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ABSTRACT

The research of Alzheimer’s disease (AD) in their early stages and its progression till symptomatic onset12

is essential to understand the pathology and investigate new treatments. Animal models provide a helpful13

approach to this research, since they allow for controlled follow-up during the disease evolution. In this14

work, transgenic TgF344-AD rats were longitudinally evaluated starting at 6 months of age. Every 315

months, cognitive abilities were assessed by a memory-related task and magnetic resonance imaging16

(MRI) was acquired. Structural and functional brain networks were estimated and characterized by graph17

metrics to identify differences between the groups in connectivity, its evolution with age, and its influence18

on cognition. Structural networks of transgenic animals were altered since the earliest stage. Likewise,19

aging significantly affected network metrics in TgF344-AD, but not in the control group. In addition,20

while the structural brain network influenced cognitive outcome in transgenic animals, functional21

network impacted how control subjects performed. TgF344-AD brain network alterations were present22

from very early stages, difficult to identify in clinical research. Likewise, the characterization of aging in23

these animals, involving structural network reorganization and its effects on cognition, opens a window to24

evaluate new treatments for the disease.25
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AUTHOR SUMMARY

We have applied magnetic resonance image based connectomics to characterize TgF344-AD rats, a26

transgenic model of Alzheimer’s disease (AD). This represents a highly translational approach, what is27

essential to investigate potential treatments. TgF344-AD animals were evaluated from early to advanced28

ages to describe alterations in brain connectivity and how brain networks are affected by age. Results29

showed that aging had a bigger impact in the structural connectivity of the TgF344-AD than in control30

animals, and that changes in the structural network, already observed at early ages, significantly31

influenced cognitive outcome of transgenic animals. Alterations in connectivity were similar to the32

described in AD human studies, and complement them providing insights into earlier stages and a plot of33

AD effects throughout the whole life span.34

INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disease related to most cases of dementia in elderly35

population. Brain damage associated to AD starts decades before the symptomatic onset and clinical36

diagnose, which has led to consider AD as a continuum (Dubois et al., 2016; Jack et al., 2018). This fact37

makes the research of disease progression from very early stages a key point to understand AD and38

develop potential pharmacological treatments or other type of interventions. Consequently, it is essential39

the identification before the diagnose stage of cohorts of at-risk population to follow them up during40

years until AD symptoms appear. Recently, studies performed on AD risk population such as carriers of41

apolipoprotein E (APOE)-ε4 or rs405509 alleles have detected brain differences between these subjects42

and control subjects in elderly (Chen et al., 2015; Reiter et al., 2017; Shu et al., 2015) and middle age43

population (Cacciaglia et al., 2018; Habib et al., 2017; Mak et al., 2017; ten Kate et al., 2016). However,44

the identification of at-risk cohorts is challenging and the time required to follow-up them from45

middle-age to the eventual advanced phase of AD hinders the characterization of the disease progression46

in patient cohorts. In this sense, animal models provide a helpful approach to evaluate the development of47

AD from early to advanced stages (Do Carmo & Cuello, 2013; Galeano et al., 2014; Leon et al., 2010;48

Sabbagh, Kinney, & Cummings, 2013). These models allow the study of earlier stages of the disease, as49

well as the follow-up of the same subjects during the whole extent of the disease in a relatively short50
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period. An example of AD animal model are TgF344-AD rats. They progressively manifest most51

pathological hallmarks of the disease including amyloid plaques, tau pathology, oligomeric amyloid β52

(Aβ), neuronal loss and behavioral impairment (Cohen et al., 2013; Drummond & Wisniewski, 2017).53

Therefore, it is a very suitable model to evaluate AD progression during aging.54

Along with the choice of proper animal models, the use of replicable techniques in experimental and55

clinical research can improve translationality (Sabbagh et al., 2013). This is a crucial point given the high56

failure rates in the translation between preclinical and clinical trials reported in drug research for AD57

(Drummond & Wisniewski, 2017; Windisch, 2014). Neuroimaging techniques have been extensively58

used to identify alterations associated to the disease in a non-invasive way and can be applied in both59

animal and human cohorts (Sabbagh et al., 2013). In the search for AD biomarkers, magnetic resonance60

imaging (MRI) has represented a helpful technique to characterize in-vivo brain changes during AD61

progression (Jack et al., 2015), such as atrophy (Frisoni, Fox, Jack, Scheltens, & Thompson, 2010) or62

tissue changes (Weston, Simpson, Ryan, Ourselin, & Fox, 2015). In addition, MRI can be used to63

identify and describe structural and functional brain networks. For this reason it has been used to64

investigate and support the hypothesis of AD as a disconnection syndrome (Brier et al., 2014;65

Gomez-Ramirez & Wu, 2014; Palesi et al., 2016; Xie & He, 2012), suggesting that cognitive decline in66

AD is related to functional or structural disconnection between regions rather than localized changes in67

specific isolated brain areas. Thus, impairment in structural connectivity associated to AD has been68

described based on gray matter patterns evaluated in structural MRI or, mainly, based on the fiber tract69

estimations obtained from diffusion weighted MRI (Daianu et al., 2013; Fischer, Wolf, Scheurich, &70

Fellgiebel, 2015; Lo et al., 2010; Wee et al., 2011). Likewise, functional disconnection has been71

evaluated using resting-state functional MRI (rs-fMRI) and graph theory to estimate and quantify72

functional network (Brier et al., 2014; Sanz-Arigita et al., 2010; Supekar, Menon, Rubin, Musen, &73

Greicius, 2008); identifying resting-state networks using independent component analysis (Badhwar et74

al., 2017); or characterizing connectivity between a specific region and the rest of the brain (Gour et al.,75

