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1 Generalized Fisher information
Fisher information quantifies how much neural activity r tells us about a stimulus θ around a particular refer-
ence θ0. As such, it is ameasure of fine discrimination performance. Here, we show how linear Fisher information
relates to Fisher information in general, show how it can be generalized beyond fine discrimination, and describe
some properties of this generalization.

1.1 Definition and properties of linear Fisher information
We can derive linear Fisher information in two ways [Moreno-Bote et al., 2014, Ganguli and Simoncelli, 2014].
The first is to assume that p(r|θ) is a member of the exponential family with linear sufficient statistics. The
second is to show that it is the Fisher information that can be extracted with a minimum-variance unbiased
linear decoder. We will provide both derivations in turn.

Let us first assume that neural activity r in response to a stimulus θ follows an exponential family distribution
with linear sufficient statistics,

p(r|θ) = g(θ)Φ(r) exp(h(θ)Tr), (1)
where

g(θ) =
1∫

Φ(r) exp(h(θ)Tr)dr
, (2)

in which g(θ), Φ(r), and h(θ) are known functions.
The partial derivative with respect to θ of the log-likelihood function, ∂

∂θ log p(r|θ), is called the "score" which
is given by

∂

∂θ
log p(r|θ) = h′T (θ)(r(θ)− f(θ)), (3)

where f(θ) = E (r(θ)) is the population activity vector. Note that the first moment of the score function is zero.
The Fisher information can be derived using the variance of the score function [Cover and Thomas, 2006]

which can be written as follows:

I(θ) = E

[(
∂

∂θ
log p(r|θ)

)2
]

= h′(θ)TΣ(θ)h′(θ), (4)

where Σ(θ) = E
[
(r(θ)− f(θ)) (r(θ)− f(θ))

T
]
is the noise covariance matrix. To express the Fisher information

in terms of f(θ), we note that
f ′(θ) =

d
dθ

∫
rp(r|θ)dr = Σ(θ)h′(θ). (5)

Thus, we have h′(θ) = Σ−1(θ)f ′(θ) [Ma et al., 2006]. Taking this expression to substitute both instances of h′(θ)
in the Fisher information results in

I(θ) = f ′(θ)TΣ−1(θ)f ′(θ). (6)
To show that linear Fisher information is the information extractable by aminimum-variance unbiased linear

decoder, assume that the decoder linearly combines neural activity of neurons with a projection vector w. For
fine discrimination task with two close-by stimuli θ1 = θ0−δθ and θ2 = θ0 +δθ with small δθ, the unbiased locally
linear estimator for θ̂ is given by

θ̂ − θ0 = wT (r − f(θ0)). (7)
The expectation of the right-hand side around θ0 is wT (〈r〉 − f(θ0)) = 0, demonstrating that the estimator is
unbiased. Our aim is to find a w that yields a locally unbiased estimate, that is

dEθ(θ̂)
dθ = 1, (8)

imposing the constraint
wTf ′(θ) = 1. (9)
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To find the minimum variance estimator satisfying this constraint, note that its variance is given by var
(
θ̂
)

=

wTΣw, where Σ is the noise covariance matrix around θ0. Therefore, we aim to find

min
w
wTΣw, s.t. wTf ′(θ) = 1. (10)

Using a Lagrange multiplier to solve the constraint optimization for w results in

w∗ =
Σ−1f ′

f ′TΣ−1f ′ , (11)

with associated estimator variance
var

(
θ̂
)

=
1

f ′TΣ−1f ′
. (12)

By the Cramér-Rao bound [Cover and Thomas, 2006], the Fisher information is the inverse of this variance,
resulting in

I(θ) =
1

var
(
θ̂
) = f ′TΣ−1f ′, (13)

which matches the previously derived expression for the linear Fisher information. This demonstrates that
linear Fisher information can be interpreted in multiple ways: it is either the Fisher information when restrict-
ing the distribution of neural activity to the exponential family with linear sufficient statistics (which contains
independent-Poisson populations with dense tuning curves, as well as other distributions [Ma et al., 2006], or
the Fisher information that can be extracted with a linear decoder.

1.2 Generalizing Fisher information beyond fine discrimination
Let us generalize the above to coarse discrimination. To do so, assume two classes, C1 and C2, which represent
a pair of stimulus orientations at θ1 and θ2 in the experiment. As before, we will derive generalized Fisher
information in two ways. First, we will derive it by making particular distributional assumptions on p(r|θ1) and
p(r|θ2). Then, we will derive it from the perspective of optimal linear discrimination.

