanatory variable 𝑋 is an array of 𝑛 components 𝑋𝑟 (𝑟 = 1, … , 𝑛), each 

one corresponding to a single unit. For example, in a single-participant study, 𝑋𝑟 

could indicate whether-or-not a predictive cue was given at the 𝑟-th event time. 

And in a multi-participant randomized experiment, 𝑋𝑟 could indicate whether the 

𝑟-th participant was assigned to the experimental or the control condition. In 

Figure 2: Schematic representation of the data of a study with a between-units 

manipulation of the explanatory variable. Panel A depicts a study in which the 

units are participants, each of which is represented by one stick. Panel B depicts 

the data of a single-participant fMRI study in which the units are event times. 

Every event is represented by one triangle. The colors of the sticks and the 

triangles denote the experimental conditions and their heights denote the 

amplitude of the biological data.  

, the realizations 𝑥𝑟 of the component random variables 𝑋𝑟 are depicted by the 

colors red and green. 

 

The Hypothesis of Statistical Independence 

The randomization test we describe in this paper is a test of the hypothesis of 

statistical independence between the biological data 𝑌 and the explanatory 

variable 𝑋. This hypothesis pertains to the conditional probability distribution of 

the biological data 𝑌 given the explanatory variable 𝑋, which is denoted by 

𝑓(𝑌 = 𝑦|𝑋 = 𝑥), in which the lower-case letters 𝑦 and 𝑥 denote the realizations 

of the corresponding random variables. Now, if this conditional probability 

distribution depends on 𝑥, then we say that the explanatory variable has an effect 

on the biological variable. The probability distribution of 𝑌 may of course depend 

on other variables besides 𝑋, the explanatory variable of interest, but the effect of 
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all these other variables will be considered noise that contributes to the variability 

of 𝑌 for a given realization 𝑥 of 𝑋. 

 

Formally, with a randomization test, we test the null hypothesis of statistical 

independence between 𝑌 and 𝑋: 

 𝑓(𝑌 = 𝑦|𝑋 = 𝑥) = 𝑓(𝑌 = 𝑦)   , Eq.  1 

or, in brief, 𝑓(𝑌|𝑋) = 𝑓(𝑌). In the remainder of this paper, unless there is a risk 

for confusion, we will disregard the distinction between a random variable (𝑋, 𝑌) 

and its realization (𝑥, 𝑦). Statistical independence is symmetrical between 𝑌 and 

𝑋, and therefore can also be expressed as follows: 

 𝑓(𝑋|𝑌) = 𝑓(𝑋) Eq.  2 

Eq.  2 is useful for proving the FA rate control of the randomization test. 

 

Eq.  1 and Eq.  2 are the most general formulation of the null hypothesis of 

statistical independence between the biological data and the explanatory variable. 

More specific formulations are possible under suitable assumptions. For instance, 

under statistical independence between the unit-specific component data 

structures 𝑌𝑟, the null hypothesis can be formulated as follows:  

 𝑓(𝑌𝑟|𝑋𝑟) = 𝑓(𝑌𝑟), for  𝑟 = 1, … , 𝑛 Eq.  3 

Here, the index 𝑟 refers to the rank order of a unit that is randomly drawn from 

some population, and the functions 𝑓(𝑌𝑟|𝑋𝑟) and 𝑓(𝑌𝑟) therefore characterize 

probability distributions over this population. The formulation in Eq. 3 is useful 

when the units are participants. Instead, when the units are event time points in a 

single-participant fMRI study, no such component data structures can be 

specified, and only the general formulation in Eq.  1 and Eq.  2 is applicable.  

 

It should be stressed that the variable 𝑌 and its components 𝑌𝑟 denote raw data. Of 

course, when calculating a test statistic, the raw data will be processed with the 

goal of extracting the relevant information for some phenomenon of interest (by 

means of averaging, GLM-based deconvolution, the Fourier transform, …). 

However, the theory of the randomization test has no implications for this data 

processing: if the null hypothesis of statistical independence holds for the raw 

data, it also holds for any function of the raw data. Of course, if this null 

hypothesis does not hold, then the choice of the test statistic may very well affect 
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the probability of rejecting it (i.e., the sensitivity). In general, a well-informed 

choice of the test statistic (zooming in on the aspect of the data that is most likely 

to exhibit an effect) increases the sensitivity. 

 

Interpreting the Hypothesis of Statistical Independence 

The null hypothesis 𝑓(𝑌|𝑋) = 𝑓(𝑌) is rather abstract. However, the meaning of 

its ingredients 𝑓(𝑌|𝑋) and 𝑓(𝑌) becomes more concrete by formulating them in 

terms of (1) the random processes that contribute to them (i.e., random sampling 

and within-participant randomness), and (2) one of the two units we are 

considering (i.e., participants and event time points). We start with discussing the 

contribution of random sampling.  

 

In general, when units are randomly sampled from an infinite population, then 

repeating the study will result in a different sample with a different realization 𝑦 

of 𝑌. The resulting probability distribution 𝑓(𝑌) therefore is characteristic of this 

population, and so is the null hypothesis of statistical independence, 𝑓(𝑌|𝑋) =

𝑓(𝑌). When the units are participants that are randomly and independently 

sampled from some population, the equality 𝑓(𝑌𝑟|𝑋𝑟) = 𝑓(𝑌𝑟) indicates that, for 

the biological data of a randomly sampled participant, it does not matter in which 

experimental condition he/she is observed. Importantly, this null hypothesis 

pertains to a population of potential participants and not only to the observed. This 

contradicts the claim that a randomization test only makes an inference about the 

observed sample, and therefore would not allow one to generalize to a population 

(Nichols & Holmes, 2002, p. 8).  

 

Strictly speaking, generalization to a well-defined population is only possible if 

the units are representative for that population. The common way to achieve this, 

is by sampling randomly from this population. However, in most neuroscience 

studies, participants are not randomly sampled from a well-defined population. 

Instead, most samples of participants are so-called convenience samples. This is a 

well-known problem that also affects parametric statistical inference, and 

therefore we will not consider it any further.  
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In a single-participant fMRI study, the units are event times within a participant. 

Because the effects of the different events are superimposed on each other, this 

study type does not involve unit-specific data components, and therefore can also 

not involve a physical process that samples these components randomly from 

some population. Given that the probability distributions 𝑓(𝑌) and 𝑓(𝑌|𝑋) cannot 

result from random sampling, they must result from a source of randomness 

within the participant. This within-participant randomness refers to inherent 

randomness in the participant’s responses to the events: if the events would again 

be presented to the participant, different biological data would be observed, even 

with an identical realization of the explanatory variable. 

 

Researchers typically formulate hypotheses in terms of the amplitudes of the 

stimulus-evoked hemodynamic responses (HRs). This differs from our null 

hypothesis 𝑓(𝑌|𝑋) = 𝑓(𝑌), which is formulated at the level of the observed 

biological data. However, HRs (always assumed to be stimulus-evoked in the 

following) can be considered as random variables whose probability distribution 

may depend on the experimental conditions.  Therefore, it is possible to formulate 

the null hypothesis as statistical independence between the random HRs and the 

explanatory variable. In the following subsection, we will show that, from this 

null hypothesis at the level of the random HRs, it follows that also the observed 

biological data 𝑌 and the explanatory variable 𝑋 are statistically independent. 

 

From a null hypothesis at the level of HRs to a null hypothesis at the 

level of the whole recorded biological signal  

We now introduce a small formal framework in which we express the observed 

biological data as a function of HR parameters (amplitude, delay, duration, …), 

event times, and experimental conditions. Researchers may be more interested in 

a null hypothesis with respect to HR parameters than a null hypothesis with 

respect to the whole recorded biological signal. We will use this formal 

framework to demonstrate that a null hypothesis with respect to the HR 

parameters implies a null hypothesis with respect to the whole recorded signal. 

Therefore, rejecting the latter null hypothesis implies that also the former must be 

rejected. We will use this framework for all study types: single- and multi-

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 9, 2020. ; https://doi.org/10.1101/685560doi: bioRxiv preprint 

https://doi.org/10.1101/685560
http://creativecommons.org/licenses/by-nd/4.0/


Enlarging the Scope of Randomization and Permutation Tests Page nr. 22 of 53 

22 

participant, involving between- and within-participant manipulations of the 

explanatory variable.  

 

We start with a multi-participant study with a between-participant manipulation of 

the explanatory variable. We first introduce the event times as a vector 𝐸. For 

simplicity, we assume this vector to be identical for all participants, although it is 

easy to generalize our exposition to the case where 𝐸 is random (but identically 

distributed in the two conditions). Next, we specify random HR parameters 𝐶𝑟, 

jointly for all events. The random variable 𝐶𝑟 pertains to a randomly drawn 

participant 𝑟. For a single voxel, one way to conceive 𝐶𝑟 is as a matrix with 

dimensions parameter order and number of events. Possible parameters for single 

events are HR amplitude, delay and duration. We do not fully specify the HR 

parameters because there is no need for it, and leaving them underspecified 

highlights the generality of the theory. For instance, this underspecification allows 

to conceptually include parameter-depend ways of combining multiple event-

specific HRs (possibly involving supra- or super-additive combination rules).  

 

The biological data of a random participant depend on two signal components: a 

combined HR (CHR) and noise. A CHR is the outcome of a function 

𝐶𝐻𝑅𝐹(𝐸, 𝐶𝑟 , 𝑋𝑟) that takes as its input (1) the set of event times 𝐸, (2) the random 

HR parameters 𝐶𝑟 for these event times, and (3) the explanatory variable 𝑋𝑟. The 

functional form of this CHR does not have to be specified. The random biological 

data 𝑌𝑟 is generated as follows: 

𝑌𝑟 = 𝐶𝐻𝑅𝐹(𝐸, 𝐶𝑟 , 𝑋𝑟) ⊕ 𝑁𝑟  

In this equation, 𝑁𝑟 denotes noise, and ⊕ denotes an operator that combines the 

two signal components. This operator may denote simple addition, but also a 

supra- or super-additive combination. We assume that the noise 𝑁𝑟 is independent 

of the explanatory variable 𝑋𝑟:  

𝑓(𝑁𝑟|𝑋𝑟) =  𝑓(𝑁𝑟) 

 

We want to test the null hypothesis that the HR parameters 𝐶𝑟 are statistically 

independent of the conditions. Formally, 

𝑓(𝐶𝑟|𝑋𝑟) =  𝑓(𝐶𝑟) 
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Because the probability distribution of 𝑌 depends on 𝑋 only via 𝐶𝐻𝑅𝐹(𝐸, 𝐶𝑟 , 𝑋𝑟), 

statistical independence at the level of the HR parameters 𝐶𝑟 implies statistical 

independence at the level of the observed biological data 𝑌. In other words, 

𝑓(𝐶𝑟|𝑋𝑟) =  𝑓(𝐶𝑟) implies 𝑓(𝑌𝑟|𝑋𝑟) =  𝑓(𝑌𝑟). The latter hypothesis can be tested 

using the randomization test that is described in the following. Rejecting 

𝑓(𝑌𝑟|𝑋𝑟) =  𝑓(𝑌𝑟) implies that also 𝑓(𝐶𝑟|𝑋𝑟) =  𝑓(𝐶𝑟) must be rejected.  

