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Reviews and Responses 

The paper was rejected based on these reviews. We are happy to post them along with our full 
responses (in blue) in case others have similar questions (please also feel free to comment on 
bioRxiv #openpeerreview). Needless to say, we disagree with these evaluations and aim to 
provide useful insight into the issues with MeRIP-seq data and conclusions that rely on it, rather 
than the ideal pipeline or analysis tool. Good analysis can’t fix bad data, so validation is always 
key. -AM 

Reviewer #1:  
 
The manuscript by McIntyre et al. tried to estimate reproducibility across MeRIP/m6A-seq 
experiments from different publications using a computational workflow defined by the authors. 
However, the authors chose a ChIP-seq data/genome-based software (MACS2) to call peaks 
from RIP-seq/transcriptome. Given the different statistical analysis models between ChIP-
seq/genome and RIP-seq/transcriptome for calling the peaks, it is of particular concern that the 
authors rush to some erroneous conclusions which may mislead biologists to use inappropriate 
software to call peaks from MeRIP/m6A-seq data (details see major comment 1). Moreover, the 
manuscript used arbitrary parameters to filter peaks called by different software (details see 
major comment 2). Furthermore, three softwares have been suggested by the authors to analyze 
differential peaks, but yielded different results. Importantly, although the manuscript focuses on 
re-analyzing the published MeRIP-seq data, the detailed information about the methods and 
parameters employed in each manuscript remains totally unclear. Overall, this study has many 
defects (listed below) and would not be appropriate for publication in this journal. 
 
We thank the reviewer for the comments and careful review, and we think many of these 
described limitations are readily addressed by this revision and our updated review of the cited 
work (e.g. most papers used MACS/MACS2, and we also now test a second method). Also, we 
clarify some information that may have not been as obvious in the first submission. Please see 
below. 
 
Major comments: 
1.    The authors claimed that they used MACS2 for peak calling. But as far as I know, MACS2 
was designed for genomic sequencing data like ChIP-seq without taking into consideration of the 
RNA features, such as introns and exons. Moreover, the statistical analysis models are different 
between ChIP-seq and MeRIP/m6A-seq data. In addition, the MACS slides the window in 
genome but not in transcript/gene, so the peaks identified by MACS2 may be far beyond the 
transcripts and are not suitable for downstream analysis. In fact, in Supplementary Figure 1a, 
MACS2 had the minimal and maximum number of peaks in mouse cortex and Huh7 data, 
respectively, which further means that MACS2 is not a robust and suitable approach for m6A 
peak calling. 
 
We thank the reviewer for this comment, which inspired some further experiments and analyses. 
Based on these results, as well as our summary of the literature (Supplementary Table 1), we 
find that MACS2 is a suitable peak caller and that using an alternative peak caller does not affect 
our conclusions. We outline our reasons here:  
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First, the reviewer is correct that MACS2 was designed for genomic sequencing data (and we 
note this in the text), but it can also be used for analyzing RNA data, as others have previously 
shown (e.g. Antanaviciute et al., 2017 (1)). In fact, 20 of the MeRIP-seq studies we surveyed in 
Supplementary Table 1 used MACS2 or its precursor MACS, several after running their own 
comparisons to other peak callers (e.g. Engel et al., 2018 (2)). In these studies, papers often filter 
for exonic peaks after peak calling to establish a set of peaks appropriate for downstream 
analysis, however, we note that this could also remove true m6A sites in introns and un-annotated 
transcripts (according to Ke et al., 2017, these are rare (3)). Our own results in Supplementary 
Figure 1a suggest that the peak callers we tested achieve comparable accuracy in the prediction 
of m6A sites (based on equal enrichment of the canonical motif DRAC).   
 
Despite the prevalent use of MACS2 for MeRIP-seq analysis, we still appreciate the reviewer’s 
concern over its use and the need for accurate peak calling. Therefore, we experimentally tested 
m6A peaks predicted by the peak callers compared in Supplementary Figure 1 (MACS2, 
MeTPeak, MeTDiff, and exomePeak). Specifically, we selected a set of random peaks among 
those detected by single peak callers in our Huh7 cells for MeRIP-RT-qPCR validation of 
METTL3/14-dependence. We found that 4/4 MACS2 peaks, 5/5 MeTPeak peaks, and 3/4 
MeTDiff peaks showed less enrichment with knockdown of METTL3/14, suggesting these are 
METTL3/14-dependent m6A sites (new Supplementary Figure 1b). By contrast, we were able 
to validate only 1/5 of the peaks uniquely identified by exomePeak, although this may have been 
due to outliers or other experimental variables. These new data are limited but support the use of 
MACS2 as a peak caller for MeRIP-seq data.  
 
Taking into account our new data and the results from Antanaviciute et al. (2017) discussed 
above, we have amended the text lines 121-129 to read: “we assessed the METTL3/METTL14-
dependence of specific peaks identified by single tools using MeRIP-RT-qPCR. We found that 
of these peaks, 4/4 from MACS2, 5/5 from MeTPeak, and 4/5 from MeTDiff showed decreased 
m6A(m) enrichment following METTL3/METTL14 depletion, suggesting that these are true m6A 
sites. By comparison, only 1/5 of the peaks uniquely called by exomePeak showed statistically 
significant decreases (p < 0.05), although replicate variance was high and 4/5 showed a 
downward trend (Additional File 2: Supplementary Figure 1b). Since MACS2 is the most 
commonly used tool for peak calling and was previously found to perform well in comparison 
with a graphical user interface tool and several other peak callers (51), we used MACS2 for the 
remainder of our analyses.” 
 