For the first approach, assume that p(r|θj) for both j ∈ {1, 2} follows a Gaussian distribution,

C1 : p(r|θ1) = N (r|f1,Σ)

C2 : p(r|θ2) = N (r|f2,Σ),
(14)

which have different means, but the same covariance matrix. Under the assumption that θ is a random variable
(which takes two values, θ ∈ {θ1, θ2}, in coarse discrimination tasks), it is easy to find a decision rule that
minimize the expected Bayes risk [Berger, 1993]. We will denote Lij as the loss of choosing Cj when Ci is correct.
Furthermore, we assume a symmetric decision problem with symmetric loss, that is L12 = L21 and L11 = L22, a
uniform prior p(C1) = p(C2) = 1/2, and a preference for making correct choices, that is L11 < L12. In this case,
the expected Bayesian risk,

∑
i∈{1,2} LiD(r)p(Ci|r), associated with decision rule D(r) ∈ {1, 2} is minimized by

D (r) =

{
2 if Λ(r) = log p(r|θ2)

p(r|θ1) > 0,

1 otherwise ,
(15)

where Λ(r) is the log-likelihood ratio. For the assumed Gaussian likelihoods, this log-likelihood ratio is given by

Λ(r) = (f2 − f1)TΣ−1(r − f0), (16)

where f0 = 1
2 (f1 + f2), and fj = Er|θj (r) for j ∈ {1, 2}. Letting w = Σ−1δf with δf = f2 − f1, we can rewrite

Λ(r) as
Λ(r) = wT (r − f0). (17)
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In order to identify how likely this decision rule makes the correct choice, observe that Λ(r) follows the fol-
lowing distributions under C1 and C2,

Λ(r)|C1 ∼ N
(
−1

2
wTΣw,wTΣw

)
, Λ(r)|C2 ∼ N

(
1

2
wTΣw,wTΣw

)
. (18)

Therefore, we can find the probability of making a correct choice under D(r) by

p(correct) =
1

2
p (Λ(r) ≤ 0|C1) +

1

2
p (Λ(r) > 0|C2) = Φ

(
1

2

√
wTΣw

)
, (19)

where Φ (·) is the cumulative function of the standard normal distribution. After replacing both instances of w
by its definition, w = Σ−1δf , p(correct) becomes

p(correct) = Φ

(
1

2

√
δfTΣ−1δf

)
. (20)

Comparing this expression to Eq. (6) reveals a close similarity which we can utilize to define the generalized
linear Fisher information for coarse discrimination tasks by

Ig(θ) =
δfTΣ−1δf

δθ2 , (21)

where δθ = θ2 − θ1 is the stimulus difference. It is easy to see that, for small δθ, generalized linear Fisher
information converges to linear Fisher information,

lim
δθ→0

Ig(θ) = lim
δθ→0

δfTΣ−1δf

δθ2 = f ′TΣ−1f ′ = I(θ) (22)

As the sensitivity index d′ [Green and Swets, 1989] in our case is given by d′ =
√
δfTΣ−1δf [Averbeck and Lee,

2006, Chen et al., 2006, Nogueira et al., 2019], the generalized linear Fisher information can be re-expressed in
terms of d′ by

Ig(θ) =
d′2

δθ2 . (23)

This relationship furthermore results in

p(correct) = Φ

(
δθ

2

√
Ig(θ)

)
= Φ

(
d′

2

)
(24)

illustrating the close relationship between p(correct), d′, and Ig(θ).
An alternative derivation for generalized linear Fisher information is through an optimal linear discriminator

with less stringent assumptions on the class-conditional distribution. In this second approach, we assume a
linear decoder projecting the neural activity to a one-dimensional readout using

θ̂ = wTr. (25)

To assign an observed neural activity to a class, we just need to place a threshold on the readout θ̂. To do so,
we optimize w to maximize the class separation following Fisher’s linear discriminant analysis [Berger, 2011],
which minimizes the within-class variance while maximizing the between-class variance of r. As before, let fj
and Σj be mean and noise covariance of neural activity in class Cj , but without making any further assumptions
about the class-conditional densities p(r|Cj). We aim to find thew that maximizes the ratio of the between-class
variance to the within-class variance, which is formulated as

max
w

wT δfδfTw

wTΣw
, s.t. ‖w‖2 = 1, (26)
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where δfδfT is the between-class covariance matrix and Σ is the average within-class covariance matrix given
by

Σ =
Σ1 + Σ2

2
. (27)

Here, we fix ‖w‖2 = 1, as we are interested in the direction of w but not its length. Using a Lagrange multiplier
to solve the constraint optimization for w results in

w =
Σ−1δf

δfTΣ−1δf
. (28)

This yields the direction, w, to best project the neural activity into one dimension.
To find the associated p(correct), note that θ̂ is the sum of a (potentially large) set of random variables. These

random variables are correlated, such that the central limit theorem does not directly apply. Nonetheless, we
assume this sum to be approximately Gaussian for both θ̂|C1 and θ̂|C2, and given by

θ̂|C1 ∼ N
(
wTf1,w

TΣ1w
)
, θ̂|C2 ∼ N

(
wTf2,w

TΣ2w
)
. (29)

This results in the sensitivity index, d′, to be given by

d′ =
wTf2 −wTf1√

1
2 (wTΣ1w +wTΣ2w)

=
wT δf√
wTΣw

=
√
δfTΣ−1δf , (30)

yielding the same expression as before. This makes it straightforward to derive the generalized Fisher informa-
tion as before.