 

Next, we consider a single-participant study with a between-event-times 

manipulation of the explanatory variable. Because we are no longer considering a 

participant that is randomly drawn from some population, in the formulae above, 

we must replace 𝑌𝑟, 𝑋𝑟, 𝐶𝑟 and 𝑁𝑟 by, respectively, 𝑌, 𝑋, 𝐶 and 𝑁. Different from 

a multi-participant study, the event times 𝐸 are now randomly partitioned into two 

sets, of which one is associated with condition A, and the other with condition B. 

This association of the event times with the experimental conditions is specified in 

the vector 𝑋. As an aside, every event time in a set could in principle be 

augmented with a different event duration, but this has no consequences for the 

properties of the statistical test. In the following, we will only consider the simple 

case of equal event durations.  

 

With this change of the symbols, we are almost ready with reusing our 

explanation for a multi-participant study to single-participant one: rejecting 

𝑓(𝑌|𝑋) =  𝑓(𝑌) implies that also 𝑓(𝐶|𝑋) =  𝑓(𝐶) must be rejected. It must be 

stressed that the probability distributions 𝑓(𝑌|𝑋), 𝑓(𝑌), 𝑓(𝐶|𝑋), 𝑓(𝐶), 𝑓(𝑁|𝑋), 

and 𝑓(𝑁) are all specific for the participant in this single-participant study; they 

all refer to probabilities under hypothetical replications of this single-participant 

study. 

 

The Randomization Test 

A randomization test can be performed with an arbitrary test statistic 

𝑆(𝑦𝑜𝑏𝑠, 𝑥𝑜𝑏𝑠), in which 𝑦𝑜𝑏𝑠 and 𝑥𝑜𝑏𝑠 are the realizations of 𝑌 and 𝑋 that were 

observed in the study. In a multi-participant study (in which the units are the 

participants), the test statistic is typically based on the difference between group 

averages of regression coefficients, with every group corresponding to one 
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condition. In a single-participant study (in which the units are event times), the 

test statistic is typically based on a difference (contrast) between condition-

specific regression coefficients obtained from a single-participant GLM-analysis.  

 

The reference distribution for the test statistic is obtained by repeatedly calling the 

same randomization mechanism that also generated 𝑥𝑜𝑏𝑠, and plugging the 

resulting random variable 𝑋 in the test statistic: 𝑆(𝑦𝑜𝑏𝑠, 𝑋). There is a risk for 

confusion here, because we use the symbol 𝑋 both to denote the random variable 

that generates the initial assignment 𝑥𝑜𝑏𝑠, as well as the random variable that is 

used to construct the reference distribution under which the p-value is calculated 

(using the fixed values 𝑥𝑜𝑏𝑠 and 𝑦𝑜𝑏𝑠). In the following, whenever there is a risk 

for confusion, we will use 𝑋𝑟𝑎𝑛𝑑 to denote the random variable that is used to 

construct the reference distribution. We will use the same name (randomization 

distribution) to denote 𝑓(𝑋), 𝑓(𝑋𝑟𝑎𝑛𝑑), and the reference distribution 

𝑓(𝑆(𝑦𝑜𝑏𝑠, 𝑋𝑟𝑎𝑛𝑑)). The p-value is calculated by evaluating 𝑆(𝑦𝑜𝑏𝑠, 𝑥𝑜𝑏𝑠) under 

𝑓(𝑆(𝑦𝑜𝑏𝑠, 𝑋𝑟𝑎𝑛𝑑)). 

 

The randomization distribution 𝑓(𝑋) is determined by the researcher, and for the 

implementation of a randomization test, it is required to know the probabilities of 

each of the different random assignments. In terms of the elements of Figure 2: 

Schematic representation of the data of a study with a between-units manipulation 

of the explanatory variable. Panel A depicts a study in which the units are 

participants, each of which is represented by one stick. Panel B depicts the data of 

a single-participant fMRI study in which the units are event times. Every event is 

represented by one triangle. The colors of the sticks and the triangles denote the 

experimental conditions and their heights denote the amplitude of the biological 

data.  

, drawing from the randomization distribution means that the colors red and green 

are randomly reassigned over a fixed set of sticks or triangles. Most often, the 

researcher performs the random assignment by randomly drawing without 

replacement from a group of condition labels that contains the desired numbers of 

labels for each of the conditions (e.g., 10 As and 10 Bs). However, other 

randomization mechanisms, such as randomly drawing with replacement, are also 

possible, and our theory applies to all of them.  
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When randomly drawing without replacement from a group of 𝑛 condition labels 

with an equal number for each of the two conditions, then every unique 

distribution of the conditions over the 𝑛 units has a probability of (
𝑛

𝑛 2⁄ )
−1

. When 

𝑛 = 20 (Figure 2: Schematic representation of the data of a study with a 

between-units manipulation of the explanatory variable. Panel A depicts a study 

in which the units are participants, each of which is represented by one stick. 

Panel B depicts the data of a single-participant fMRI study in which the units are 

event times. Every event is represented by one triangle. The colors of the sticks 

and the triangles denote the experimental conditions and their heights denote the 

amplitude of the biological data.  

a), this probability equals 5.4𝑒 − 6, and when 𝑛 = 10 (Figure 2: Schematic 

representation of the data of a study with a between-units manipulation of the 

explanatory variable. Panel A depicts a study in which the units are participants, 

each of which is represented by one stick. Panel B depicts the data of a single-

participant fMRI study in which the units are event times. Every event is 

represented by one triangle. The colors of the sticks and the triangles denote the 

experimental conditions and their heights denote the amplitude of the biological 

data.  

b), it equals 4.0𝑒 − 3. When randomly drawing with replacement from the same 

group of condition labels, every unique distribution of the conditions over the 𝑛 

units has a probability of 0.5𝑛. The difference between random draws with and 

without replacement is not relevant for the following. 

 

To exactly construct the randomization distribution, all possible assignments must 

be enumerated. When the number of units is large, it is computationally infeasible 

to perform a complete enumeration. However, in this situation, it is possible to 

approximate the randomization distribution (with arbitrary accuracy) by randomly 

drawing values from it. The resulting approximation is denoted as a Monte Carlo 

estimate, and its accuracy can be quantified by means of a Monte Carlo 

confidence interval. 

 

The decision about the null hypothesis is taken on the basis of a p-value that is 

obtained under the randomization distribution. For a test statistic of which large 
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values provide evidence against the null hypothesis, the randomization p-value 

can be expressed as 𝑃(𝑆(𝑦𝑜𝑏𝑠, 𝑋) > 𝑆(𝑦𝑜𝑏𝑠, 𝑥𝑜𝑏𝑠)), in which 𝑃 denotes 

“probability”.  

 

The decision about the null hypothesis (accept or reject) is taken by comparing the 

randomization p-value with the so-called nominal alpha level. This nominal alpha 

level is some a priori value between 0 and 1, typically 0.05 or 0.01. If the 

randomization p-value is less than the nominal alpha level, the null hypothesis is 

rejected; otherwise, it is accepted.  

 

The Randomization Test Controls the FA Rate  

We will now prove that, under the null hypothesis of statistical independence 

between 𝑋 and 𝑌, the probability of a randomization test rejecting this null 

hypothesis is equal to the nominal alpha level. We will demonstrate this FA rate 

control in a different way as for a classical parametric statistical test (e.g., a t-

statistic). In the latter case, the test statistic’s reference distribution (its probability 

distribution under the null hypothesis) is known prior to collecting the biological 

data. In contrast, for a randomization test, the reference distribution depends on 

𝑦𝑜𝑏𝑠. We will deal with this dependence in two steps: 

1. We start by proving FA rate control for a specific realization 𝑦𝑜𝑏𝑠 of Y. 

That is, we will prove conditional FA rate control. 

2. We prove that conditional FA rate control implies unconditional FA rate 

control (i.e., independent of 𝑦𝑜𝑏𝑠). 

 

The randomization test controls the FA rate conditionally given 𝑌 = 𝑦𝑜𝑏𝑠 

The FA rate is the probability of falsely rejecting the null hypothesis. A false 

rejection occurs if, under this null hypothesis, the randomization p-value 

𝑃(𝑆(𝑦𝑜𝑏𝑠, 𝑋) > 𝑆(𝑦𝑜𝑏𝑠, 𝑥𝑜𝑏𝑠)) is less than the nominal alpha-level (𝛼). The 

probability of a false rejection (i.e., the FA rate) is evaluated over hypothetical 

replications of the study, and therefore we must allow for the possibility that the 

initial assignment (explanatory variable) 𝑥𝑜𝑏𝑠 differs over these replications. We 

begin by fixing 𝑌 at 𝑦𝑜𝑏𝑠, and will therefore consider the conditional FA rate 
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given 𝑌 = 𝑦𝑜𝑏𝑠. Now, the randomization p-value for a given study is 

𝑃(𝑆(𝑦𝑜𝑏𝑠, 𝑋𝑟𝑎𝑛𝑑) > 𝑆(𝑦𝑜𝑏𝑠, 𝑋 = 𝑥𝑜𝑏𝑠)), in which the probability is taken over 

the realizations of 𝑋𝑟𝑎𝑛𝑑. For given values of 𝑦𝑜𝑏𝑠 and 𝑥𝑜𝑏𝑠, this p-value is a 

constant, but as a function of the random variable 𝑋, it is a random variable. Now, 

the probability of rejecting the null hypothesis equals the probability that this 

random p-value is less than 𝛼. In terms of the random test statistic 𝑆(𝑦𝑜𝑏𝑠, 𝑋), this 

equals the probability that 𝑆(𝑦𝑜𝑏𝑠, 𝑋) is larger than the (1 − 𝛼) × 100 percent 

quantile of the randomization distribution 𝑓(𝑆(𝑦𝑜𝑏𝑠, 𝑋𝑟𝑎𝑛𝑑)). Here, we tacitly 

assume a one-tailed test. However, our proof easily generalizes to two-tailed tests. 

 

Because our objective is to determine the FA rate conditionally given 𝑌 = 𝑦𝑜𝑏𝑠, 

we must know the corresponding conditional probability distribution of 

𝑆(𝑦𝑜𝑏𝑠, 𝑋): 𝑓(𝑆(𝑦𝑜𝑏𝑠, 𝑋)|𝑌 = 𝑦𝑜𝑏𝑠). At this point, we make use of the null 

hypothesis of statistical independence between 𝑋 and 𝑌. Specifically, because 

𝑆(𝑦𝑜𝑏𝑠, 𝑋) is a function of the random variable 𝑋, under this null hypothesis, also 

𝑆(𝑦𝑜𝑏𝑠, 𝑋) is statistically independent of 𝑌. Thus, the conditional probability 

distribution 𝑓(𝑆(𝑦𝑜𝑏𝑠, 𝑋)|𝑌 = 𝑦𝑜𝑏𝑠) is identical to 𝑓(𝑆(𝑦𝑜𝑏𝑠, 𝑋)), which in turn is 

identical to the randomization distribution 𝑓(𝑆(𝑦𝑜𝑏𝑠, 𝑋𝑟𝑎𝑛𝑑)), whose (1 −

𝛼) × 100 percent quantile is used to determine whether the null hypothesis will 

be rejected. As a consequence, under the null hypothesis, and conditional on 𝑌 =

𝑦𝑜𝑏𝑠, the probability that 𝑆(𝑦𝑜𝑏𝑠, 𝑋) is larger than the (1 − 𝛼) × 100 percent 

quantile of the randomization distribution 𝑓(𝑆(𝑦𝑜𝑏𝑠, 𝑋𝑟𝑎𝑛𝑑)) is exactly equal to 𝛼.  