2014). Indeed, alterations in structural and functional brain network properties have been described in76

TgF344-AD animals at early ages (5-6 months) (Muñoz-Moreno, Tudela, López-Gil, & Soria, 2018) as77

well as differences in functional connectivity of specific regions or networks at several time points from 678

to 18 months (Anckaerts et al., 2019; Tudela, Muñoz-Moreno, Sala-Llonch, López-Gil, & Soria, 2019).79
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Among the MRI-based studies of AD as a disconnection syndrome, graph theory metrics have become80

one of the most applied methods to investigate the organization at a global level of both structural81

(Daianu et al., 2013; Fischer et al., 2015; Lo et al., 2010; Muñoz-Moreno et al., 2018; Wee et al., 2011)82

and functional (Brier et al., 2014; Muñoz-Moreno et al., 2018; Sanz-Arigita et al., 2010; Supekar et al.,83

2008) brain networks. Graph metrics provide a quantitative description of different aspects of the84

network such as integration, segregation or strength, and they allow to perform similar and comparable85

analyses in structural and functional networks. Since global graph metrics quantify the whole brain86

structure, they are more sensitive to global reorganization of the networks rather than isolated alterations87

in individual connections (Rubinov & Sporns, 2010).88

Therefore, in the present study, we use graph theory to investigate how the disease progression affects89

both structural and functional brain networks and its effects in cognitive abilities. In this line, we90

evaluated how the connectivity impairments observed in young TgF344-AD animals in our previous91

work (Muñoz-Moreno et al., 2018) evolve during aging. Structural and functional MRI acquisitions were92

acquired every 3 months from 6 to 18 months of age in a cohort of TgF344-AD and control rats to93

perform a longitudinal analysis of brain connectivity. Cognitive skills were also evaluated every 3 months94

to test the impact of connectivity alterations in cognition. Hence, this work aims to contribute to the95

understanding of AD progression and its association with cognitive decline from the perspective of the96

disease as a disconnection syndrome.97

MATERIALS AND METHODS

Subjects98

The experiments were performed in a cohort of 18 male Fisher rats including TgF344-AD animals99

(Cohen et al., 2013) and their wild-type littermates, which were evaluated at 5 time points. Table 1 shows100

the details on the resulting sample size and average age per time point after MRI experiments.101

The animals were housed in cages under controlled temperature (21 ± 1°C) and humidity (55 ± 10%)105

with a 12-hour light/12-hour dark cycle. Food and water were available ad libitum during all the106

experiment, except during behavioral test periods as explained below. At 2 months of age, animals start a107

cognitive training to perform delay non-matched sample (DNMS) task. Once the learning criteria was108

achieved, their performance in DNMS was evaluated and the first MRI scan was acquired. Afterwards,109
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Table 1. Sample size and age (median ± interquartile range) at each of the 5 acquisitions. Sample size in time point 1 is different in the structural and

functional analysis (*corresponds to the number of rs-fMRI acquisitions). Variability in the age of acquisition at the first time point is due to differences in the

cognitive training duration. Age difference between the groups was not significant.

102

103

104

Control TgF344-AD

N Age (months) N Age(months)

Time point 1 8/5* 5.33±0.3 8/7* 6.33±1.22

Time point 2 9 9.2±0.5 8 8.67±0.2

Time point 3 7 11.3±0.22 9 11.3±0.03

Time point 4 8 14.9±0.425 9 14.87±0.03

Time point 5 8 17.92±0.52 6 18.03±0.62

two weeks of DNMS sessions followed by MRI acquisition were repeated every three months resulting in110

five evaluated time points.111

Cognitive function evaluation112

Every three months, working memory was evaluated by DNMS test, following the procedure described in113

Muñoz-Moreno et al. (2018). DNMS was carried out in isolated operant chambers (Med Associates,114

USA), equipped with a pellet dispenser and three retractable levers, two of them in the wall where the115

pellet is (right and left levers) and the other in the opposite side (center lever). During the testing weeks,116

rats were food-deprived, receiving 75% of the usual food intake. In brief, DNMS requires the animal to117

press the levers following a specific sequence to obtain a pellet. First, in the sample phase, right or left118

lever appeared and after the animal pressed it, a delay randomly timed between 1 and 30 seconds started,119

after which the center lever appeared. When the animal pressed it both right and left levers were extended120

again. Correct response required a press on the lever opposite to the presented in the sample phase. Each121

DNMS session finished after 90 minutes or when 90 trials were completed. The number of trials and122

percentage of correct responses were recorded.123

Before the first test, animals underwent a habituation and training phase to acquire the required skills.124

This phase started when the animals were two months old and finished when they achieved an acquisition125
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criteria as explained in Muñoz-Moreno et al. (2018). After that, animals underwent 15 DNMS sessions126

(five sessions per week) to evaluate and consolidate the learnt task. At each of the following four time127

points, animals performed 10 DNMS sessions (two weeks).128

Magnetic Resonance Imaging129

MRI acquisitions were performed on a 7.0T BioSpec 70/30 horizontal animal scanner (Bruker BioSpin,130