Finally, to further validate our results, we re-ran all of the main analyses shown in Figures 2, 3, 
and 4 using the MeTDiff peak caller instead of MACS2 and summarize the new results in 
Additional File 3. As further support for the broad biological and technical conclusions of our 
study, we found that none of our primary conclusions changed. Specifically, when using 
MeTDiff as the peak caller, we also found that: (1) peaks for MeRIP-seq experiments clustered 
more by study than by cell type or tissue, (2) peak change detection (the step after peak detection 
to compare enrichment between two conditions) using MeTDiff again appears to detect more 
false positives than other methods, and (3) most MeRIP-seq studies of various conditions have 
still likely over-reported peak changes based on comparisons to our statistical approaches.  
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2.    The authors used a coverage threshold of input reads (read counts ≥ 10) to detect m6A 
peaks, which appears to be the lack of statistical significance and too arbitrary. The sequencing 
depth often differs in different datasets. The threshold suggested by the authors was derived from 
their dataset, thus may be only suitable for their data. If applied to other dataset, more training 
data and statistical models are required. Moreover, the authors should perform MeRIP-RT-qPCR 
or SCARLET experiments to validate that those low coverage peaks are not true m6A peaks. 
 
It is important to clarify that we did not use a threshold to detect m6A peaks, and we have 
updated the methods to make this more obvious (line 486). We did use a 10-read or 10X filter 
after peak detection in two analyses to account for differences in sequencing depth and gene 
expression between experiments and conditions, as detailed below.  
 
Sequencing depth is important for peak detection only to a point (as we show in Supplementary 
Figure 2). More directly, coverage in a particular gene or region determines whether a peak can 
be called. For Figure 2, comparing between data sets without establishing a threshold for gene 
expression would lead to underestimates of m6A peak concordance (e.g. if we included genes or 
exons that were expressed only in one data set but not the other). We therefore considered only 
peaks for genes expressed above a mean of 10X coverage to more fairly assess replicability of 
m6A detection while taking into account differences in gene expression and sequencing depth. 
We selected these thresholds based on Figure 1a, in which we analyzed two data sets: one our 
own and one from Engel et al., 2018. The higher threshold of 50X, where the Engel et al. data 
starts to plateau, proved too stringent for Figure 2, as there was insufficient gene overlap at this 
threshold for many pairs of data sets. To verify that our threshold of 10X was appropriate for 
other data sets, we include a new Supplementary Figure 1c, which summarizes across all 
experiments in Figures 1-2. This new figure shows that a mean gene coverage of 10X represents 
a reasonable approximation of the coverage necessary to detect most peaks across data sets. 
 
To further measure peak detection accuracy, we generated additional MeRIP-RT-qPCR data to 
determine whether peaks below our threshold of 10 input reads are true m6A sites and found that 
5/7 of the sites we tested showed METTL3-dependence, compared to 6/8 for peaks above our 
threshold (new Supplementary Figure 1e). Recent data from a new method to detect m6A using 
endoribonuclease digestion suggests that many m6A sites are missed by MeRIP-seq data (Garcia-
Campos et al., 2019 (4)), thus it is perhaps not surprising that even low coverage peaks include 
true m6A sites. We have added clarification in the text regarding how the threshold should be 
interpreted: “These thresholds do not mean that peaks in genes with mean coverage < 10X or 
peaks with fewer than 10 input reads are false positives, but that the likelihood of false negatives 
rises with lower coverage (Additional File 2: Supplementary Figure 1e).” (lines 146-148).  
 
We also include a threshold of ≥ 10 input reads per peak in Figure 4a across two conditions, 
where we were looking for changes in m6A and not just the presence of m6A. We show the 
results without any threshold in coverage in Supplementary Figure 4b, which does not affect 
our conclusions. It does, however, illustrate that QNB in particular detected more peak changes 
where there was low expression in one or both conditions, which is of interest as it’s unclear 
whether this is because these sites represent true changes or more noise at low expression levels.  
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3.    In Figure 3a and Supplementary Figure 3b, the numbers of differential peaks detected by 
DESeq2, edgeR and QNB were very different from each other. For example, in siZc3h13 
experiment, the edgeR identified tens of peaks, but DESeq2 and QNB predicted thousands of 
peaks. It seems to be the lack of standard algorithms for the detection of differential peaks. As 
such, using these programs to estimate the differential peaks may be inappropriate. In addition to 
the number of the union, the authors should also provide overlapping peak number among these 
three methods.  
 