In other words, conditional on 𝑌 = 𝑦𝑜𝑏𝑠, the probability of falsely rejecting the 

null hypothesis is exactly equal to 𝛼. This completes our proof of the fact that the 

randomization controls the FA rate conditionally given 𝑌 = 𝑦𝑜𝑏𝑠. 

 

The conditional probability distribution 𝑓(𝑌, 𝑋|𝑌 = 𝑦𝑜𝑏𝑠) is depicted 

schematically in Error! Reference source not found., separately for participants 

(panel A) and for event times (panel B) as units. The black vertical bars denote the 

fact that we are considering a conditional distribution, and the grey sticks on the 

right-hand side of the bars depict 𝑌 = 𝑦𝑜𝑏𝑠, the random variable on which we 

condition. The colored sticks and triangles on the left-hand side depict (𝑦𝑜𝑏𝑠, 𝑋), 

the argument of the test statistic. Crucially, the biological variable is fixed at its 
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observed value 𝑦𝑜𝑏𝑠, and the explanatory variable 𝑋 is random. Under the null 

hypothesis, 𝑋 follows the randomization distribution 𝑓(𝑋). This can be visualized 

by changing the colors as governed by 𝑓(𝑋), while keeping the length of the 

sticks constant. Crucially, 𝑓(𝑋) equals 𝑓(𝑋𝑟𝑎𝑛𝑑), the distribution under which the 

p-value is calculated. 

 

 

Figure 3: Schematic representation of the conditional probability distribution of a 

study with a between-units manipulation of the explanatory variable. Panel A 

depicts a study in which the units are participants, each of which is represented 

by one stick. Panel B depicts the data of a single-participant fMRI study in which 

the units are event times. Every event is represented by one triangle. The colors of 

the sticks and the triangles denote the experimental conditions and their heights 

denote the amplitude of the biological data. The grey sticks and triangles on the 

right-hand side of the vertical bars depict the biological data, which is the 

random variable on which we condition. 

 

FA rate control conditionally given 𝑌 = 𝑦𝑜𝑏𝑠 implies unconditional FA rate 

control 

At first sight, controlling the FA rate in this conditional sense (i.e., conditional on 

𝑌 = 𝑦𝑜𝑏𝑠) is not very appealing. After all, who is interested in the conditional FA 

rate given one specific realization of 𝑌? However, the FA rate is equal to the 

critical alpha-level, regardless of whether the p-value has a conditional or an 

unconditional interpretation. This is because, for every realization 𝑦𝑜𝑏𝑠 of 𝑌 on 

which we condition, the FA rate is equal to the same critical alpha-level. 

Therefore, if we average over the probability distribution of the random variable 

𝑌, the FA rate remains equal to this critical alpha-level. This can also be shown in 
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a short derivation. In this derivation, the FA rate under the conditional distribution 

𝑓(𝑌, 𝑋|𝑌 = 𝑦𝑜𝑏𝑠) is denoted by 𝑃(Reject 𝐻0|𝑌 = 𝑦𝑜𝑏𝑠), and the FA rate under 

𝑓(𝑌, 𝑋) by 𝑃(Reject 𝐻0). The FA rate 𝑃(Reject 𝐻0) is obtained by averaging the 

conditional FA rate 𝑃(Reject 𝐻0|𝑌 = 𝑦𝑜𝑏𝑠) over the probability distribution 

𝑓(𝑌 = 𝑦𝑜𝑏𝑠): 

𝑃(Reject 𝐻0) = ∫ 𝑃(Reject 𝐻0|𝑌 = 𝑦𝑜𝑏𝑠)𝑓(𝑌 = 𝑦𝑜𝑏𝑠)𝑑𝑦𝑜𝑏𝑠 

= 𝛼 ∫ 𝑓(𝑌 = 𝑦𝑜𝑏𝑠)𝑑𝑦𝑜𝑏𝑠 

= 𝛼 

In the first line of this derivation, we make use of the following equality from 

elementary probability theory: 𝑃(𝐴) = ∫ 𝑃(𝐴|𝐵 = 𝑏)𝑃(𝐵 = 𝑏)𝑑𝑏. And in the 

third line, we make use of the fact that the probability densities 𝑓(𝑌 = 𝑦𝑜𝑏𝑠) 

integrate to 1. 

 

We can conclude that an FA rate that is controlled under the conditional 

distribution 𝑓(𝑌, 𝑋|𝑌 = 𝑦𝑜𝑏𝑠)  is also controlled under the corresponding 

unconditional distribution 𝑓(𝑌, 𝑋). This conclusion is a special case of the 

following general fact: for every event (in our case, falsely rejecting the null 

hypothesis) whose probability is controlled under a conditional distribution, also 

the probability under the corresponding unconditional distribution is controlled. 

This general fact will be called the “conditioning rationale”.  

 

The conditioning rationale is used to prove the unconditional control of the FA or 

type 1 error rate, and does not involve a claim about the type 2 error rate (i.e., the 

probability that null hypothesis is maintained while in fact the alternative 

hypothesis is true). This is similar to classical parametric statistics, in which only 

the type 1 error rate is controlled. However, different from classical parametric 

statistics, in the nonparametric framework the researcher is free to choose the test 

statistic. He may do this on the basis of prior knowledge, with the objective to 

reduce the type 2 error rate. 
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Randomization Tests for Studies with a Within-

Participants Manipulation of the Explanatory 

Variable  

We now consider studies with two levels of units (participants and event times) in 

which one level (event times) is observed within the other (participants). To 

investigate the effect of an explanatory variable, every participant is observed in 

all the experimental conditions (the different levels of the explanatory variable). 

This is achieved by assigning the within-participants units (event times) to 

different conditions.  

 

Notation and Assumptions 

The biological variable 𝑌 is an array of 𝑛 smaller component data structures 𝑌𝑟 

(𝑟 = 1, … , 𝑛), each one corresponding to one participant that is randomly and 

independently drawn from some population. Similarly, 𝑋 is an array of 𝑛 

components 𝑋𝑟 (𝑟 = 1, … , 𝑛), each one corresponding to one participant. Every 

component 𝑋𝑟 in turn consists of 𝑚 subcomponents 𝑋𝑟𝑠 (𝑠 = 1, … , 𝑚), each one 

corresponding to one event time. In the following, we will denote 𝑋𝑟 as the 

condition order.  

  

The Hypothesis of Statistical Independence 

We test the hypothesis of statistical independence between the explanatory 

variable 𝑋 and the biological data 𝑌: 𝑓(𝑋|𝑌) = 𝑓(𝑋). Because the 𝑛 participants 

are randomly and independently drawn from some population, the null hypothesis 

of statistical independence also holds at the level of a randomly drawn participant 

(indexed by 𝑟): 𝑓(𝑋𝑟|𝑌𝑟) = 𝑓(𝑋𝑟). In words, the biological data 𝑌𝑟 of a randomly 

drawn participant do not inform us about his condition order 𝑋𝑟.  

 

This null hypothesis depends on the randomization distribution 𝑓(𝑋𝑟). 

Specifically, the randomization distribution determines the generality of the 

inference that follows from the rejection of the null hypothesis of statistical 

independence. Here, “generality” refers to the population from which the 
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participants are randomly drawn. As will be explained in a later section (Selecting 

a Randomization Distribution), the smaller the number of possible realizations of 

the random variable 𝑋𝑟, the more general the inference that follows from the 

rejection of the null hypothesis. 

 

The Randomization Test and its FA Rate Control 

The randomization test for a study with a within-participants manipulation of the 

explanatory variable is very similar to the one for studies with a between-units 

manipulation. To construct 𝑓(𝑆(𝑦𝑜𝑏𝑠, 𝑋𝑟𝑎𝑛𝑑)), the randomization distribution of 

the test statistic, we separately and independently draw from the participant-

specific randomization distribution 𝑓(𝑋𝑟
𝑟𝑎𝑛𝑑), which generates the rows of the 

participant-by-unit matrix 𝑋𝑟𝑎𝑛𝑑.  

 

The proof of the randomization test’s FA rate control is identical to the proof that 

was given in the context of a study with between-units manipulations of the 

explanatory variable. This proof is also applicable here because it does not depend 

on any assumption about the probability distribution of 𝑌, nor an assumption 

about the structure of 𝑋𝑟 (i.c., whether it is a scalar or a vector). 

 

However, the randomization tests for the two study types (with a between-units 

and a within-participants manipulation of the explanatory variable) differ with 

respect to the test statistic 𝑆(𝑦𝑜𝑏𝑠, 𝑥𝑜𝑏𝑠). In a study with a within-participants 

manipulation, the test statistic is typically based on the contrasts between 

condition-specific regression coefficients that are obtained from the multiple 

participant-specific GLM-analyses. These contrasts are combined over the 

participants, by averaging or by calculating a one-sample (paired-samples) t-

statistic.  

 

Selecting a Randomization Distribution 𝒇(𝑿𝒓) 

The randomization distribution 𝑓(𝑋𝑟) determines the generality of the inference 

that follows from the rejection of the null hypothesis of statistical independence.  
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The concept of generality of inference is related to the distinction between fixed 

and random effect hypotheses in parametric statistics. Specifically, rejecting a 

random effect null hypothesis corresponds to a general inference, and rejecting a 

fixed effect one corresponds to a specific inference. In the following, we first 

prime the proper intuition by describing the parametric fixed and random effect 

statistical tests. Second, we give a more detailed description of the concept of 

generality of inference. Third, we describe how to deal with sensitivity and 

confounds when selecting possible condition orders. Fourth and last, we motivate 

a particular randomization distribution (involving a pair of complementary 

condition orders) using our simple formal framework in which we express the 

observed biological data as a function of HR parameters, event times, and 

experimental conditions. 

 

Parametric fixed and random effect statistical tests 

Although there are no universally accepted definitions of fixed and random effects 

(Gelman, 2005), in neuroimaging one typically follows the definitions in the 

publications by members of the Wellcome Center for Human Neuroimaging (e.g., 

Holmes & Friston, 1998). Following these definitions, we first describe a fixed 

effect statistical test for a study with two experimental conditions (A and B). The 

interest is in two-sided differences between the regression coefficients for these 

two conditions (A>B or B>A). There are multiple ways in which such a 

parametric fixed effect test can be performed, and here we describe one: 

1. For every participant, fit a GLM with core regressors corresponding to the 

two experimental conditions. From the output of this analysis, calculate a 

t-statistic by dividing the regression coefficient contrast A-versus-B by its 

standard error.  

2. Combine the t-statistics over the participants. There are two main ways of 

doing this. The first and most obvious way is by averaging the t-statistics. 