Ettlingen, Germany). Animals were placed in the supine position in a Plexiglas holder with a nose cone131

for administering anesthetic gases (1.5% isoflurane in a mixture of 30% O2 and 70% CO) and were fixed132

using tooth and ear bars and adhesive tape. The rat received a 0.5 ml bolus of medetomidine (0.05 mg/kg;133

s.c.) and a catheter was implanted in its back for continuous perfusion of medetomidine. Isoflurane was134

gradually decreased until 0% and 15 minutes after the bolus the medetomidine perfusion (0.05 mg/kg;135

s.c.) started at rate 1 ml/hour. The acquisition protocol included:136

T2-weighted images, acquired using a RARE sequence with effective echo time TE = 35.3 ms,137

repetition time TR = 6000 ms and RARE factor = 8, voxel size = 0.12×0.12 mm2, 40 slices, slice138

thickness = 0.8 mm and field of view FoV = 30×30×32 mm3.139

T1-weighted images, acquired using an MDEFT protocol with TE = 2 ms, TR = 4000 ms, voxel140

size = 0.14×0.14×0.5 mm3 and FoV=35×35×18 mm3.141

Diffusion weighted images (DWI) using a spin-echo EPI sequence with TE = 24.86 ms,142

TR = 15000 ms, four segments, 60 gradient directions with b-value = 1000 s/mm2 and five volumes143

with b-value = 0 s/mm2; voxel size = 0.31×0.31×0.31 mm3 and FoV = 22.23×22.23×18.54 mm3.144

rs-fMRI using a gradient echo T2* acquisition, with the following parameters: TE = 10.75 ms,145

TR = 2000 ms, 600 volumes (20 minutes), voxel size = 0.4×0.4×0.6 mm3, FoV = 25.6 × 25.6 ×146

20.4 mm3. rs-fMRI acquisition is scheduled after anatomical and diffusion MRI to ensure that147

isoflurane dose has been removed and the animals are sedated only by medetomidine.148

To illustrate the acquisition quality, Supplementary Figure 1 shows a series of slices of colored149

fractional anisotropy computed in a randomly selected subject of the cohort; and Supplementary Figure 2150

displays a selection of functional networks extracted from the whole cohort using independent151

component analysis (ICA).152
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Image processing and connectome definition153

The acquired images were processed to obtain the structural and functional connectomes following the154

methodology described in Muñoz-Moreno et al. (2018). Briefly, a rat brain atlas was registered to the155

T2-weighted images to obtain brain masks and region parcellations (Schwarz et al., 2006). T1-weighted156

images were used to segment the brain into white matter (WM), gray matter (GM) and cerebrospinal157

fluid (CSF) based on tissue probability maps registered from an atlas (Valdés-Hernández et al., 2011) to158

each subject brain. Parcellation and segmentation were registered from T2/T1-weighted volumes to DWI159

and rs-fMRI spaces to define the regions between which connectivity was assessed.160

Fiber tract trajectories were estimated from DWI volumes using deterministic tractography based on161

constrained spherical deconvolution model, considering WM voxels as seed points. Dipy was used to162

process DWI volumes and estimate the fiber tracts (Garyfallidis et al., 2014). The resulting number of163

streamlines generated per subject are of the order of 105 (6.18·105± 0.67·105). As defined in164

Muñoz-Moreno et al. (2018), the structural connectome included 76 regions. Connection between two165

regions was defined if at least one streamline started in one region and ended in the other. The resulting166

structural connectomes have an average density of 62.22±2.78. Three connectomes were considered167

according to the connection weight definition:168

Fractional anisotropy (FA) weighted connectome (FA-w): The connection weight between two169

regions is defined as the average FA in the streamlines connecting them.170

Fiber density (FD) weighted connectome (FD-w): The connection weight between two regions is171

computed as the number of streamlines normalized by the region volumes and the streamline length172

(Muñoz-Moreno et al., 2018).173

Structural binary connectome: connection weight is 1 between connected regions and zero174

otherwise.175

rs-fMRI was processed to obtain the average time series in the GM voxels of each of the regions of176

interest. Preprocessing includes slice timing, motion correction by spatial realignment using SPM8, and177

correction of EPI distortion by elastic registration to the T2-weighted volume using ANTs (Avants,178

Epstein, Grossman, & Gee, 2008). Afterwards, NiTime (http://nipy.org/nitime/) was used for z-score179

normalization and detrending of the time series, smoothing with an FWHM of 1.2 mm, frequency180
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filtering between 0.01 and 0.1 Hz, and regression by motion parameters and WM and CSF average181

signals. Since brain activity identified by rs-fMRI has been constrained to GM (Power, Plitt, Laumann, &182

Martin, 2017), only regions comprising GM tissue were considered as nodes in the functional183

connectome (54 regions). Both weighted and binary functional connectomes were defined. The184

connection weight was the partial correlation between the pair of regional time series, transformed by185

Fisher’s z-transformation. Negative correlation coefficients were excluded since the proposed analysis is186

based on graph theory metrics that are not defined for signed edges (Fornito, Zalesky, & Breakspear,187

2013). All the connections with positive weight (z > 0) were considered. Binary functional connectome188

was defined setting to one connections were z > 0 and zero otherwise. The resulting functional189

connectomes have an average density of 27.72±0.53.190

Brain network analysis191

Brain network organization was described using graph theory metrics, including degree, strength,192

clustering coefficient and local and global efficiency. These metrics provide a description of different193

aspects of brain networks at a global level: network density, integration and segregation (Rubinov &194