The lack of standard analysis methods in this field has clearly contributed to discordant reports 
on m6A dynamics. Our paper provides a starting place to compare methods and to understand the 
limitations of the underlying data. Of note, there is no ground truth data set in which the relative 
m6A enrichment at every site is known and validated under two conditions to assess differences 
in tool accuracy. As it is not possible to create such a data set using current methods, the best 
positive controls available are samples in which the methylation machinery has been disrupted, 
which is what we and others (Liu et al., 2017 and Cui et al., 2018 (5,6)) have used for tool 
evaluation, while the best negative control data sets are replicates at baseline conditions. 
However, we were unable to determine which of the three tools universally performed best on 
the positive/negative control data sets. Therefore, we suggest that in m6A peak analysis, 
researchers should consider starting with all three or using the intersects between 2 or 3 as a 
metric to rank peaks before follow-up experiments. We have now implemented an R package to 
facilitate this (https://github.com/al-mcintyre/deq). We have emphasized in the discussion and in 
the caption for Figure 6 that additional validation of predicted changes is required. We have 
added the intersect to the results in Figure 4a and Supplementary Figure 4b (formerly Figure 
3a and Supplementary Figure 3b), but it is not surprising that the overlap is poor.  
 
4.    The authors re-analyzed the previously published MeRIP-seq data but didn't provide the 
source codes and any running parameters of bioinformatics programs used. To guarantee the 
repeatability of their analysis, the authors are strongly recommended to upload the source codes 
to Github and list all running parameters and analysis pipelines. 

In our manuscript, we cite the existing tools used and did upload our own code to Github, as 
described in the data availability section “Scripts used for analysis are available at 
https://github.com/al-mcintyre/merip_reanalysis_scripts” (lines 604-605). Many of those scripts 
depend on intermediate files too large to upload to GitHub (especially considering we reanalyzed 
data from 35 different studies); however, as noted in the response to Comment 3, we have 
therefore also implemented a pipeline in R to conveniently run the three tools we recommend 
and integrate results, available at https://github.com/al-mcintyre/deq.  

5.    The sensitivity and specificity are very important for bioinformatics analysis, which are, 
however, not adequately estimated in their analysis pipelines. In particular, the authors did not 
provide any positive control results to confirm the sensitivity and specificity of their analyses. 

Here, it is important to distinguish sensitivity and specificity for peak detection and peak change 
detection. 
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In terms of peak detection, please see our responses above for additional validation of each peak 
caller with new MeRIP-RT-qPCR experiments with siMETTL3/14, which suggests that most 
predicted sites correspond to true positives.  

In terms of peak change detection, we present the predictions for positive control data sets (with 
methylation machinery interference) and negative control data sets (replicates) in Figure 3b. 
However, as noted by Liu et al. (2017) (5) and above, there are no ground truth data sets in 
which the locations of m6A changes are well-characterized across the transcriptome, so 
calculating sensitivity and specificity is difficult, if not impossible. Cui et al. (2018) defined 
specificity and sensitivity using simulated data to suggest that MeTDiff is a highly accurate tool 
for peak change detection, but our study suggests that those results based on simulated data may 
be misleading (Figure 3b-d). In the biological positive controls we rely on instead, we do not 
expect every site detected as changed to reflect a true change in m6A for several reasons:  

1) the direction of change in peak does not consistently match the expected direction of 
change for the interference (see figure Response Figure 1 below for the number of peaks 
either increased or decreased with p adj < 0.05 and new Supplementary Figure 3c for 
the distributions of peak-gene log2 fold changes in our positive control data sets) – this 
was true for all of the methods tested and replicated using either MACS2 or MeTDiff for 
peak calling. It may be that as m6A is lost with Mettl14 knockdown (for instance), excess 
m6A antibody is redistributed to repetitive regions or other regions the antibody 
preferentially binds in the absence of m6A (see Lentini et al., 2018 paper on antibody 
biases, for example (7)), creating legitimate increases at peak sites that do not correspond 
to increases in m6A.  

 

Response Figure 1. The number of peaks per tool that show either significant (adjusted p < 
0.05) increases or decreases in response to various modes of interference with methylation 
machinery.   

−2

−1

0

1

2

deseq2 edger qnb metdiff
tool

lo
g1

0(
# 

pe
ak

s 
up

 o
r d

ow
n)

experiment
shMETTL14

FtoKO

FTOoe

siMETTL3

DAA

shWTAP

shMettl14

Mettl3KO

NA



   
 

   
 

6 

2) knockdown efficiency is variable and is known to affect results, and some methylation 
machinery knockdowns may not show any changes in m6A (see the comparisons of 
WTAP, METTL3, and METTL14 knockdowns in Schwartz et al., 2014 (8)), and  

3) although we do already include an FTO experiment among our positive controls, there is 
still controversy over whether FTO is an active demethylase at m6A sites and the latest 
evidence indicates it is not (Garcia-Campos et al., 2019 (4)), suggesting that its utility as 
a control may be limited. 

Because of the inherent ambiguity of the data, we cannot calculate sensitivity and specificity for 
these analyses.  

6.    Because m6A modification is tissue- or cell-specific, the positive and negative controls used 
for evaluating the performance of their approach in detecting m6A(m) peak changes should 
derived from same tissue or cell line. It's incorrect for the authors to use the negative control of 
datasets from mouse cortex and Huh7 cells in all conditions apparently with different tissues or 
cell lines. 

Please let us clarify. Our evaluations of peak changes in Figure 3 do not rely on cell type 
similarity between the positive and negative controls, as we have defined them. The positive 
controls consist of experiments featuring perturbation of the m6A machinery and the negative 
controls consist of identical biological replicates.  