This combination has the disadvantage that, if there are between-condition 

differences in both directions (A>B and B>A), cancellation of positive 

and negative differences reduces sensitivity. The second way of combining 

the t-statistics, is by averaging the squared instead of the original t-
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statistics. In this way, cancellation of positive and negative differences is 

prevented. 

3. Evaluate the combined test statistic under the reference distribution that is 

obtained under the combined null hypothesis of equal expected condition-

specific regression coefficients for every individual participant. Under this 

null hypothesis, the average t-statistic has an asymptotic standard normal 

distribution, and the average of the squared t-statistics has an asymptotic 

scaled chi-square distribution (with degrees of freedom equal to the 

number of participants).  

 

There are two ways to interpret the outcome of this fixed effect test, depending on 

whether or not the participants were randomly drawn from some population. If the 

researcher has selected just this specific set of participants (no random sampling), 

then the null hypothesis of this fixed effect test is actually a fixed set of 

participant-specific null hypotheses: equal expected condition-specific regression 

coefficients for every participant in the set. The expected values in these 

participant-specific null hypotheses are with respect to a probability distribution 

over independent replications of the same study with the same participants. 

 

On the other hand, if the participants are randomly drawn from some population, 

then the outcome of this so-called fixed effect test is also relevant for this 

population. Specifically, the null hypothesis of this test now entails that the 

probability is zero that a randomly drawn participant has equal expected 

condition-specific regression coefficients (again with the expectation with respect 

to a probability distribution over independent replications with the same 

participant). This null hypothesis has been called the global null hypothesis by 

(Nichols, Brett, Andersson, Wager, & Poline, 2005). Clearly, although this null 

hypothesis pertains to a population of potential participants, it is very restrictive 

because it allows us only to infer that there are potential participants for which 

there is an effect, but not that this effect (e.g., A>B) generalizes to the population. 

This is most clear in studies with a large number of events, in which a participant-

specific t-statistic will become very large if that participant has unequal expected 

condition-specific regression coefficients. Therefore, a single participant may 

dominate the outcome of the test. Moreover, even a single-participant (𝑛 = 1) 
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study may result in a rejection of this restrictive population-level null hypothesis. 

This is an example of a very specific inference: a small subpopulation of 

participants with unequal expected condition-specific regression coefficients is 

sufficient to reject the null hypothesis.  

 

We now consider a parametric random effect statistical test. This test is performed 

as follows: 

1. For every participant, fit a GLM to the biological data, and calculate the 

regression coefficient contrast A-versus-B. 

2. Calculate a one-sample (paired-samples) t-statistic on these participant-

specific regression coefficient contrasts. 

3. Evaluate the t-statistic under the reference distribution that is obtained 

under the assumption that the expected value of the participant-specific 

regression coefficient contrasts is equal to zero. Crucially, the expectation 

is now taken with respect to a probability distribution over some 

population of participants (instead of independent replications with the 

same participants). The reference distribution for this t-statistic is a 

Student T-distribution with number of degrees of freedom equal to the 

number of participants minus one. 

 

The null hypothesis of this random effect test pertains to the expected value of the 

regression coefficient contrast, calculated over the population of potential 

participants. If this random effect null hypothesis is false, then so is the fixed 

effect null hypothesis (pertaining to the probability that a randomly drawn 

participant has equal expected values in his condition-specific populations of 

trials), but not the other way around. Specifically, the population of potential 

participants may contain two subpopulations, of which one has an effect in one 

direction (say, A>B) and the other has an effect in the other (B>A). The sizes of 

these subpopulations and their effect sizes could be such that there is a perfect 

cancellation of the effects, resulting in the random effect null hypothesis holding 

for the whole population.  

 

This is an example of a null hypothesis that allows for a general inference. This is 

because it pertains to the whole population of potential participants. Specifically, 
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rejecting this random effect null hypothesis implies that, on average over the 

potential participants, the regression coefficient contrast differs from zero in a 

particular direction.   

 

The generality of inference allowed for by a null hypothesis of statistical 

independence 

In the following, we will consider two different randomization distributions 𝑓(𝑋𝑟) 

for a study with a within-participants manipulation of the explanatory variable. 

These two randomization distributions correspond to null hypotheses that allow 

for inferences with different levels of generality. The first randomization 

distribution involves reusing the randomization distribution for a single-

participant study with a between-event-times manipulation of the explanatory 

variable. In that study type, the researcher randomly assigns the event times to the 

conditions by randomly drawing (with or without replacement) from a group of 

condition labels. An important feature of that study type is the very large number 

of different condition orders. This number depends on the number of event times 

and the number of labels for each of the two conditions. With realistic values for 

the number of event times and the number of labels (a few hundreds), the number 

of different condition orders can become huge (e.g., 9.0549e+58 for 200 event 

times that are evenly split between two conditions).  

 

Crucially, a large number of different realizations of the condition order 𝑋𝑟 

creates the opportunity for one or a few participants dominating the outcome of 

the randomization test. Specifically, if a single participant’s biological data 𝑦𝑟
𝑜𝑏𝑠 is 

strongly associated with the condition order 𝑥𝑟
𝑜𝑏𝑠, this results in a regression 

coefficient contrast that is much more extreme than what is expected under 

statistical independence (condition orders drawn from the randomization 

distribution). The contribution of this participant’s data to the group-level test 

statistic may also make this group-level test statistic very unlikely. This resembles 

evaluating the statistical significance of the average of 20 numbers: 19 numbers 

around 0 and one equal to 10. If these numbers’ probability distributions under the 

null hypothesis all have an expected value of 0, and a standard deviation that is 

much less than the extreme value 10 (corresponding to one participant-specific 
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test statistic in the tail area of its randomization distribution), then also the average 

of these 20 numbers (0.5, which we take as our group-level test statistic) is 

unlikely under the null hypothesis that the expected value equals 0. Specifically, if 

the common standard deviation of these 20 null distributions is 1, then the 

standard deviation of this average is equal to 1 √20⁄ , and the value 0.5 is in the 

5% two-sided tails of its normal distribution. This is an example of a very specific 

inference because, for a rejection of the null hypothesis, it is sufficient that only 

one or a few participants have biological data that are statistically dependent of 

the explanatory variable. This corresponds to a fixed-effects null hypothesis. 

 

Next, we consider a randomization distribution 𝑓(𝑋𝑟) that generates only two 

possible condition orders. As will be shown, this randomization distribution 

allows for a general inference, which corresponds to a random-effects null 

hypothesis. For statistical sensitivity, the two condition orders must be chosen 

such that their contrast optimally reflects our effect of interest: the difference 

between the conditions A and B. The relevant information in the biological data 

𝑌𝑟 pertains to the data’s association (over the events) with these conditions. Thus, 

for the appropriate sensitivity of the statistical test, we need a pair of condition 

orders that is maximally informative about this association. We achieve this by 

selecting a pair of condition orders of which the members are each other’s 

complement (e.g., AABBABAB and BBAABABA). 

 

With only two possible condition orders, the null hypothesis 𝑓(𝑋𝑟|𝑌𝑟) = 𝑓(𝑋𝑟) 

involves that the biological data 𝑌𝑟 are uninformative about whether the condition 

order is AABBABAB or BBAABABA. Finding evidence against this null 

hypothesis is more difficult than in a study with a large number of condition 

orders. With only two condition orders, finding sufficient evidence against the 

null hypothesis requires consistency among the participants. Specifically, if a 

single participant’s biological data 𝑦𝑟
𝑜𝑏𝑠 is strongly associated with the condition 

order 𝑥𝑟
𝑜𝑏𝑠, this cannot result in a regression coefficient contrast that is extreme 

under the null hypothesis. This is because the randomization distribution for a 

single participant has only two values, each one associated with one condition 

order. Therefore, finding sufficient evidence against the null hypothesis requires 

that the data from multiple participants must exhibit consistency (via their 
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contribution to the test statistic) in the way they differentiate between the two 

condition orders (e.g., either A>B or B>A). Although the number of events per 

participant affects the reliability of the evidence for every individual participant, 

this does not reduce the need to combine this evidence over multiple participants.  

 

Dealing with sensitivity and confounds when selecting possible condition 

orders 

As explained in the above, the pair of condition orders is selected such that the 

statistical test has the appropriate sensitivity for detecting the effect of interest. 

However, the sensitivity is not only determined by whether or not the condition 

orders in a pair are complementary; it is also determined by the number of events 

and the inter-event times. With respect to the latter, the sensitivity depends on the 

correlation between the GLM regressors for the different conditions (stimulus 

functions convolved with a hemodynamic response function): if this correlation 

decreases from 1 to -1, then the sampling (noise) variance of the GLM regression 

coefficient contrast decreases from infinity to 0. Therefore, the inter-event times 

should be chosen such that the correlation between these GLM regressors is as 

small (negative) as possible. 

 

Selecting a pair of condition orders of which the members are each other’s 

complement does not guarantee that all possible confounds are prevented. 

Possible confounds are order and expectancy effects. However, it is easy to 

control for these effects. Specifically, the condition orders can be chosen such that 

(1) the conditions are uncorrelated with their order (i.e., one condition should not 

dominate the first or the second half of the experiment), and (2) the condition 

orders contain no obvious regularity that induces expectancy effects in the 

participant (e.g., alternating conditions). Block randomization is an excellent 

method to generate a pair of condition orders that fulfills these requirements. This 

method starts by separating events in blocks (of size 𝑘) according to their 

temporal order: the first 𝑘 events in block 1, the next 𝑘 events in block 2, etc. 

Then, within every block, 𝑘 2⁄  events are randomly assigned to one condition, and 

the remaining 𝑘 2⁄  to the other (i.e., random sampling without replacement). With 
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two blocks of size 4 (𝑘 = 4), the result could be AABBABAB. The second 

condition order is then taken as the complement of the first (i.e., BBAABABA). 

 

In sum, we have introduced randomization distributions that correspond to null 

hypotheses that allow for inferences with different levels of generality; the larger 

the number of possible realizations (condition orders), the less general the 

inference that follows from a rejection of the null hypothesis. In addition, to 

achieve the appropriate sensitivity for detecting the effect of interest and to 

prevent confounds, care must be taken in selecting the possible condition orders. 

 

As for a single-participant study, also for a multi-participant study, it is useful to 

consider the null hypothesis 𝑓(𝑋𝑟|𝑌𝑟) = 𝑓(𝑋𝑟) as the result of a null hypothesis 

that is formulated at the level of the hemodynamic responses (HRs). In the 

following subsection, we demonstrate this for a randomization distribution with 

two possible realizations that are each other’s complement. 