Sporns, 2010).195

Nodal degree measures the number of connections of a region. Nodal strength is computed as the sum196

of the region connection weights. Network degree and strength are respectively the nodal degree and197

strength averaged in all the brain regions. Higher network degree/strength indicates more or stronger198

connections. Global efficiency measures network integration: the ability to combine information from199

different regions. It is inversely related with the shortest path length between each pair of nodes. Higher200

global efficiency characterizes stronger and faster communication through the network. Network201

segregation, the ability for specialized processing within densely interconnected groups of regions, was202

quantified by local efficiency and clustering coefficient. Local efficiency is the average in the whole203

network of the nodal efficiencies (efficiency of the subnetwork associated to a region). Clustering204

coefficient is the average of the nodal clustering coefficients, which measure the number of neighbors of205

a node that are also neighbors with each other. High values of these metrics are related to highly206

segregated and connected networks. In this way, alterations in the whole-brain organization were207

evaluated using the same kind of measures in both structural and functional connectomes. Nonetheless,208
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the interpretation of these parameters must take into account the specific kind of connectome and the209

definition of the connection weights. On the other hand, these metrics have been commonly used in210

human studies of AD (Brier et al., 2014; Daianu et al., 2013; Fischer et al., 2015; Sanz-Arigita et al.,211

2010), and therefore, can provide comparable and translational results.212

Statistics. Longitudinal models.213

The main objective of our study was the research of alterations in the longitudinal evolution of the214

TgF344-AD brain networks with respect to the control group and its impact on cognition. Linear mixed215

effects (LME) models (Oberg & Mahoney, 2007) were used to model the influence of age and group in216

the network metrics and to identify differences in the effect of aging between the two groups. LME217

models include both fixed effect (parameters common to an entire population such as age or group) and218

random effects (subject-specific parameters modeling the subject deviation from the population).219

LME was defined to regress each of the network metrics including group, age and the interaction

between them as independent variables:

ys = β0 + β1 · group+ β2 · age+ β3 · group · age+ β4,s + ξ, s = 1, ..., S (1)

where ys is the network metric in the subject s at a given age, s represents each of the S subjects, β0 is220

the global intercept, β1, β2, β3 the fixed effect parameters, assessing the influence of group, age and221

interaction respectively, and β4,s the subject specific correction. ξ is the regression error term.222

Multiple comparisons were corrected using false discovery rate (FDR) (Benjamin & Hochberg, 1995).

The effects of group, age or interaction between age and group were considered significant if the

corrected p-value (pFDR) was less than 0.05. When the interaction was significant, control and transgenic

groups were modeled separately to evaluate the age effect in each group:

ysCTR
= β0,CTR + β1,CTR · age+ β2,sCTR

+ ξCTR, sCTR = 1, ..., SCTR

ysTG
= β0,TG + β1,TG · age+ β2,sTG

+ ξTG, sTG = 1, ..., STG

(2)

To complement the longitudinal analysis, differences in brain networks at each of the five acquisition223

time points were evaluated. Kruskal-Wallis tests were applied to identify statistically significant224

differences between whole-brain organization in transgenic and control groups. Multiple comparisons225
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were corrected using FDR (Benjamin & Hochberg, 1995). Together with this, Network-Based Statistics226

(NBS) toolbox (Zalesky, Fornito, & Bullmore, 2010) was used to identify specific networks of227

connections which differ between transgenic and control animals. NBS was performed with the228

following settings: t-test with a threshold of 3.1, 5000 permutations and a significance level of p < 0.05.229

Finally, the relationship between connectivity and cognitive performance was evaluated fitting an LME

model to test if such relation is significant and if it differs between the groups:

DNMSs = β0+ β1 · connectivity+ β2 · group+ β3 · connectivity · group+ β4,s+ ξ, s = 1, ..., S (3)

where DNMSs represents the result in the DNMS task (number of trials and percentage of correct230

responses) and connectivity refers to each of the network metrics. Thus, the relationship between231

cognitive outcome and each of the network parameters was evaluated. Multiple comparisons were232

corrected by FDR (Benjamin & Hochberg, 1995). When interaction was significant (pFDR < 0.05), the233

model was fitted separately to transgenic and control groups to test the significance of the relationship234

between the network metric and the cognitive outcome in each group.235

RESULTS

Longitudinal analysis236

Linear mixed effects (LME) model was fitted to regress each of the network metrics and to evaluate237

significant effects of age, group or their interaction. Results are shown in Figure 1, where the whole238

distribution of data is shown (each point represents a time-point / subject), as well as the fitting of the239

LME model as a function of group and age. If a significant effect of the interaction between age and240

group was detected, the model was adjusted to each of the groups independently to fit the network metric241

as a function of age. Significant pFDR values of each of the terms in the model (group, age and group-age242

interaction) are displayed in Figure 1. Supplementary Table 1 compiles pFDR values and effect sizes243

(Cohen’s f 2) for the parameters of the LME model fitted to the whole cohort, and Supplementary Table 2244

shows pFDR values and effect sizes (Cohen’s f 2, R2) of the model adjusted to each of the groups.245

In FA-w connectome, group effect was significant in strength and clustering coefficient, but not252

significant interaction between group and age was detected. Both FA-w strength and clustering were253
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clearly decreased in the transgenic group. A significant increase of FA-w strength with age was observed,254

with a more notable slope in the case of transgenic animals.255

The interaction between group and age was significant in FD-w strength, local efficiency and clustering256

coefficient. In all these cases, an increase with age in the transgenic group - significant in strength and257

clustering coefficient- was detected, opposite to the non-significant decrease observed in controls.258

Similar behavior was observed in the binary connectome, where significant age-group interaction was259

observed in all the network metrics, which were significantly affected by age in the transgenic group.260

No significant effects of age, group or interaction were detected neither in functional connectivity nor261

in cognitive performance.262

Group differences by time points263

Figure 2 shows the distribution of network metrics between groups at each of the five acquisition time264

points, and the statistically significant differences. Significance was considered as pFDR < 0.05. Only265

structural network metrics are shown, since no differences were found in functional connectomes.266