For each of our positive controls, we ran peak change detection between samples in which there 
was interference with methylation machinery (eg. Mettl3 knockout or shWTAP) and samples in 
which there was no such interference (eg. wildtype or shControl) from the same experiment. The 
latter could be considered internal negative controls, in which case they were from the same 
tissue or cell line, however, they were not the negative controls we used for comparisons of p-
value distributions. Our negative controls for p-value distributions were the only two published 
data sets in which there were sufficient replicates to divide them into two groups for comparison 
under the same baseline condition. We have clarified this in the manuscript (line 225-228). 

Under the null hypothesis of no differences in m6A, a p-value distribution should be uniform. 
Therefore, regardless of cell type, we would expect that groups of replicates would show 
minimal differences in m6A between groups and more uniform p-value distributions than the 
positive controls. Interference with methylation machinery in the positive controls, meanwhile, 
should lead to shifts in m6A deposition and increases in detectable peak changes, and so we 
would expect to see leftward shifts in p-value distributions. As noted in our response to 
Comment 5, we expected variability in p-value shifts among positive control experiments, 
depending on the gene targeted and knockdown efficiency, which is why we included many 
experiments for this analysis. Our assumptions are supported by the new Supplementary Figure 
3c, which shows that the peak-gene log2 fold changes for the negative controls center around 
zero, while those of the positive controls show show minor shifts that vary in magnitude and 
direction depending on the experiment.  

We also note that while it is reasonable to hypothesize variation by cell type, work on this 
question is ongoing. Those who have suggested clustering of results by tissue based on MeRIP-
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seq have clustered based on IP reads, without accounting for differences in gene expression (e,g. 
Xiao et al., 2019 in Nat Cell Biol (9)) or have shown only “mild tissue-specificity” (e.g. the 
paper from Liu et al., 2019 recently accepted in Molecular Cell, for which the data will be 
released in 2020). The most compelling studies thus far are those that quantify m6A at particular 
positions to show differences. The original SCARLET paper found that at the locations they 
studied in MALAT1, the percent of transcripts methylated at a particular site could vary among 
cell lines, but the relative enrichment of m6A across sites was similar (see Table 1 of Liu et al., 
2013 (10)) – unfortunately they don’t provide quantification of m6A machinery expression levels 
for comparison, but this could be a factor in the differences. A recent paper which used an 
endoribonuclease-based method for analyzing m6A sites genome-wide found that sequence 
context explained much of the variation of m6A levels across sites and suggested that “the 
primary mode through which m6A is likely to undergo modulation is through global regulation of 
m6A levels”, for example through differences in the expression of methyltransferase complex 
components (see Discussion of Garcia-Campos et al., 2019). While MeRIP-seq cannot quantify 
m6A, our results in Figure 2a-b show that technical or biological variation among experiments 
masks any variation in m6A detection by cell type. We have also added a new reanalysis of data 
from Xiao et al. (2019) (9), which shows little clustering by tissue type when considering peak 
overlaps for genes expressed with mean coverage ≥ 10 (as in Figure 2a-b), suggesting that 
identified m6A sites change little across cell type (see new Figure 2c) even if global m6A levels 
and the percent of transcripts methylated at  individual sites do vary. (Clustering with a higher 
threshold of mean coverage ≥ 50 showed similar results, Response Figure 2 below).  

 

Response Figure 2. The percent of peaks detected in Experiment 1 also detected in Experiment 
2 for genes expressed above a mean coverage threshold of 50 in both. Data from Xiao et al., 
2019. 
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7.    In Figure 3b, 3c, Supplementary Figure 3a,3e, there are multiple peaks with more than 2 
fold-change between two conditions as displayed. It is highly suggested that y-axis of these 
figures should be normalized to same scales. Moreover, it is inappropriate for the authors to use 
the software without peer-review or confirmed by other biologists to draw coverage changes of 
MeRIP/m6A-seq. 

One of our points, illustrated in Figure 3d (formerly Figure 2d), is that using the same y-axis 
scale masks differences in gene expression between two conditions or experiments. In analyzing 
MeRIP-seq data, it is not the total IP coverage that is important, but the coverage relative to the 
input RNA-seq experiment, and this input coverage changes as a function of gene expression. In 
order to see these changes, the same y-axis scales cannot be used, therefore we have decided not 
to modify Figure 4 and Supplementary Figure 4 (formerly Figure 3 and Supplementary Figure 
3). 

The code that we used is available on Github, as described in the manuscript: “Gene coverage 
was plotted using CovFuzze (https://github.com/al-mcintyre/CovFuzze), which summarizes 
mean and standard deviation in coverage across available replicates” (lines 559-560). A 
CovFuzze plot is a variation on a coverage plot, a standard type of representation for sequencing 
data. This method has been through peer-review before and was published as part of Imam et al., 
2018 (11), to which we have now added a reference in the manuscript.  