 

From a null hypothesis at the level of HRs to a null hypothesis at the 

level of the whole recorded biological signal  

We consider a random participant 𝑟 with biological data 𝑌𝑟 and explanatory 

variable 𝑋𝑟. The event times 𝐸 are partitioned in two sets, 𝐸1 and 𝐸2, of which 

one is randomly associated with condition A, and the other with condition B. Our 

theory does not require that the event times 𝐸 and/or their partitions 𝐸1 and 𝐸2 are 

identical for every participant. However, when the events (their times and their 

values) are under experimental control, there is no reason for different participants 

to have different event times 𝐸 and/or partitions 𝐸1 and 𝐸2. The situation is 

different in studies in which the event times and/or their values are (partially) 

controlled by the participant (e.g., in a self-paced experiment and/or when the 

explanatory variable depends on behavior). We will return to this when we 

discuss natural explanatory variables (e.g., accuracy, reaction time, pupil 

diameter) and how their association with the biological data can be evaluated by 

means of permutation tests.  
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We specify random HR parameters 𝐶(𝑚1) and 𝐶(𝑚2), in which 𝑚1 and 𝑚2 are 

the number of events in, respectively, 𝐸1 or 𝐸2. As in a single-participant study, 

𝐶(𝑚1) and 𝐶(𝑚2) can be conceived as matrices with dimensions Parameter 

Order and Number of Events.  

 

We want to test the null hypothesis that the HR parameters 𝐶(𝑚1) and 𝐶(𝑚2) are 

statistically independent of the conditions. To express this formally, we introduce 

the scalar random variable 𝑍, which indicates the experimental conditions A and 

B (thus, 𝑍 = 𝐴 or 𝑍 = 𝐵). Now, the null hypothesis of interest can be expressed 

as follows: 

𝑓(𝐶(𝑚1)|𝑍) =  𝑓(𝐶(𝑚1))   , 

and 

𝑓(𝐶(𝑚2)|𝑍) =  𝑓(𝐶(𝑚2)) 

 

Crucially, and different from a single-participant study, the probability 

distributions 𝑓(𝐶(𝑚1)|𝑍) and 𝑓(𝐶(𝑚2)|𝑍) pertain to the population from which 

the participants were randomly sampled. The realizations of the random variables 

𝐶(𝑚1) and 𝐶(𝑚2) exhibit variability in two levels: (1) across random draws from 

the population of participants, and (2) across events within a participant (i.e., the 

columns of the matrices 𝐶(𝑚1) and 𝐶(𝑚2)). This differs from a single-participant 

study, in which the corresponding probability distribution is 𝑓(𝐶|𝑋), in which 𝐶 

has one column for every event, each one corresponding to one element of the 

vector 𝑋. In this single-participant study, the realizations of the random variable 𝐶 

only exhibit variability across the within-participant events. 

 

The biological data for a random participant (𝑌𝑟) is the result of a combination of 

three components: two condition-specific combined HRs (CHRs) and noise. A 

combined HR is the outcome of a function that takes as its input (1) a set of event 

times, (2) random HR parameters for these event times, and (3) the condition 

identity. The CHR for events 𝐸1 assigned to condition A is denoted by 

𝐶𝐻𝑅𝐹(𝐸1, 𝐶(𝑚1), 𝐴), and the one for events 𝐸2 assigned to condition B is 

denoted by 𝐶𝐻𝑅𝐹(𝐸2, 𝐶(𝑚2), 𝐵). The random biological data 𝑌𝑟 for this 

assignment are generated as follows: 

𝑌𝑟 = 𝐶𝐻𝑅𝐹(𝐸1, 𝐶(𝑚1), 𝐴) ⊕ 𝐶𝐻𝑅𝐹(𝐸2, 𝐶(𝑚2), 𝐵) ⊕ 𝑁𝑟  
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And for the reverse assignment, they are generated as follows: 

𝑌𝑟 = 𝐶𝐻𝑅𝐹(𝐸1, 𝐶(𝑚1), 𝐵) ⊕ 𝐶𝐻𝑅𝐹(𝐸2, 𝐶(𝑚2), 𝐴) ⊕ 𝑁𝑟  

In these equations, 𝑁𝑟 denotes noise, and ⊕ denotes an operator that combines the 

three signal components. This operator may denote simple addition, but also a 

supra- or super-additive combination. 

 

We assume that the noise 𝑁𝑟 is independent of the conditions:  

𝑓(𝑁𝑟|𝐴) =  𝑓(𝑁𝑟|𝐵) 

We also assume the operator ⊕ to be commutative: 𝑄 ⊕ 𝑅 = 𝑅 ⊕ 𝑄.  

 

For a random participant with event set 𝐸1 assigned to condition A, and event set 

𝐸2 to condition B, we draw one realization from 𝑓(𝐶(𝑚1)|𝑍 = 𝐴) and one from 

𝑓(𝐶(𝑚2)|𝑍 = 𝐵). Under the null hypothesis,  

𝑓(𝐶(𝑚1)|𝑍 = 𝐴) =  𝑓(𝐶(𝑚1)|𝑍 = 𝐵) 

and  

𝑓(𝐶(𝑚2)|𝑍 = 𝐵) =  𝑓(𝐶(𝑚2)|𝑍 = 𝐴). 

Therefore, under the null hypothesis, the random biological data 𝑌𝑟 for this 

assignment can also be generated as follows: 

𝑌𝑟 = 𝐶𝐻𝑅𝐹(𝐸1, 𝐶(𝑚1), 𝐵) ⊕ 𝐶𝐻𝑅𝐹(𝐸2, 𝐶(𝑚2), 𝐴) ⊕ 𝑁𝑟   .  

This is identical to the way 𝑌𝑟 is generated under the reverse assignment. Thus, 

from the null hypothesis of statistical independence at the level of the HR 

parameters, it follows that 𝑓(𝑌𝑟|𝑋𝑟) =  𝑓(𝑌𝑟), the null hypothesis at the level of 

the observed biological data. The latter null hypothesis can be tested using a 

randomization test, and if it is rejected, then so is the null hypothesis at the level 

of the HR parameters. 

 

 

Permutation Tests for Studies with a Natural 

Explanatory Variable 

Experimental versus Natural Explanatory Variables 

An explanatory variable is called “experimental” if the researcher controls the 

assignment of the units to the levels of this variable. And it is called “natural” if it 
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is not under experimental control. Only experimental variables can be 

randomized. Studies involving a natural explanatory variable are called 

“observational studies”.  

 

We must distinguish between observational studies with a between-units and a 

within-participants manipulation of the explanatory variable. (Although a natural 

variable cannot be manipulated, for consistency, we will continue to use the term 

“manipulation” for all mechanism that controls this natural variable.)  In a multi-

participant study with a between-participants manipulation of the explanatory 

variable, possible natural explanatory variables are gender, age, disease status, 

education, ethnicity, and religion. And in a single-participant study with a 

between-event-times manipulation, possible natural explanatory variables are 

response accuracy, response time, and psychophysiological variables like pupil 

diameter. These same natural explanatory variables can also appear in a multi-

participant study with a within-participants manipulation.  

 

When a study involves a natural explanatory variable, the goal typically is to 

characterize the relation with a biological variable (Is there a relation, and what is 

its nature?), and not to evaluate whether there is a causal effect of the explanatory 

variable. In fact, the relation between the natural explanatory and the biological 

variable may very well be due to a third (confounding) variable. Here lies the 

strength of experimental explanatory variables: by randomly assigning the units to 

the experimental conditions, one ensures that there is no systematic association 

between pre-experimental characteristics of the units and the levels of the 

explanatory variable (Rubin, 1974). In other words, random assignment prevents 

confounding variables from creating a spurious association between the 

explanatory and the biological variable, and therefore allows for causal inference. 

 

Experimental variables are almost always categorical (nominal), whereas natural 

variables can also be quantitative. For observational studies with a between-

participants manipulation, familiar quantitative variables are age and performance 

level, and for observational studies with a between-event-times or a within-

participants manipulation, they are response time and pupil diameter. For both 

types of observational studies (with a between-units and a within-participants 
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manipulation of the explanatory variable), exactly the same permutation test can 

be used for categorical and quantitative variables. 

 

In the next subsection, we present permutation tests that can be used to test the 

null hypothesis of statistical independence between a biological variable 𝑌 and a 

natural explanatory variable 𝑋. The main challenge in designing these 

permutation tests and in proving their FA rate control lies in the fact that the 

probability distribution of the natural explanatory variable 𝑋 is unknown. We deal 

with this problem by drawing from a known conditional probability distribution 

of 𝑋. Importantly, this conditional probability distribution is only known under an 

assumption, and this assumption is different for observational studies with a 

between-units and those with a within-participants manipulation of the natural 

explanatory variable. The permutation tests for these two types of observational 

studies will be described in different subsections. 

 

Permutation Tests for Observational Studies with a Between-Units 

Manipulation of the Explanatory Variable 

The permutation versus the randomization test 

The permutation test is performed just like a randomization test, but now with a p-

value that is calculated under the permutation distribution instead of the 

randomization distribution. This permutation distribution is obtained by randomly 

permuting the 𝑥𝑟
𝑜𝑏𝑠s over the 𝑦𝑟

𝑜𝑏𝑠s. In terms of the elements of Error! Reference 

source not found.a and 3b, this means that the fixed set of colors red and green 

are randomly permuted over, respectively, the sticks and the triangles. Every 

random permutation has the same probability equal to 1 over the total number of 

possible permutations. For our example in Error! Reference source not found.a, 

this probability is (
20
10

)
−1

= 5.4𝑒 − 6. These probabilities in principle could also 

have been produced by a randomization mechanism, namely if the researcher had 

determined in advance to assign exactly 10 units to each of the two conditions. 

However, the crucial difference between a randomization and a permutation test is 

that, for the latter, the number of units in each of the conditions is not set in 
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advance by the researcher, but observed from the units that were drawn. These 

numbers could also have been 9-vs-11, 8-vs-12, 7-vs-13, etc. 

 

The permutation test controls the FA rate  

We will now prove that a permutation test controls the FA rate at the nominal 

alpha level. This proof is along the same lines as the corresponding proof for a 

randomization test. Different from a randomization test, it is not required to know 

the probability distribution 𝑓(𝑋). However, to prove the permutation test’s FA 

rate control, we must assume that the unit-specific explanatory variables 𝑋𝑟 (𝑟 =

1, … , 𝑛) are statistically independent and identically distributed (iid). Crucially, 

under this assumption, the permutation distribution is the conditional probability 

distribution 𝑓(𝑋|{𝑋} = {𝑥𝑜𝑏𝑠}): the probability of the ordered (𝑋, the part before 

|) given the unordered components of 𝑥𝑜𝑏𝑠  ({𝑋} = {𝑥𝑜𝑏𝑠}, the part after |). Keep 

in mind that 𝑋 and 𝑥𝑜𝑏𝑠 are arrays with components 𝑋𝑟 and 𝑥𝑟
𝑜𝑏𝑠, respectively.  