Supplementary Table 3 shows the pFDR values and effect sizes (η2) of both structural and functional267

connectomes.268

Most differences were observed at the earliest time point where FA-w and binary structural network271

metrics were significantly decreased in the transgenic group with respect to controls. Regarding the272

FD-w connectome, while a tendency to decreased values were observed in the transgenic group with273

respect to controls at the first time point, a significant increase was detected in strength, local efficiency274

and clustering coefficient at 15 months of age.275

No significant differences were found in the functional network metrics.276

Together with graph metrics we evaluate differences in network edges. Figure 3 shows the group277

average FA-w and functional weighted connectomes considering only the strongest connections278

(FA-w> 0.3 and z > 0.05, respectively) to provide an illustrative plot of the brain networks. Stronger and279

denser FA-w connections are observed in the control group in comparison with transgenic, especially in280

the last time point, although network metrics were not significantly different. A decrease in the281

connection strength with time in the transgenic brain can also be observed. Regarding the functional282
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connectome it can be seen that at 18 months of age, z > 0.05 connections in the TgF344-AD brain are283

less and weaker. In previous time points connectivity is similar between both groups, and even higher284

strength in specific links can be observed in the transgenic brain.285

To statistically identify differences in the network edges, NBS was applied. Resulting networks are289

shown in Figure 4. Differences were detected at 8 months of age (time point 2) in a subnetwork of the290

FD-w connectome (increased in transgenic animals) and at 15 months of age (time point 4) in FA-w and291

functional connectomes. While the subnetwork identified in the FA-w connectome was decreased in292

transgenic animals, subnetworks in the functional network were increased in this group. The list of293

regions between which connectivity was altered is shown in Supplementary Material.294

Relationship between connectivity and cognition299

The effect of connectivity in cognitive results and if this effect was different in transgenic and control300

animals was evaluated using LME models.301

Although no significant differences were observed in cognitive outcome between groups (see302

Supplementary Figure 3), it can be noted that: a) transgenic animals performed lower number of trials303

than control animals at the first time point and b) there is a high variability in the results of the transgenic304

group at the last time point, when the performance of some of the animals sharply falls. Besides, brain305

network organization had a significant impact on the cognitive results.306

The interaction between FA-w strength and group had a significant effect in DNMS results307

(pinter = 0.0223). Considering the group specific model, this metric had a significant influence in the308

number of trials performed by the transgenic animals (ptg = 0.0018), but not in controls. Group and309

metric shown also a significant effect in cognitive outcome (pgroup = 0.0203 and pmetric = 0.0006,310

respectively).311

Similar results were observed considering any of the FD-w metrics (strength: pgroup = 0.0098,312

pmetric = 0.0007, pinter = 0.0016; local efficiency: pgroup = 0.0098, pmetric = 0.0005, pinter = 0.0167;313

clustering coefficient: pgrous = 0.0051, pmetric = 1.97 · 10−5, pinter = 0.0065) or binary metrics (degree:314

pgroup = 0.0051, pmetric = 1.6 · 10−5, pinter = 0.0065; global efficiency: pgroup = 0.0051,315

pmetric = 1.6 · 10−5, pinter = 0.0065; local efficiency: pgroup = 0.0098; pmetric = 4.4 · 10−6,316
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pinter = 0.0064; clustering coefficient: pgroup = 0.0098, pmetric = 4.4 · 10−6, pinter = 0.0064), except for317

FD-w global efficiency (pgroup = 0.0051, pmetric = 0.0035), where the interaction between group and318

metric was not significant. In all the cases, the higher the FD-w or structural binary network metrics, the319

more trials the transgenic animal performed (FD-w strength, ptg = 0.0019; local efficiency, ptg = 0.0014;320

clustering coefficient, ptg = 6.54 · 10−5 and binary degree, ptg = 5.29 · 10−5; global efficiency,321

ptg = 5.29 · 10−5; local efficiency, ptg = 1.26 · 10−5; clustering coefficient ptg = 1.26 · 10−5). All the322

reported p-values are FDR corrected. Figure 5 shows FA-w, FD-w strength and structural degree (results323

are similar in all the mentioned metrics). More details are provided in Supplementary Tables 4 and 5.324

As shown in Figure 5, the number of trials was significantly influenced by the interaction between328

group and functional weighted strength (pinter = 0.0150), global efficiency (pinter = 0.0180) and local329

efficiency (pinter = 0.0167). When specific group models were considered, the effect of functional330

strength in the cognitive performance was significant in the control animals (pctr = 0.0489), but not in the331

transgenic cohort.332

DISCUSSION

There is a growing interest in the study of early stages of AD and its progression until symptomatic onset,333

since brain changes start decades before the clinical diagnosis (Dubois et al., 2016; Jack et al., 2018). To334

contribute to the understanding of these early brain changes and their progression during aging, the335

present study focuses on an animal model of the disease and describes the longitudinal evolution of336

structural and functional brain network organization from very early stages. Although recent studies have337

evaluated connectivity in population at risk of AD or in its preclinical phases in human cohorts (Berlot,338

Metzler-Baddeley, Ikram, Jones, & O’Sullivan, 2016; Farrar et al., 2017; Pereira et al., 2017), they339

focused on elderly or middle-aged subjects and in case of longitudinal analysis only short periods of time340

with respect to human life span have been evaluated. In the present study, the use of TgF344-AD rats341

allows the investigation of earlier alterations and to follow-up subjects during all their life span.342

Therefore, it can provide new insights into the disease progression and be helpful in the investigation of343

treatments and interventions.344

Our results show differences between transgenic and control groups in the progression of the structural345

connectivity during aging. Alterations in the structural brain network of population at risk of AD or in its346
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preclinical phases in human cohorts of elderly or middle-aged subjects have been reported (Berlot et al.,347