8.    The authors declared that m6A peak overlapping in mRNAs from different studies is low. In 
fact, in Figure 1c, for HEK293T, HepG2 and mESC cell lines, the peak overlapping is relatively 
high. Moreover, studies from different groups all identified the standard m6A motif (RRACH) 
from their MeRIP/m6A-seq data, which well-justify the creditability of both the methods and 
results reported in different studies. It should be noted that the cell states (e.g. different stage of 
cell cycle), experimental conditions, and sequencing depth do influence the results leading to 
some different peaks in different studies. But this disparity among different studies objectively 
exists not only in MeRIP/m6A-seq but also in miCLIP, m6A-CLIP-seq, and ChIP-seq data. The 
authors should analyze the miCLIP and m6A-CLIP-seq data (also for m6A) and then compare 
the results with MeRIP/m6A-seq in order to estimate the reproducibility of these methods in 
different biological replicates and studies. For exploring the m6A change, it is highly 
recommended to first determine which experimental method is more suitable for this analysis. 

The peak overlap reached a median of only 45% (within HEK293T 35%, HepG2 57%, MEF 
25%, and mESC 53%). While not every data set does show enrichment of the m6A motif under 
peaks (see Ke et al., 2017 Supplementary Figure 8 (3)), we agree with the reviewer that, 
indeed, most do show such enrichment. However, the question we wished to answer here was 
whether different experiments detect the same m6A locations or mutually exclusive subsets of 
m6A sites. Based on the overlaps of often <50%, we find that the situation is closer to the latter: 
MeRIP-seq experiments detect different subsets of m6A sites. We have added clarification to the 
text: “With rare exceptions (e.g. that described by Ke et al., 2017 in their Supplementary Figure 
8 (3)), most MeRIP-seq data sets do show enrichment of the m6A motif DRAC. These results 
suggest, however, that multiple labs running MeRIP-seq on the same cell type will detect 
different subsets of m6A(m) sites” (lines 184-187). We also appreciate the reviewer’s clarity and 
have added the language suggested, “Possible contributing factors in the differences among 
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studies include cell state (e.g. different stages of the cell cycle), experimental conditions, and 
sequencing depth.” (lines 187-188). We note that ChIP-seq data presents a simpler problem for 
analysis, as it lacks the complexity added by differences in transcript abundance and isoform 
switching. Our analyses show that transcript expression variability is an important factor in 
analyzing MeRIP-seq data. 

Although miCLIP was published in 2015, only three years after MeRIP-seq, the vast majority of 
m6A studies still use MeRIP-seq only (summarized in Supplementary Table 1). To our 
knowledge, this includes all sequencing data sets used to suggest changes in m6A, with the 
exception of the heat shock data from Meyer the al., 2015 (shown in Figure 4), a data set from 
Zhang et al., 2018 on fear conditioning in mice, a data set looking at METTL3 knockdown from 
Vu et al., 2017, and the Ke et al., 2017 paper that examined differences among cell fractions but 
found no changes (3,12–14). There are several reasons why miCLIP is less widely used, 
including the complexity of the CLIP protocol and its lower sensitivity in the detection of m6A 
sites. Because our primary focus was testing statistical approaches for the detection of changes in 
m6A and reanalyzing the existing evidence for changes, we believe validation of a new analysis 
pipeline and re-analysis of the limited miCLIP data available is beyond the scope of the current 
paper.  

 
9.    In line 123-124, the authors provide erroneous conclusion of "m6A(m) presence does not 
decrease with expression level" that is contrast to all published papers. In fact, m6A promotes 
mRNA decay and directly reduces mRNA stability/expression level (Roundtree et al. Cell. 
2017;169(7):1187-200.; Geula et al. Science. 2015;347(6225):1002-6.). This incorrect 
conclusion may derive from the arbitrary cutoff to filter the peaks in their analysis, which should 
be avoided. 

We agree that, if anything, m6A increases at lower expression levels and have now added the 
additional Geula citation. Our point is that there is no known biological explanation for the 
decrease in m6A observed as transcript expression decreases (Figure 1a). Thus, we would expect 
this to be a technical artifact of the fact that peak calling is more difficult at lower expression 
levels. We have clarified the text to read: “Previous reports have suggested that m6A(m) presence 
does not decrease with lower mRNA expression level, and, if anything, is higher in mRNAs with 
lower expression as methylated transcripts tend to be less stable (15,16). Peak callers, however, 
identify fewer peaks in genes at low expression, which we therefore assume reflects inadequate 
coverage for peak calling” (lines 133-137). Supplementary Figure 4b shows the results of our 
reanalysis without the threshold for input read counts, which does not affect our conclusions. 

10.    In Supplementary Figure 4, the authors identified m6A changes (13 positive correlations 
VS 6 negative correlations) when confirming MeRIP/m6A-seq by MeRIP-RT-qPCR, which is 
contrast to the conclusions in the whole manuscript. This issue further hints that the software 
used for calling peaks and identifying m6A changes in their analyses are inappropriate.  

We are unclear on how the Supplementary Figure 5 (previously Supplementary Figure 4) 
contrasts with the conclusions of the manuscript. We do not conclude that m6A changes cannot 
be identified, but that the data has technical limitations and considerations. We note in the 
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discussion that our reanalysis of other papers suggests “meagre support for widespread changes 
in m6A across the transcriptome independent of changes in the expression of methylation 
machinery.”  