 

1. 𝒇(𝑿|{𝑿} = {𝒙𝒐𝒃𝒔}) is a Permutation Distribution 

We will now show that, under the assumption of iid components 𝑋𝑟, 𝑓(𝑋|{𝑋} =

{𝑥𝑜𝑏𝑠}) is a permutation distribution. Under the assumption of iid components 𝑋𝑟, 

𝑓(𝑋) can be written as follows: 

 𝑓(𝑋) = ∏ 𝑓(𝑋𝑟)

𝑛

𝑟=1

 Eq.  4 

From Eq.  4, it follows that 𝑓(𝑋) is exchangeable. Exchangeability means that the 

probability of explanatory variable 𝑋 is invariant under permutation of the 

realizations 𝑥𝑟 of the unit-specific random variables 𝑋𝑟. Under exchangeability, 

𝑓(𝑋|{𝑋} = {𝑥𝑜𝑏𝑠}) is the permutation distribution. To see this in an example, 

consider a study with four units, such that 𝑥𝑜𝑏𝑠 = (𝑥1
𝑜𝑏𝑠, 𝑥2

𝑜𝑏𝑠 , 𝑥3
𝑜𝑏𝑠 , 𝑥4

𝑜𝑏𝑠). We 

assume that these four realizations are all different (𝑥1
𝑜𝑏𝑠 ≠  𝑥2

𝑜𝑏𝑠 ≠ 𝑥3
𝑜𝑏𝑠 ≠ 𝑥4

𝑜𝑏𝑠), 

which is typically the case when the explanatory variable is quantitative. For this 

example, the unordered set {𝑥𝑜𝑏𝑠} is the collection of all permutations of 

(𝑥1
𝑜𝑏𝑠, 𝑥2

𝑜𝑏𝑠 , 𝑥3
𝑜𝑏𝑠, 𝑥4

𝑜𝑏𝑠): (𝑥1
𝑜𝑏𝑠, 𝑥2

𝑜𝑏𝑠 , 𝑥3
𝑜𝑏𝑠 , 𝑥4

𝑜𝑏𝑠), (𝑥1
𝑜𝑏𝑠, 𝑥2

𝑜𝑏𝑠 , 𝑥4
𝑜𝑏𝑠, 𝑥3

𝑜𝑏𝑠), 

(𝑥1
𝑜𝑏𝑠, 𝑥4

𝑜𝑏𝑠 , 𝑥3
𝑜𝑏𝑠, 𝑥2

𝑜𝑏𝑠), plus 21 more. Thus, the number of permutations is 4! =
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24, and 𝑓(𝑋|{𝑋} = {𝑥𝑜𝑏𝑠}) = 1/24, for each of the permutations of 𝑥𝑜𝑏𝑠. In 

many studies, some realizations 𝑥𝑟
𝑜𝑏𝑠 are equal (i.e., there are ties between the 

𝑥𝑟
𝑜𝑏𝑠s), and this is typically the case when the explanatory variable is categorical. 

Ties reduce the size of the unordered set {𝑥𝑜𝑏𝑠}. For example, if the interest is in 

gender differences, and the sample consists of two males and two females, then 

the number of unique components in the unordered set {𝑥𝑜𝑏𝑠} is (
4
2

) = 6. 

Consequently, 𝑓(𝑋|{𝑋} = {𝑥𝑜𝑏𝑠}) = 1/6, for each of the unique permutations of 

𝑥𝑜𝑏𝑠 . 

  

The reason for using 𝑓(𝑋|{𝑋} = {𝑥𝑜𝑏𝑠}) instead of 𝑓(𝑋) is that, contrary to the 

latter, 𝑓(𝑋|{𝑋} = {𝑥𝑜𝑏𝑠}) is known. In the following, we use 𝐿 to denote the 

number of unique values in the vector 𝑥𝑜𝑏𝑠 . Then, under the assumption of 

statistically independent and identically distributed observations, 𝑓(𝑋) can be 

written as follows: 

 𝑓(𝑋 = 𝑥) = ∏ 𝜋𝑙
𝑛𝑙

𝐿

𝑙=1

 Eq.  5 

In Eq.  5, 𝜋𝑙  is the probability of observing a unit in the 𝑙-th level (𝑙 = 1, … , 𝐿) of 

the explanatory variable, and 𝑛𝑙 is the number of observations in this level. Now, 

when 𝑋 is a natural explanatory variable, 𝑓(𝑋) is unknown because the 

probabilities 𝜋𝑙  are unknown. However, we now make use of the fact that the 

unordered observations {𝑋} are a sufficient statistic for the unknown probabilities 

𝜋𝑙 . A sufficient statistic is a function of a random variable (here, 𝑋) with the 

property that, by conditioning on its value, the resulting conditional probability 

distribution of the random variable becomes independent of the unknown 

parameters. To show that {𝑋} is a sufficient statistic, we start from the fact that 

{𝑥𝑜𝑏𝑠} (the observed realization of {𝑋}) is equivalent to (𝑛1, 𝑛2, … , 𝑛𝐿), the 

number of observations in each of the 𝐿 levels. Therefore, 𝑓({𝑋} = {𝑥𝑜𝑏𝑠}) is a 

multinomial distribution: 

 

𝑓({𝑋} = {𝑥𝑜𝑏𝑠}) = (
𝑛

𝑛1𝑛2 ⋯ 𝑛𝐿
) ∏ 𝜋𝑙

𝑛𝑙

𝐿

𝑙=1

   , 
Eq.  6 

in which the first term on the right-hand side of Eq.  6 is the multinomial 

coefficient. Inserting Eq.  5 and Eq.  6 in the definition of a conditional 

probability, we obtain  
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𝑓(𝑋|{𝑋} = {𝑥𝑜𝑏𝑠}) = (

𝑛
𝑛1𝑛2 ⋯ 𝑛𝐿

)
−1

   , 

which is independent of the probabilities 𝜋𝑙 . Depending on the array 

(𝑛1, 𝑛2, … , 𝑛𝐿), there are several common special cases of the multinomial 

coefficient. For instance, when comparing two conditions, 𝐿 = 2, and the 

multinomial becomes the binomial coefficient (
𝑛
𝑛1

) (remember that 𝑛 = 𝑛1 + 𝑛2). 

Further, if every unit brings its own unique value 𝑥𝑟
𝑜𝑏𝑠  (which may happen if the 

explanatory variable is quantitative), the multinomial coefficient equals 𝑛!. 

 

2. FA Rate Control Using 𝒇(𝑿|{𝑿} = {𝒙𝒐𝒃𝒔}) 

We can now complete our proof of the FA rate control of the permutation test, and 

we can do this along the same lines as the corresponding proof for the 

randomization test. The latter proof involved two steps, and this will also be the 

case for the current proof. In fact, the only difference between the two proofs is 

that, for the permutation test, we not only condition on 𝑌 = 𝑦𝑜𝑏𝑠 (as in the proof 

for the randomization test), but also on {𝑋} = {𝑥𝑜𝑏𝑠}. Specifically, our proof for 

the permutation test involves the following two steps: 

1. The permutation test controls the FA rate conditionally given 𝑌 = 𝑦𝑜𝑏𝑠 

and {𝑋} = {𝑥𝑜𝑏𝑠}.  

2. FA rate control conditionally given 𝑌 = 𝑦𝑜𝑏𝑠 and {𝑋} = {𝑥𝑜𝑏𝑠} implies 

unconditional FA rate control. 

Because our proof for the randomization test did not involve any component that 

prevented the conditioning on {𝑋} = {𝑥𝑜𝑏𝑠}, the same line of argument also 

provides the proof of the FA rate control for the permutation test. 

 

The difference between a randomization and a permutation test can also be 

depicted schematically, and we did this in Figure 1. The right-hand side of the  

black vertical bar depicts 𝑌 = 𝑦𝑜𝑏𝑠 (the grey sticks) and {𝑋} = {𝑥𝑜𝑏𝑠} (the box 

with 10 red and 10 green balls). The numbers of red and green balls on the right-

hand side could have been different (e.g., 14 red and 6 green balls), but their sum 

would always equal the number of sticks on the left- and the right-hand side. As a 

whole, this figure depicts the condition probability distribution 

𝑓(𝑋|𝑌 = 𝑦𝑜𝑏𝑠, {𝑋} = {𝑥𝑜𝑏𝑠} ), which is a permutation distribution. Without the 
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box on the right-hand side, it would have been the randomization distribution 

𝑓(𝑋|𝑌 = 𝑦𝑜𝑏𝑠). Drawing from the permutation distribution can be visualized by 

randomly assigning the colors in the box to the grey sticks. 

 

 

Figure 1 

Figure 4: Schematic representation of the permutation distribution; the 

conditional probability distribution that is involved in a permutation test. The 

right-hand side of the black vertical bar depicts the biological data (the grey 

sticks) and the unordered components of the explanatory variable (the box with 10 

red and 10 green balls).  

 

Permutation Tests for Observational Studies with a Within-

Participants Manipulation of the Explanatory Variable 

We now consider multi-participant observational studies in which the natural 

explanatory variable varies across the event times. Examples of such natural 

explanatory variables are response accuracy, response time, movement direction 

and psychophysiological variables like pupil diameter. As before, the probability 

distribution of the explanatory variable for a random participant 𝑟 will be denoted 

by 𝑓(𝑋𝑟). This probability distribution is unknown and so are the possible 

realizations of 𝑋𝑟. In fact, in an observational study, the number of events, the 

event times, and the associated conditions, can all be different for the different 

participants. For example, in a self-paced experiment in which accuracy will be 

the explanatory variable (with 0 and 1 denoting, resp., a correct and an incorrect 

response), the values of the explanatory variables for two participants could be 

[0,0,1,1,0] and [1,0,0,1,0,1]. And if response time would be the explanatory 

variable, these values could be [0.6,0.8,1.4,1.2,0.7] and [1.3,0.5,0.9,1.2,0.6,1.4].  
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We deal with the unknown probability distribution 𝑓(𝑋𝑟) by drawing from a 

known conditional probability distribution that is derived from 𝑓(𝑋𝑟). The 

general idea behind this approach is to construct a conditional probability 

distribution that resembles the randomization distribution that is used in a 

randomized experiment. We will describe two approaches, one that involves 

conditioning on an “informative support”, and another one that additionally 

involves conditioning on sufficient statistics.  

 

Conditioning on an informative support 

A support is the set of values that 𝑋𝑟 can take (i.e., its realizations). For the 

purpose of producing a sensitive statistical test, we construct pairs of realizations 

that are maximally different from each other but have the same probability. For 

example, in an experiment in which accuracy is the explanatory variable, this 

could be such a pair: {[0,0,1,1,0],[1,1,0,0,1]}. The important feature of this pair is 

that, for all events with a correct response in the first realization, there is an 

incorrect response in the second realization. Such a pair is called an informative 

support, and when drawing from the permutation distribution, we condition on it. 

This implies that, if one of the two realizations in the informative support is 

actually observed, to construct the permutation distribution, we randomly select 

one of the two. Next, we combine it with the biological data 𝑦𝑟
𝑜𝑏𝑠 to calculate the 

contribution of the r-th participant to the test statistic 𝑆(𝑦𝑜𝑏𝑠, 𝑥𝑜𝑏𝑠). This is almost 

identical to the way we construct the randomization distribution for a within-

participants manipulation of the explanatory variable: instead of randomly 

selecting one of the two complementary condition orders, we now randomly select 

from the informative support.  

 

This approach also applicable to continuous explanatory variables like RT, pupil 

diameter or some EEG-parameter (e.g., occipital alpha power). Assume that the 

observed explanatory variable is [2.7,9.3,4.9,7.5,3.1] and the interest is in a 

monotone relation between the biological data and this explanatory variable. For 

an interest in a monotone relation, an informative support can be based on order 

statistics: {[2.7,9.3,4.9,7.5,3.1],[9.3,2.7,4.9,3.1,7.5]}. The order statistics of the 
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second variable ([5,1,3,2,4]) is the reverse of the order statistics for the first pair 

([1,5,3,4,2]). We now describe our approach more formally. 