2016; Chen et al., 2015; Farrar et al., 2017; Fischer et al., 2015; Pereira et al., 2017; Shu et al., 2015;348

Zhao et al., 2017), which are in line with the differences we have observed in TgF344-AD animals at349

equivalent ages (15 months). Furthermore, earlier alterations were observed in the animal model:350

structural connectivity differences were already present in young animals (six months of age). Together351

with this, differences in the evolution of the structural metrics were detected. While aging had no352

significant effect in the evolution of network metrics in the control group, it significantly affected metrics353

in the transgenic animals. In this group, network metrics increased linearly with age, but a decrease in the354

metric values at the last time point can be observed in Figure 1 and 2, although LME could not fit this355

change of trend. In spite of this global increment with age, FA-w network metrics in transgenic animals356

remain always lower than in controls, in line with which has been observed in preclinical or clinical357

phases of AD in aged patients (Chen et al., 2015; Pereira et al., 2017; Shu et al., 2015). Binary and FD-w358

metrics also increased significantly in transgenic animals during aging, but they were decreased with359

respect to controls only at early ages. Indeed, FD-w was increased in transgenic animals at 8 and 15360

months. This could be related with the hyperconnectivity effect described after brain injury and in361

preclinical phases of AD (Hillary & Grafman, 2017), explained as a mechanism to preserve362

communication in the network and minimize the behavioral deficits. Although hyperconnectivity has363

been mainly identified in functional networks, higher binary structural network properties were also364

described in APOE ε4 carriers before mild cognitive impairment (MCI) appears (Ma et al., 2017). Thus,365

to compensate the lower FA-w strength in the network, more connections would be established to366

preserve behavioral performance. In this line, the increase in FA-w network metrics with age observed in367

transgenic animals is probably related to the presence of more connections rather than to FA increase in368

the brain. The results obtained with NBS also points to this line. They showed hyperconnectivity in369

subnetworks of functional and FD-w connectomes, while decreased connectivity was observed in a370

subnetwork of the FA-w connectome. Namely, hyperconnectivity was detected in networks related with371

the processing of sensory inputs in both functional and FD-w connectome. The altered connections372

observed in the FD-w network are part of the limbic system and are responsible for the processing of373

different sensory inputs required to link emotions and memories. This could try to compensate the374

decrease observed in FA-w connectome in networks related to memory processing and executive375

functions.376
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Impairments in functional connectivity have been described in at risk, preclinical or clinical AD377

cohorts, but depending on methodological issues or cohort selection differences have been reported in378

opposed senses (Phillips, McGlaughlin, Ruth, Jager, & Soldan, 2015). Likewise, in the studied animal379

model, TgF344-AD, differences in connectivity between specific regions or networks have been reported380

(Anckaerts et al., 2019; Tudela et al., 2019) at several ages. In the present work, we focused on the381

analysis of brain network globally instead of evaluation of specific connections. From this point of view,382

the whole-brain network metrics describing integration and segregation of the functional connectomes383

did not significantly differ between control and transgenic groups. This could be related to three factors.384

First, the hyperconnectivity effect previously mentioned (Hillary & Grafman, 2017) between specific385

regions or networks to compensate damaged connections (hypo-connectivity). This effect has been386

described, for instance, in young APOE ε4 carriers (Ma et al., 2017) or amnestic MCI patients (Kim et387

al., 2015). Since global network metrics involve averaging properties of all the connections (Rubinov &388

Sporns, 2010), decreased connections could be compensated by increased connections (such as the389

detected by NBS at 15 months of age), resulting in similar values of the global network metrics, as390

observed in our study. Second, the training and the repetition of the cognitive task could lead to a391

learning effect, increasing the cognitive reserve of these animals and therefore preserving the functional392

connectivity. Higher functional connectivity has been related with higher cognitive reserve in both393

healthy elders (Arenaza-Urquijo et al., 2013) and MCI patients (Franzmeier et al., 2017) with respect to394

subjects with low cognitive reserve. This fact could also be related with the absence of significant395

differences in the cognitive outcome. Nevertheless, further investigation on animals not undergoing396

DNMS should be performed to confirm this hypothesis. Finally, the third factor that could influence the397

absence of functional connectivity differences could be the disease timing. Brain changes as amyloid-β398

concentration and neural loss in TgF344-AD have been described from 16 months of age in Cohen et al.399

(2013) and significant cognitive impairment is mainly described from 15 months (Cohen et al., 2013;400

Tsai et al., 2014) although tendencies to impairment or differences in anxiety or learning abilities have401

been reported at earlier stages (Cohen et al., 2013; Muñoz-Moreno et al., 2018; Pentkowski et al., 2018).402

Actually, an increase in variability of the cognitive outcome was observed at 18 months of age, when403

some of the transgenic animals performed much worse than at previous ages. This suggests that the404

symptomatic onset occurs around 18 months of age, and before this age, functional connectivity might405

compensate the structural network damage resulting in similar functional network metrics than in control406
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animals. The observed significant relation between structural network metrics and cognitive performance407

could be related with the ability of functional connectivity to cope with the structural disconnection408

preserving cognition, until a breakpoint when it is not able to deal with extensive structural network409

damage. This relationship between structural connectivity and cognition has been also described in MCI410

subjects (Berlot et al., 2016; Farrar et al., 2017) and in cognitive normal individuals harboring amyloid411

pathology and neurodegeneration (Pereira et al., 2017), while no correlation was observed in control412

subjects. Coherently, structural connectivity did not correlate with DNMS in our control cohort, where413

correlation between DNMS and functional connectivity was observed.414

Strengths and limitations415

The use of MRI-based connectomics to longitudinally analyse the brain network in an animal model of416