Supplementary Figure 5 expands on the comparison between MeRIP-seq and MeRIP-RT-
qPCR shown in Figure 5 for changes in m6A predicted in response to viral infection. The 
correlations are calculated based on slight differences with infection by three species of 
Flaviviridae, all compared to uninfected cells. The six negative correlations are not surprising 
because for the changes we were able to detect in MeRIP-seq data, all three viruses produced 
similar directions of change, and we would expect that biological and technical variability could 
contribute to negative correlations when comparing small differences among viruses. When 
summarizing across genes in Figure 5c, the positive correlation between changes in enrichment 
detected by MeRIP-seq and MeRIP-RT-qPCR is clear. For further discussion of these data, see 
Gokhale et al., 2019 (bioRxiv), our paper recently accepted in Molecular Cell (17).  

Minor comments: 
1.    The authors aligned m6A-seq reads to the genome instead of transcriptome, which will miss 
the reads spanning exon junctions and is incorrect for handling m6A-seq data. 

We agree that accounting for splice junctions in RNA data is important. As the Reviewer notes 
in the next comment, we aligned using STAR, which is an aligner designed for RNA-seq data 
that takes into account splice junctions. We have added this description to the methods (line 
478): “STAR, a splice-aware aligner for RNA-seq data.” For further information, please see 
https://doi.org/10.1093/bioinformatics/bts635 (18).  

2.    The authors should provide the parameters used for STAR aligner.  

We have added a description of the non-default parameters used and another link to the GitHub 
page with analysis scripts.  

3.    Given FTO is an m6A demethylase, the authors should analyze the FTO-KO data 
(GSE47216) in their pipelines and display the results in Fig 3a and Supplementary Figure 3b.  

We have now included this additional study, although as we note in the text, there is mixed 
evidence that FTO is an m6A demethylase (see also the recently published paper from Garcia-
Campos et al., 2019 (4)).  

4.    Ke et al. [Genes Dev 2017, 31(10):990-1006)] employed m6A-CLIP to identify m6A change 
in Mettl3 KO mES cells by calling peaks. The authors should use their pipeline to analyze the 
data (GSE86336) and display the results in Fig 3a and Supplementary Figure 3b. This data will 
help the authors to evaluate their pipelines and meanwhile enable biologists to compare the 
accuracy between m6A-CLIP and MeRIP/m6A-seq data. 

The benefit of miCLIP/m6A-CLIP, which follows a protocol similar to MeRIP-seq in terms of 
antibody enrichment of methylated fragments but introduces greater technical challenges with 
crosslinking, is increased resolution for the localization of m6A sites to single bases. Most 
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analyses of miCLIP/m6A-CLIP data involve the detection of crosslinking-induced mutations or 
truncations, rather than peaks alone. We therefore suggest that very different tools would be 
more appropriate for this type of analysis. We would further expect that, as the reviewer notes in 
their Comment 8, “disparity among different studies objectively exists not only in MeRIP/m6A-
seq but also in miCLIP, m6A-CLIP-seq and ChIP-seq data.” Using a single miCLIP data set for 
comparison could skew expectations, depending on the quality of that particular data set, and 
whether it was representative. All in all, miCLIP data requires further study, and we have 
updated the discussion to refer to Garcia-Campos et al., 2019, a paper that makes several 
interesting observations in the comparison of this technique to an endoribonuclease digestion-
based method for the analysis of m6A sites (4): “So far, comparison of this data to miCLIP 
suggests that despite poor overlap among miCLIP studies, most sites identified by miCLIP are 
true m6A sites, and that higher m6A:A ratios are associated with identification of a site in more 
studies2020-01-09 4:55:00 PM. However, Garcia-Campos et al. also suggest that antibody-based 
approaches may underestimate the number of m6A sites” (lines 427-431).   

5.    The authors did not provide any information about how they calculate the read counts for 
each peak. The tools used to calculate read counts for each peak should be described. 

We have added this description: “Reads aligned to peaks were counted using featureCounts from 
the Rsubread package (19)” (line 499). All of our code used in this analysis is also available on 
the DEQ GitHub page. 

6.    The authors only provided figures to display the number of peaks but didn't list the detailed 
peak information from different studies, which makes it difficult to reproduce and check the 
results. All peaks (BED12 or BED6 format) should be listed.  

We have added an Additional File 4 with the output files from DEQ, including the peak 
locations and p-values from DESeq2, edgeR, and QNB.  

7.    Different MeRIP/m6A-seq experiments were chemically fragmented into tags with different 
length. However, the authors did not provide any detailed information (e.g. shift size for each 
tag) when they call peaks using MACS and identify m6A changes using DESeq2, edgeR and 
QNB software. Moreover, the authors should use the length of fragment to calculate the coverage 
or read counts of each peaks/genes. 

Size shifts are not provided for many published studies; therefore, in some cases, we are not able 
to report that information. However, where estimated fragment lengths were reported (generally 
approximate means) or could be estimated from paired end data, we have added them to 
Supplementary Tables 2-5. For studies in which we were unable to find fragment length 
information, we estimated fragment length for the purposes of peak calling and read counting 
based on the median across studies (100 bases).  