 

In general, we draw from 𝑓(𝑋𝑟|𝑆 = {𝑥𝑟
𝑜𝑏𝑠, 𝑥𝑟

𝑜𝑏𝑠𝑐
}), in which 𝑆 denotes the 

support of the probability distribution. Here, we constrain the support to a set of 

two possible realizations: {𝑥𝑟
𝑜𝑏𝑠, 𝑥𝑟

𝑜𝑏𝑠𝑐
}, the observed condition order 𝑥𝑟

𝑜𝑏𝑠 plus a 

condition order 𝑥𝑟
𝑜𝑏𝑠𝑐

 that is maximally different from the observed one. 

“Maximally different” is operationally defined by the researcher with the 

objective of maximizing the sensitivity of the statistical test. Maximizing 

sensitivity implies that 𝑥𝑟
𝑜𝑏𝑠 and 𝑥𝑟

𝑜𝑏𝑠𝑐
 must be as different as possible with 

respect to the effect of interest. To prevent bias, these pairs must be chosen 

independently from the biological data 𝑦𝑟
𝑜𝑏𝑠. A set 𝑆 = {𝑥𝑟

𝑜𝑏𝑠 , 𝑥𝑟
𝑜𝑏𝑠𝑐

} that is 

chosen in this way is called an informative support. A draw from the conditional 

probability distribution 𝑓(𝑋𝑟|𝑆 = {𝑥𝑟
𝑜𝑏𝑠 , 𝑥𝑟

𝑜𝑏𝑠𝑐
}) approximates a draw from a 

randomization distribution of which the possible realizations are as different as 

possible with respect to the effect of interest.  

 

With the resulting permutation test, we test the null hypothesis of statistical 

independence between 𝑋𝑟 and 𝑌𝑟 given that 𝑋𝑟 belongs to an informative support 

𝑆: 

𝑓(𝑋𝑟|𝑌𝑟 , 𝑆 = {𝑥𝑟
𝑜𝑏𝑠, 𝑥𝑟

𝑜𝑏𝑠𝑐
}) = 𝑓(𝑋𝑟|𝑆 = {𝑥𝑟

𝑜𝑏𝑠 , 𝑥𝑟
𝑜𝑏𝑠𝑐

}) 

The conditioning on the informative support is crucial, because it determines the 

sensitivity of the statistical test: without this conditioning, the generality of the 

inference is low, because the outcome of the test (reject or accept) may be 

dominated by one or a few participants. By conditioning on an informative 

support, a small p-value can only be obtained if the evidence provided by the 

different participants is consistent along the dimension that is implied by the 

difference between 𝑥𝑟
𝑜𝑏𝑠 and 𝑥𝑟

𝑜𝑏𝑠𝑐
. This increases the generality of the inference.  

 

The conditional probability distribution 𝑓(𝑋𝑟|𝑆 = {𝑥𝑟
𝑜𝑏𝑠, 𝑥𝑟

𝑜𝑏𝑠𝑐
}) is a Bernoulli 

distribution parameterized by the conditional probability of observing 𝑥𝑟
𝑜𝑏𝑠 given 

that one either observes 𝑥𝑟
𝑜𝑏𝑠  or its complement 𝑥𝑟

𝑜𝑏𝑠𝑐
: 
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𝑃(𝑋𝑟 = 𝑥𝑟
𝑜𝑏𝑠|𝑆 = {𝑥𝑟

𝑜𝑏𝑠, 𝑥𝑟
𝑜𝑏𝑠𝑐

}) =
𝑃(𝑋𝑟 = 𝑥𝑟

𝑜𝑏𝑠)

𝑃(𝑋𝑟 = 𝑥𝑟
𝑜𝑏𝑠) + 𝑃(𝑋𝑟 = 𝑥𝑟

𝑜𝑏𝑠𝑐
)
 

In order to draw from 𝑓(𝑋𝑟|𝑆 = {𝑥𝑟
𝑜𝑏𝑠, 𝑥𝑟

𝑜𝑏𝑠𝑐
}), the probabilities 𝑃(𝑋𝑟 = 𝑥𝑟

𝑜𝑏𝑠) 

and 𝑃(𝑋𝑟 = 𝑥𝑟
𝑜𝑏𝑠𝑐

) must be known. However, because 𝑋𝑟 is not under 

experimental control, its probabilities are unknown. To deal with this problem, 

besides conditioning on an informative support (which determines the sensitivity 

of the statistical test), we will also condition on sufficient statistics. 

 

Conditioning on an informative support and sufficient statistics 

In this approach, we draw from the conditional probability distribution  

𝑓 (𝑋𝑟|𝑆 = {𝑥𝑟
𝑜𝑏𝑠, 𝑥𝑟

𝑜𝑏𝑠𝑐
}, 𝑇(𝑋𝑟) = 𝑇(𝑥𝑟

𝑜𝑏𝑠)), in which 𝑇(𝑋𝑟) is a sufficient 

statistic of 𝑋𝑟. A sufficient statistic is a function of a random variable (here, 𝑋𝑟) 

with the property that, by conditioning on its value, the resulting conditional 

probability distribution of the random variable becomes independent of the 

unknown parameters. Therefore, this conditional distribution only depends on the 

observations 𝑥𝑟
𝑜𝑏𝑠  or 𝑥𝑟

𝑜𝑏𝑠𝑐
, which are known. For a given probability distribution 

𝑓(𝑋𝑟), there are multiple sufficient statistics, and these are usually specific for a 

particular parametric model for 𝑋𝑟 (e.g., mean and variance for a normal 

distribution). Because it is generally unknown which parametric model governs a 

particular 𝑋𝑟, we opt for a nonparametric sufficient statistic, the unordered data 

{𝑋𝑟}. For example, if 𝑥𝑟
𝑜𝑏𝑠 = [0,0,1,1,0], then {𝑥𝑟

𝑜𝑏𝑠} = {0,0,1,1,0}. Now, given 

that we also condition on the informative support 𝑆 = {𝑥𝑟
𝑜𝑏𝑠, 𝑥𝑟

𝑜𝑏𝑠𝑐
}, 𝑥𝑟

𝑜𝑏𝑠𝑐
 must 

have the same sufficient statistic as 𝑥𝑟
𝑜𝑏𝑠, since otherwise 𝑥𝑟

𝑜𝑏𝑠𝑐
 has a zero 

probability under 𝑓 (𝑋𝑟|𝑆 = {𝑥𝑟
𝑜𝑏𝑠 , 𝑥𝑟

𝑜𝑏𝑠𝑐
}, 𝑇(𝑋𝑟) = 𝑇(𝑥𝑟

𝑜𝑏𝑠)). Therefore, we set 

𝑥𝑟
𝑜𝑏𝑠𝑐

= [0,1,0,0,1] instead of 𝑥𝑟
𝑜𝑏𝑠𝑐

= [1,1,0,0,1]. With this definition of the 

informative support 𝑓 (𝑋𝑟|𝑆 = {𝑥𝑟
𝑜𝑏𝑠 , 𝑥𝑟

𝑜𝑏𝑠𝑐
}, 𝑇(𝑋𝑟) = 𝑇(𝑥𝑟

𝑜𝑏𝑠)) is a Bernoulli 

distribution with probability 0.5 for both 𝑥𝑟
𝑜𝑏𝑠 and 𝑥𝑟

𝑜𝑏𝑠𝑐
.  

 

The unordered data {𝑋𝑟} are not always a sufficient statistic. Specifically, they are 

not a sufficient statistic if the elements of 𝑋𝑟 (the event-specific explanatory 

variables) have different probability distributions (e.g., their mean increases with 
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the event number) or if they are statistically dependent (e.g., auto-correlated with 

some nonzero lags). To deal with such patterns in the data, one can build a 

parametric probability model for 𝑋𝑟 that captures these patterns (e.g., a logistic 

regression model with a linear trend and pair-wise statistical dependencies) and 

condition on the sufficient statistics for this model. Parametric probability 

modelling also provides diagnostic tools to identify such trends and statistical 

dependencies.   

  

The permutation test controls the FA rate  

Under the permutation distribution, a p-value is calculated, which subsequently is 

used to take a decision about the null hypothesis of statistical independence 

between 𝑋𝑟 and 𝑌𝑟. This permutation test controls the FA rate, and we can prove 

this in the same way as shown previously for observational studies with a 

between-units manipulation of the explanatory variable. Specifically, this proof 

involves the following two steps: 

1. The permutation test controls the FA rate conditionally given 𝑌𝑟 = 𝑦𝑟
𝑜𝑏𝑠, 

𝑆 = {𝑥𝑟
𝑜𝑏𝑠, 𝑥𝑟

𝑜𝑏𝑠𝑐
} and 𝑇(𝑋𝑟) = 𝑇(𝑥𝑟

𝑜𝑏𝑠), for 𝑟 = 1, … , 𝑛.  

2. FA rate control conditionally given 𝑌𝑟 = 𝑦𝑟
𝑜𝑏𝑠, 𝑆 = {𝑥𝑟

𝑜𝑏𝑠 , 𝑥𝑟
𝑜𝑏𝑠𝑐

} and 

𝑇(𝑋𝑟) = 𝑇(𝑥𝑟
𝑜𝑏𝑠) implies unconditional FA rate control. 

 

It is important to note that, in many observational studies, not only the condition 

orders are not under experimental control, but also the event times 𝐸 and the way 

they are partitioned in the condition-specific sets 𝐸1 and 𝐸2. In these studies, 𝐸1 

and 𝐸2 are random variables, and this status has to be taken into account when 

proving the FA rate. Specifically, in this proof, we must condition on the 

realizations of 𝐸1 and 𝐸2. As shown in the other proofs for the permutation test, 

conditioning on random variables does not affect the FA rate control. 

 

Using a Permutation Test in a Randomized Study to Allow for a More 

General Inference 

When we discussed randomization tests for studies with a within-participants 

manipulation of the explanatory variable, we pointed out that the generality of 
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inference depends on the randomization distribution, and in particular, on its 

number of possible realizations. We now consider a randomized study in which 

we have used a randomization distribution 𝑓(𝑋𝑟) that, in retrospect, does not 

allow for the desired generality of inference. For instance, the randomization 

distribution may generate condition orders by randomly drawing from a group of 

condition labels with equal numbers for the two experimental conditions A and B.  

However, the objective of the study may be only to evaluate the effect of the two 

experimental conditions A and B, and this could be better evaluated by comparing 

one condition order with its complement. Fortunately, the permutation distribution 

𝑓(𝑋𝑟|𝑆 = {𝑥𝑟
𝑜𝑏𝑠 , 𝑥𝑟

𝑜𝑏𝑠𝑐
}) (for 𝑟 = 1, … , 𝑛) allows for this. Specifically, because of 

the symmetry in the way the random condition orders are generated, every 

observed condition order 𝑥𝑟
𝑜𝑏𝑠  has a complement 𝑥𝑟

𝑜𝑏𝑠𝑐
 with the same probability. 