AD provides a valuable and highly translational approach to the research on the mechanism of the417

disease progression, since the applied methodology can be easily translated to clinical investigation.418

Besides, animal models allows for characterization and follow-up of the same cohort from early stages419

until advanced phases of the disease. Indeed, the model used in our experiments, the Tg344-AD rats, has420

been shown to develop all the AD pathological hallmarks in a progressive manner, which makes it421

especially suitable for longitudinal evaluation.422

The use of graph metrics allows for comparison between alterations observed in the animal model and423

previous results in human cohorts in literature. This is essential to validate how the animal model mimics424

the pathology in patients. It is also a critical point to allow translationality between preclinical and425

clinical trials in the research for AD treatments (Drummond & Wisniewski, 2017; Sabbagh et al., 2013).426

Our results are coherent with those observed in elderly or middle-aged human cohorts, and provide427

further information about earlier brain alterations and the pattern of disconnection associated with AD428

progression. Furthermore, the use of a rat model allows for better behavioral characterization than other429

animal models (Do Carmo & Cuello, 2013). This makes possible to perform cognitive evaluation of430

memory related functions and relate animal performance with brain connectivity. Our results revealed431

that the influence of brain network organization in cognitive abilities differs between transgenic and432

control animals.433
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Regarding the limitations of the study, the relatively small number of subjects could limit the statistical434

analysis. However, the measures were repeated at 5 time points, which increases the sample size435

evaluated by the longitudinal models to 80 observations. Note that our main results are based on models436

fitted to all these observations. Small sample could have a bigger impact on the complementary analysis437

at specific time points, but even with this limitation significant differences between the groups were438

detected after multiple comparison correction. These differences were coherent with previous findings439

observed in bigger cohorts from human population. Nevertheless, the small sample size could hamper the440

statistical analysis and be related, for instance, with the lack of significant differences at the last time441

point.442

MRI protocols were optimized to achieve a compromise between sensitivity, image quality and443

acquisition time. After optimization, TE of the gradient-echo BOLD acquisition was set to 10.75 ms.444

Although it is slightly shorter than common echo-times used to sensitize images to BOLD variations, the445

analysis of the resulting BOLD signal showed patterns of connectivity consistent with previous446

knowledge, as shown in Supplementary Figure 2. Resting-state acquisitions were acquired using447

medetomidine as sedation, which was considered to preserve connectivity networks better than isoflurane448

anesthesia (Kalthoff, Po, Wiedermann, & Hoehn, 2013). However, recent studies have thoroughly449

investigated the effect of anesthesia in brain function during resting-state, and suggested that the use of450

only medetomidine could hinder brain function which has been observed in awake animals. These new451

findings should be taken into account in new experimental protocols, and could lead to additional452

conclusions that complement our analysis.453

On the other hand, we would like to mention that all animals in the study repeated the DNMS task454

every three months, which allows for evaluation of cognitive skills. Results point to a learning effect and455

increase in cognitive reserve due to such repetition. However, further experiments including animals456

which do not perform DNMS should be carried out for a more thorough evaluation of such an effect.457

Finally, the last time point evaluated in our study was 18 months of age. Brain changes and cognitive458

impairment in the TgF344-AD have been described mainly from 15 months of age, what, as previously459

discussed, could be related with the absence of differences in cognition or functional connectivity.460

Therefore, further investigation describing connectivity at later time points would be of great interest to461

characterize more advanced stages of the disease.462
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CONCLUSIONS

Aging had more notable impact on the structural connectivity of the TgF344-AD rats, which is altered463

from early ages, than in control animals. Besides, differences in anatomical networks directly affected464

the cognitive outcome of the transgenic animals, even before the symptomatic onset. These findings are465

in line with results observed in middle-aged or elderly human population at risk of AD, and complement466

them with insights into earlier stages and a plot of the effects of the disease along the whole life span.467

The results support the idea of AD as a disconnection syndrome and AD as a continuum, suggesting that468

brain damage is already present at early stages, long before the symptomatic onset.469

The impact of the altered anatomical connectivity in cognitive skills could be moderated by functional470

network reorganization until advanced stages of the disease. This suggests the relevance of cognitive471

reserve to prevent or mitigate the symptomatic onset in subjects affected by the disease. TgF344-AD472

model could therefore be a convenient model to perform translational research of the impact of cognitive473

interventions in AD.474
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Muñoz-Moreno, E., Tudela, R., López-Gil, X., & Soria, G. (2018). Early brain connectivity alterations and cognitive573

impairment in a rat model of Alzheimer’s disease. Alzheimer’s Research & Therapy, 10, 16.574

Oberg, A. L., & Mahoney, D. W. (2007). Linear mixed effects models. In Methods in molecular biology: Topics in575

biostatistics (Vol. 404, pp. 213–234). Humana Press Inc., Totowa, NJ.576

Palesi, F., Castellazzi, G., Casiraghi, L., Sinforiani, E., Vitali, P., Wheeler-Kingshott, C. A. G., & Angelo, E. D. (2016).577

Exploring patterns of alteration in Alzheimer’s disease brain networks: a combined structural and functional578

connectomics analysis. Frontiers in Neuroscience, 10, 380.579

Pentkowski, N. S., Berkowitz, L. E., Thompson, S. M., Drake, E. N., Olguin, C. R., & Clark, B. J. (2018). Anxiety-like580

behavior as an early endophenotype in the TgF344-AD rat model of Alzheimer’s disease. Neurobiology of Aging, 61,581