8.    Detailed information about the methods and parameters used in the manuscript remains 
totally unclear. A whole pipeline should be provided and all source codes should be uploaded to 
Github. Moreover, all methods and parameters/ cutoff in the published studies should be listed 
and what parameters/cutoff is important should be discussed in this study.  
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The scripts are all uploaded to GitHub and publicly available, as noted above and as linked in the 
appropriate section of the text (“Availability of Data and Materials”). We have also updated our 
materials and methods section, and further summarize the information available on analysis in 
the methods sections of other studies in Supplementary Table 1.  
 
Reviewer #2:  

N6-methyladenosine is the most abundant internal mRNA modification. In 2012, two groups 
independently developed MeRIP-seq/m6A-seq and first mapped m6A methylome in the 
transcriptome wide manner. Since then, this method has been widely used to map m6A in 
different species, biological processes and stress conditions. And many studies have shown that 
m6A is dynamic regulated and plays important and diverse roles in these biological processes. In 
this study, the authors reanalyzed these published datasets and compared the tools used for 
statistical analysis by these studies and they claimed that fewer changes can be detected 
compared to the original reported sites and the detection reproducibility is limited between 
different studies. The problem of low reproducibility between different studies indeed occur in 
those technologies dependent on immunoprecipitation, however the authors just compared the 
existing statistical analysis tools and do not provide an effective solution to solve it. More data 
and bioinformatic analysis are needed to support their conclusions.  

We thank the reviewer for their comments noting the issues with technologies dependent on 
immunoprecipitation. These issues have not been deeply explored before for MeRIP-seq, as 
evidenced by the continued publication of studies that use few replicates and no or inappropriate 
statistical tests to draw conclusions that are poorly supported by the data and irreproducible 
between studies. To help with this, we have used many of the MeRIP-seq data sets published to 
date and created an open-source computational tool to conveniently run comparisons of peak 
enrichment (DEQ). Our overall pipeline for differential peak calling outlined in Figure 6 can 
provide guidance for future MeRIP-seq analyses.  

Specifically, 
1. To evaluate the changes of differentially methylated transcripts under stress conditions, the 
authors picked several transcripts and plotted the coverage of Input and IP under different 
conditions, and made a statement that the reproducibility of these studies is poor. However, it is 
not a proper way to evaluate the reproducibility of these methylation changes by picking several 
sites and plotting the coverages, as false positive sites exist in all high throughput sequencing 
methods. The authors should provide the false positive rate of these datasets, not just show some 
examples. 

Strikingly, we were unable to detect reproducible peak changes in any of these data sets except 
for four sites noted in the dsDNA response experiments, and we have added clarification to that 
effect: “Applying the same statistical approaches, we were likewise [similar to the KSHV 
comparison] unable to detect any shared peak changes between the studies of HIV infection, and 
there were insufficient replicates to compare heat shock studies (20–24). Thus, in our reanalysis 
of m6A changes in response to stimuli, we detected only four statistically reproducible peak 
changes, all in response to dsDNA” (lines 330-334). 
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Also, please see our response to Comments 3 and 5 from Reviewer #1. Unfortunately, we can’t 
calculate a false positive rate for a data set without knowing the ground truth (the differential 
m6A-status of any particular RNA site). Failure to replicate a peak change does not necessarily 
mean it is a false positive, as it could also indicate insufficient power or some other unanticipated 
source of variation (e.g. quality of the antibody or immunoprecipitation).  

2. To detect methylation changes between conditions, the authors compared several tools used 
for statistical analysis and found that tools that account for overdispersion are better. However, 
there are no improvements in this study, as these tools already exist. The authors should provide 
a new pipeline or optimize the parameters of these statistical analysis tools to robustly detect the 
methylation changes.  

The generalized linear model approaches we describe had not previously been applied to MeRIP-
seq data. We show here that they are reasonable methods for this analysis based on our 
evaluations of positive and negative control data sets. In general, we hope that our evaluations 
will prompt biologists to adopt better validated methods, as there is no consensus in the field on 
methods to analyze MeRIP-seq data. To facilitate this, we have implemented a pipeline in R to 
conveniently run the three tools we recommend and have added a link under “Availability of 
Data and Materials”: https://github.com/al-mcintyre/deq. 
 
3. The authors suggested that 6-9 replicates are needed to detect the consistent peak changes 
under different conditions. However, it is difficult to perform so many replicates, especially for 
these samples difficult to obtain. In addition, as the authors stated, more replicates can only 
increase the peak numbers but not the DRAC motif enrichment, indicating that more false 
positive sites will be included. Hence increasing the replicates number is not a good solution to 
ensure the detection consistence. 

We have updated the manuscript to clarify a difference here in terms of peak detection vs. peak 
change detection. The benefits of increased replicates to peak detection are, as the reviewer 
notes, indeed not related to motif enrichment, but Figure 5 shows the benefits to peak change 
detection. We appreciate that, especially for clinical samples, it is inconvenient to get so many 
replicates, but those who are planning experiments should be aware that only a small subset of 
peak changes may be detectable with fewer replicates. We have added a comparison to 
recommendations for RNA-seq studies, which, though the experiments are simpler, are in line 
with our own:  

“Schurch et al. (2016) and Conesa et al. (2016) produced similar recommendations for basic 
RNA-seq studies, finding that 6-12 replicates were necessary to detect most changes in gene 
expression and that changes of 1.25 were detectable 25% of the time with five replicates, rising 
to 44% with ten replicates, respectively. While our results broadly agree with these 
recommendations for RNA-seq, they also suggest that almost all published MeRIP-seq studies to 
date are underpowered” (lines 367-372). 
 