Now, by using the conditional distribution 𝑓(𝑋𝑟|𝑆 = {𝑥𝑟
𝑜𝑏𝑠, 𝑥𝑟

𝑜𝑏𝑠𝑐
}) instead of the 

unconditional randomization distribution 𝑓(𝑋𝑟), we now evaluate a null 

hypothesis that allows for a more general inference: 

𝑓(𝑋𝑟|𝑌𝑟 , 𝑆 = {𝑥𝑟
𝑜𝑏𝑠, 𝑥𝑟

𝑜𝑏𝑠𝑐
}) = 𝑓(𝑋𝑟|𝑆 = {𝑥𝑟

𝑜𝑏𝑠 , 𝑥𝑟
𝑜𝑏𝑠𝑐

}) 

 

Discussion 

Summary of the Main Contributions 

We have described a general approach to nonparametric statistical testing that 

starts from the null hypothesis of statistical independence between the explanatory 

and the biological variable. We have provided a formal proof of the FA rate 

control under this approach. Crucially, FA rate control is achieved without 

auxiliary assumptions and does not depend on asymptotic arguments (e.g., 

increasing sample size or cluster-defining threshold). In this respect, it 

outperforms the existing parametric tests and some existing nonparametric tests 

(i.e., the sign-flipping test). Our approach is a very general one because it can be 

used for (1) both single- and multi-participant studies, (2) studies with a between- 

as well as a within-participants manipulation of the explanatory variable, (3) 

studies with a randomized as well as a natural explanatory variable (possibly 

involving between-participant differences in event times), (4) studies with a 
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categorical as well as a quantitative explanatory variable, and (5) for testing null 

hypotheses that are of a fixed or a random effect type.   

 

Random versus Non-random Assignment to the Conditions, and 

Another Null Hypothesis 

For the randomization tests presented in this paper, it is required to have a random 

explanatory variable with a known probability distribution. This has the simple 

but important consequence that the statistical testing procedure already starts 

before the data collection, namely when the units (participants) are randomly 

assigned to the conditions (condition orders). The result of this random 

assignment is then stored, and reused when the randomization p-value is 

calculated.  

 

The requirement of random assignment follows from the null hypothesis of 

statistical independence between the biological data and the explanatory variable: 

this hypothesis can only be formulated for random explanatory variables. 

However, there is at least one other useful nonparametric null hypothesis that does 

not require the explanatory variable to be random: equality of the probability 

distributions between conditions or condition orders (see further). Both this other 

null hypothesis and its statistical test (see further) are closely related to the null 

hypothesis of statistical independence and the nonparametric tests that are 

described in this paper. This other null hypothesis was formulated in our earlier 

work (Maris & Oostenveld, 2007), and can be tested in studies in which units are 

non-randomly assigned to a condition or a condition order (e.g., alternating 

between the different condition orders).  

 

The alternative null hypothesis of interest is the following: equality of the 

probability distributions of the biological data of a randomly sampled unit (𝑌𝑟) in 

the different conditions (condition orders). Formally, for a study with a between-

units manipulation of the explanatory variable, this null hypothesis can be written 

as follows: 

 𝑓(𝑌𝑟 ; 𝐴) = 𝑓(𝑌𝑟; 𝐵) 
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In this equation, 𝑓(𝑌𝑟; 𝐴) and 𝑓(𝑌𝑟; 𝐵) denote the probability distributions of the 

biological data in the conditions 𝐴 and 𝐵. And for a study with a within-unit 

manipulation of the explanatory variable and condition orders ABBABABA and 

BAABABAB, this null hypothesis can be written as follows: 

 𝑓(𝑌𝑟; 𝐴𝐵𝐵𝐴𝐵𝐴𝐵𝐴) = 𝑓(𝑌𝑟; 𝐵𝐴𝐴𝐵𝐴𝐵𝐴𝐵) 

 

This null hypothesis of equal probability distributions can be tested by means of a 

permutation test, but instead of permuting the realizations of the explanatory 

variable (while keeping the biological data fixed), we now permute the unit-

specific component data structures (while keeping the non-random explanatory 

variable fixed). Under the null hypothesis of identical probability distributions in 

different conditions, every permutation of the component data structures has the 

same probability. Exactly the same p-value results from these two procedures 

(permuting the explanatory variable and permuting the biological data), and the 

only difference is the null hypothesis.  

 

In the present paper, we deliberately focused on randomization tests of the null 

hypothesis of statistical independence. This is because the nonparametric tests of 

the alternative null hypothesis (equal probability distributions) are less general. 

Specifically, these nonparametric permutation tests cannot be used in most event-

related fMRI studies, such as a single-participant study or a multi-participant 

study with a within-participants manipulation of the explanatory variable. 

  

The Generality of the Framework 

The framework presented in this paper is general, but can still be extended. 

Specifically, it can be extended to (1) other types of explanatory variables, (2) null 

hypotheses about the incremental effect of one explanatory variable given another 

(confounding) explanatory variable, and (3) null hypotheses about interaction 

effects. Starting with the first point, one must first observe that the null hypothesis 

of statistical independence is not restricted to a particular type of explanatory 

variable (two or more levels, nominal or quantitative, uni- or multivariate). The 

test statistic, however, does depend on the type of the explanatory variable. 

Specifically, for nominal explanatory variables with more than two levels, an F-
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statistic is typically used, and for quantitative explanatory variables a regression 

coefficient t-statistic. And when the explanatory variable is multivariate, one 

typically uses a test statistic based on a canonical correlation (e.g., Wilks’s 

lambda).  

 

Second, our framework can deal with incremental effects of one explanatory 

variable (𝑋1) given another (confounding) explanatory variable (𝑋2). Incremental 

effects are highly relevant in observational studies with correlated explanatory 

variables, of which one is of interest and the other(s) is (are) confounding. For 

example, one may be interested in the association between disease status (e.g., 

diseased vs. healthy) and some biological variable, but the control group cannot 

be matched to the disease group on all possible variables. Now, if there is an age 

difference between the two groups, age could be a confounding variable in the 

association between disease status and the biological variable.  

 

In our framework, we formulate the hypothesis of no incremental effect as 

conditional statistical independence (for short, conditional independence) between 

𝑌 and 𝑋1 given 𝑋2. This can be expressed formally as follows: 

 𝑓(𝑌|𝑋1, 𝑋2) = 𝑓(𝑌|𝑋2)   , Eq.  7 

This equation formalizes the notion that, conditionally on 𝑋2, the explanatory 

variable 𝑋1 is not associated with the biological variable 𝑌. 

 

The permutation test for this hypothesis of conditional independence is very much 

along the same lines as a permutation test for the regular (unconditional) 

independence between 𝑋 and 𝑌. The essential difference is that the test statistic 

now is evaluated under a so-called grouped permutation distribution, in which 

“grouped” denotes that we have one permutation distribution for every unique 

value (e.g., age or age group) in the realization 𝑥2
𝑜𝑏𝑠 of 𝑋2, the random variable on 

which we condition. Specifically, we will draw the realizations of 𝑋1 (e.g., disease 

status) in parts, and each part corresponds to the components of 𝑋1 for which the 

participants all have the same realization in the vector 𝑥2
𝑜𝑏𝑠 (e.g., the same age or 

age group). Each of these parts is drawn from its own permutation distribution, 

and together they form a grouped permutation distribution. Thus, the decision 
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about the null hypothesis of conditional independence is taken on the basis of a p-

value that is calculated under this grouped permutation distribution.  

 

The FA rate of this grouped permutation test is controlled under the new 

conditional null hypothesis in Eq.  7. The formal proof of this FA rate control is 

very similar to the one for the unconditional independence between 𝑋 and 𝑌. It is 

again a two-step proof in which the first step proves conditional FA rate control, 

and the second unconditional FA rate control.  

 

Third, our framework allows for testing null hypotheses about interaction effects. 

Different from the null hypothesis considered up to now, an interaction effect null 

hypothesis pertains to processed instead of raw data. This is most easily explained 

for a study with one explanatory variable that is manipulated within-participants, 

and another one that is manipulated between-participants. For every individual 

participant, we quantify the effect of the within-participants explanatory variable 

as the difference between condition-specific regression coefficients. We denote 

these participant-specific effect quantifications by 𝑌𝑟 (at the level of single 

participants) and 𝑌 (an array at the level of the whole sample of participants). The 

interaction effect null hypothesis is now formulated as statistical independence 

between the effect quantification array 𝑌 and the between-participants explanatory 

variable 𝑋. This null hypothesis is tested by means of a randomization or 

permutation test, depending on whether 𝑋 is a randomized or a natural 

explanatory variable. 

 

Parametric versus Nonparametric Statistical Tests 

In this paper, we advocate for the use of nonparametric statistical tests because of 

their exact FA rate control. This is a clear advantage over parametric statistical 

tests, whose exact FA rate control depends on auxiliary assumptions and/or on 

asymptotic arguments (e.g., an increasing sample size or cluster-defining 

threshold). 

 

Parametric statistical tests have two valuable properties which nonparametric tests 

do not have, or which cannot be proved: (1) some parametric statistical tests are 
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uniformly most powerful (UMP, Lehmann, 1986), and (2) parametric probabilistic 

modeling of the biological data allows for statistical testing at the level of the free 

parameters of the model, which is highly informative given that the model is 

valid. However, both properties have only a limited relevance in current cognitive 

neuroscience. Starting with the first, a statistical test is defined to be UMP if there 

is no other statistical test that is uniformly (i.e., over all values of the parameter of 

interest) more powerful (sensitive). Now, if the parameter of interest is a scalar 

expected value then, under the usual auxiliary assumptions (independence, 

normality, equal variance), the univariate t-statistic is UMP. However, this 

property does not hold for multivariate expected values and the corresponding 

multivariate t-statistic (Hotelling’s 𝑇2). Therefore, for scientific disciplines that 

collect multivariate data, such as cognitive neuroscience, the UMP-status of the 

univariate t-statistic is not very relevant. 

 

Second, it would be extremely difficult to argue for nonparametric statistical 

testing if a valid probabilistic model of the data would be available, especially if 

this model would have a low number of free parameters as compared to the 

dimensionality of the data.  Such a model would allow for statistical tests with 

respect to the free parameters of the model (e.g., a likelihood ratio test). In a 

sparsely parameterized model, this would be very parsimonious, as it would allow 

for an interpretation of the effect in a low-dimensional subspace of the full data 

space. Unfortunately, such a sparsely parameterized probabilistic model is not 

available for any of the common biological data collected in cognitive 

neuroscience. 

 

Conclusion 

Starting from the null hypothesis of statistical independence between the 

explanatory and the biological variable, we have developed a general approach to 

nonparametric statistical testing. The formal core of this approach is a proof of its 

FA rate control, which is valid for a very wide range of studies (single- and multi-

participant studies, with a between- as well as a within-participants manipulation, 

with a randomized as well as a natural explanatory variable, with a categorical as 

well as a quantitative explanatory variable, and for testing null hypotheses that are 
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of a fixed or a random effect type). It is easy to extend the framework to 

multivariate explanatory variables, null hypotheses about the incremental effect of 

one explanatory variable given another, and null hypotheses about interaction 

effects. Although we do not claim that parametric statistical tests are now 

obsolete, for a number of statistical problems in cognitive and medical 

neuroscience, a solution can be found in this nonparametric framework.  
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