169–176.582

Pereira, J. B., van Westen, D., Stomrud, E., Strandberg, T. O., Volpe, G., Westman, E., & Hansson, O. (2017). Abnormal583

structural brain connectome in individuals with preclinical Alzheimer’s disease. Cerebral Cortex, 28(10), 3638–3649.584

Phillips, D. J., McGlaughlin, A., Ruth, D., Jager, L. R., & Soldan, A. (2015). Graph theoretic analysis of structural585

connectivity across the spectrum of Alzheimer’s disease: The importance of graph creation methods. NeuroImage:586

Clinical, 7, 377–390.587

Power, J. D., Plitt, M., Laumann, T. O., & Martin, A. (2017). Sources and implications of whole-brain fMRI signals in588

humans. NeuroImage, 146, 609–625.589

Reiter, K., Nielson, K. A., Durgerian, S., Woodard, J. L., Smith, J. C., Seidenberg, M., . . . Rao, S. M. (2017). Five-Year590

longitudinal brain volume change in healthy elders at genetic risk for Alzheimer’s disease. Journal of Alzheimer’s591

23

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 10, 2020. ; https://doi.org/10.1101/690180doi: bioRxiv preprint 

https://doi.org/10.1101/690180


Disease, 55(4), 1363 – 1377.592

Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: uses and interpretations. NeuroImage,593

52(3), 1059–1069.594

Sabbagh, J. J., Kinney, J. W., & Cummings, J. L. (2013). Alzheimer’s disease biomarkers in animal models: closing the595

translational gap. American journal of neurodegenerative disease, 2(2), 108–120.596

Sanz-Arigita, E. J., Schoonheim, M. M., Damoiseaux, J. S., Rombouts, S. A. R. B., Maris, E., Barkhof, F., . . . Stam, C. J.597

(2010). Loss of ’small-world’ networks in Alzheimer’s disease: graph analysis of fMRI resting-state functional598

connectivity. PLoS ONE, 5(11), e13788.599

Schwarz, A. J., Danckaert, A., Reese, T., Gozzi, A., Paxinos, G., Watson, C., . . . Bifone, A. (2006). A stereotaxic MRI600

template set for the rat brain with tissue class distribution maps and co-registered anatomical atlas: application to601

pharmacological MRI. NeuroImage, 32(2), 538–50.602

Shu, N., Li, X., Ma, C., Zhang, J., Chen, K., Liang, Y., . . . Zhang, Z. (2015). Effects of APOE promoter polymorphism on603

the topological organization of brain structural connectome in nondemented elderly. Human Brain Mapping, 36(12),604

4847–4858.605

Supekar, K., Menon, V., Rubin, D., Musen, M., & Greicius, M. D. (2008). Network analysis of intrinsic functional brain606

connectivity in Alzheimer’s disease. PLoS Computational Biology, 4(6), e1000100.607

ten Kate, M., Sanz-Arigita, E. J., Tijms, B. M., Wink, A. M., Clerigue, M., Garcia-Sebastian, M., . . . Barkhof, F. (2016).608

Impact of APOE-ε4 and family history of dementia on gray matter atrophy in cognitively healthy middle-aged adults.609

Neurobiology of Aging, 38, 14–20.610

Tsai, Y., Lu, B., Ljubimov, A. V., Girman, S., Ross-Cisneros, F. N., Sadun, A. A., . . . Wang, S. (2014). Ocular changes in611

TGF344-AD rat model of Alzheimer’s disease. Investigative Ophthalmology and Visual Science, 55(1), 523–534.612
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Figure 1. Global network metrics of the structural connectome. Strength, global and local efficiency and average clustering coefficient of the three structural

connectomes (fractional anisotropy-weighted, fiber density weighted and binary connectomes). For each network metric, each dot represents the value of one

animal at one time point (blue: control, orange: TgF344-AD). Blue and orange lines represents the fit of the linear mixed effects model; pFDR values are

shown for significant effects (pgroup group effect, page age effect, pInter effect of the interaction between age and group). If interaction was significant

group models were fitted to the data, in orange, pFDR values of the effect of age in the LME model fitted to the transgenic group (no significant effects were

observed in the control group).
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Figure 2. Network metrics of the three structural connectomes (fractional anisotropy weighted, fiber density weighted and binary connectome) in control

(blue) and transgenic (orange) groups at each of the five time points. * represents statistically significant difference (pFDR < 0.05)
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Figure 3. Average structural and functional brain networks. (a) Group average of the FA-w connectome; (b) group average of the functional weighted

connectome at each time point. Only the strongest connections are plotted (FA-w> 0.3 and z > 0.05). Color and width of the links represent connection

strength.
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Figure 4. Networks altered in TgF344-AD animals resulting from NBS analysis. a) FD-w connectome at 8 months of age, altered connections are related to

limbic system; b) FA-w connectome at 15 months of age, connections related to memory processing and executive functions; c) functional connectome at 15

months of age, connections related to processing of sensory inputs. Red indicates subnetwork increased in the transgenic group; blue, subnetwork decreased in

the transgenic group.
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Figure 5. Cognitive performance and network metrics. Linear mixed model fit of DNMS result as a function of network metric and group. Relationship

between the structural and functional connectome metrics and number of trials performed in DNMS test. R-squared and pFDR in case of significant metric

effect (orange: significance in TgF344-AD group; blue: significance in control group).

325

326

327

29

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 10, 2020. ; https://doi.org/10.1101/690180doi: bioRxiv preprint 

https://doi.org/10.1101/690180