4. They analyzed the overlap of peaks among studies and claimed that peaks showed higher 
overlap within different cell types from the same study than within the same cell type from 
different studies. Conceptually, it makes no sense to compare the detected peaks among different 
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studies, as the choice of antibodies and IP conditions have a huge impact on peak detections. 
Therefore, researchers compared the samples in the same batch to identify the differentially 
methylated transcripts. In addition, the culture conditions and origins of the same cell line are 
different in different labs, which can influence the m6A methylome of the cells. Hence, the 
difference of the detected m6A peaks on the same cell type by different labs also indicates the 
m6A is dynamic regulated under different conditions. 

We checked for experimental factors that could have contributed to the differences in peak 
detection within cell types (see Supplementary Table 2 and lines 181-183), however we were 
not able to find a clear correlation with antibody choice or experimental protocols. Of course, we 
do not know the exact culture conditions and cell origins for each of the studies and cannot rule 
out these or other associated factors. However, we think that for any experiment in biology, the 
default assumption should be that the data will be replicable in other labs, and if it is not, the 
extent to which it varies is worth pointing out. Comparing experiments from different batches 
and labs can be confounded by many variables, but as discussed in our response to Reviewer 1, 
Figure 2a-b shows the extent to which m6A detection differs among experiments. Without 
further experiments, it is impossible to determine whether differences in detected m6A sites 
among studies are due to dynamic regulation under different conditions. Interestingly, tissues 
from the same study (Xiao et al., 2019) showed high peak overlap even though samples were 
taken from different fetuses and time points (new Figure 2c), suggesting that sample processing 
is a large component of the variation, rather than biological dynamics (9). 
 
5. The authors used the notion of variance explained incorrectly. It is R2 (variance) instead of R 
(correlation coefficient) that represent the variance explained. 

In our text, we did not use the term “variance explained.” We do take correlations and report the 
correlation coefficients, however, we don’t suggest that R represents the variance explained, and 
we have ensured this is clear in the updated manuscript as well. We appreciate the need for 
clarity on this point. 

 
Minor points, 
1. The authors stated that "the percent of peaks detected in one experiment that were also 
detected in a second varied among pairs of studies from as low as 2% of peaks to as high as 
90%". To describe the variance among studies, the median value should be shown not the 
maximal and minimal rate. 

While the median was previously included in the discussion, we have now added it to this 
section of the results as well: “as low as 2% of peaks to as high as 90% (median = 45%)” (line 
178), as suggested by the reviewer. We agree this is helpful for context of the peak overlaps. 
 
2. The authors used MeRIP-RT-qPCR assay to validate the peaks detected by MeRIP-seq. 
However, this method also relies on antibody immunoprecipitation and it can only exclude the 
possibilities of sequencing error or duplications. Hence, the orthogonal methods are still needed 
for validation. 
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Validation, in addition to reproducibility, remains an issue for the field in general. Unfortunately, 
methods available for validation are limited. Although we tried SCARLET for four sites, the 
protocol did not work for our sites of interest, either because the expression of these genes is too 
low (below the recommended FPKM of > 50) or because the oligos were not specific enough. A 
new endoribonuclease method for detecting m6A (Garcia-Campos et al., 2019 (4)) works only 
for ACA sites far enough from other ACA sites for amplification or sequencing (~16% of sites).  

However, we note that in the revised manuscript, we provide additional validation of peak 
detection to compare between peak-callers. We tested peaks detected by MeRIP-seq using 
MeRIP-RT-qPCR on RNA from cells in which the m6A methyltransferases METTL3 and 
METTL14 were depleted (Supplementary Fig 1b). We found that 4/4 peaks called by MACS2 
and a majority of those called by MeTPeak and MeTDiff showed reduced m6A enrichment in 
METTL3/14 depleted cells, which indicates that our MeRIP-seq analysis detects peaks that are 
dependent on METTL3/14 and likely true modifications.   
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Final responses received: 

 
Reviewer #1: The authors have tried to improve this manuscript, but they do not show advanced 
techniques and new experimental evidence to answer the existing question. 
 
Reviewer #2: In this revised version of their manuscript, the authors have performed some 
additional analysis and added some information to address the reviewer’s concerns. Indeed, the 
authors have raised a new pipeline for m6A peak calling, however the novelty of this study is 
limited as they used the existing analysis methods and just optimized the parameters. In addition, 
as the authors mentioned in the new Figure 2c, the experimental factors are dominant factors 
leading to the low overlap rate and optimization of bioinformatics analysis pipeline cannot 
effectively increase the reproducibility between different studies. Hence, the choice of 
bioinformatics pipeline is less important compared to the differences from experimental factors. 
Besides, using 6-9 replicates for one sample is difficult to achieve for most studies. Overall, I 
wonder whether the new pipeline can benefit future studies and this study may not meet the 
criteria of Genome Biology.    