1.3 Bias-corrected generalized Fisher information
Evaluating the generalized Fisher information, Eq. (21), by replacing δf and Σ by its empirical moments esti-
mated from neural data with a limited number of trials leads to biased estimates [Kanitscheider et al., 2015a].
In Kanitscheider et al. [2015a], they provide a bias correction for standard Fisher information, but it is unclear if
this bias correction also applies to our generalization of Fisher information. In this section, we will derive such a
bias correction for our generalization. This correction turns out to be the same as that provided by Kanitscheider
et al. [2015a]. This is unsurprising in hindsight, as Kanitscheider et al. [2015a] do not restrict the size of δθ in
their derivation, such that it applies to both fine and coarse discrimination.

We assume neural activity rtj , j = 1, 2 in response to stimulus θj in trials t = 1, ..., T to follow a multivariate
Gaussian distribution given by

rtj ∼ N (fj ,Σ) , j = 1, 2, (31)
where we assume the same covariance matrix for neural activity in response to θ1 and θ2. This is not a restriction,
as our above derivation from the perspective of a linear discriminator has shown that, if these covariances differ,
we can replace them by their average (which is what we do in practice, see below). Under this assumption, the
empirical mean and covariance over T trials for each stimulus is distributed as [Johnson and Wichern, 2007]

µj =
1

T

T∑
t=1

rtj ∼ N
(
fj ,

Σ

T

)
, Sj =

1

T − 1

T∑
t=1

(rtj − µj)(rtj − µj)T ∼ W
(

Σ

T − 1
, T − 1

)
, (32)

whereW(Vp×p, n) is the p-dimensional Wishart distribution with n degrees of freedom.
The naïve estimation of generalized Fisher information, Eq. (21), is obtained by replacing δf and Σ with

their unbiased estimates, δµ and S, given by

δµ = µ1 − µ2 ∼ N
(
δf ,

2Σ

T

)
, S =

1

2
(S1 + S2) ∼ W

(
Σ

2(T − 1)
, 2(T − 1)

)
, (33)
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where E(δµ) = δf and E(S) = Σ. Furthermore, the inverse of sample covariance, S−1, follows an inverseWishart
distribution [Johnson and Wichern, 2007] given by

S−1 ∼ W−1
(
2(T − 1)Σ−1, 2(T − 1)

)
, (34)

which has mean
E(S−1) =

2(T − 1)

2T −N − 3
Σ−1 (35)

Replacing δf and Σ with δµ and S in Eq. (21) results in the following naive estimator of the generalized Fisher
information to be given by

Îg,nv(θ) =
δµTS−1δµ

δθ2
. (36)

To evaluate the bias of Ig,nv, we utilize the fact that the sample mean and sample covariance of Gaussian
distributions are independent [Johnson and Wichern, 2007], such that we can express the first moment of Ig,nv
by

E
(
Îg,nv

)
=

Eδµ,S
(
δµTS−1δµ

)
δθ2

, (37)

where

Eδµ,S
(
δµTS−1δµ

)
= Eδµ,S

(
Tr
(
δµδµTS−1

))
= Tr

(
Eδµ,S

(
δµδµTS−1

))
= Tr

(
Eδµ

(
δµδµT

)
ES
(
S−1

))
= Tr

((
δfδfT +

2Σ

T

)(
2(T − 1)

2T −N − 3
Σ−1

))
=

2(T − 1)

2T −N − 3

(
Tr
(
δfδfTΣ−1

)
+

2N

T

)
=

2(T − 1)

2T −N − 3

(
δfTΣ−1δf +

2N

T

)
=

2(T − 1)

2T −N − 3

(
Igδθ

2 +
2N

T

)
.

(38)

Having the first moment of Îg,nv, we can obtain the expression for the bias-corrected generalized Fisher infor-
mation, Îg,bc, given by

Îg,bc =
2T −N − 3

2(T − 1)

δµTS−1δµ

δθ2
− 2N

Tδθ2
. (39)

This estimate is the same as provided by Kanitscheider et al. [2015a], and will, in expectation, equal the true
Fisher information, that is, E

(
Îg,bc

)
= Ig.

1.4 Variance of bias-corrected generalized Fisher information
Let us now consider the variance of the bias-corrected generalized Fisher information across different draws of T
trial/samples from the same neural population. This variance has already been computed by Kanitscheider et al.
[2015a], but only as a function of the true information, Ig, which is an unknown quantity. Here, we re-derive this
expression for completeness, and additionally derive an unbiased estimated thereof as a function of Îg,bc, which
can be computed from experimental data.

The variance of Îg,bc is given by

var
(
Îg,bc

)
=

(2T −N − 3)2

4(T − 1)2δθ4
var(δµTS−1δµ), (40)
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where var
(
δµTS−1δµ

)
can be decomposed into

var(δµTS−1δµ) = E
(
(δµTS−1δµ)2

)
− E

(
δµTS−1δµ

)2
. (41)

The first term in Eq. (41) can be expressed as
E
(
(δµTS−1δµ)2

)
= E

(
δµTS−1δµδµTS−1δµ

)
= Eδµ

(
δµTES

(
S−1δµδµTS−1

)
δµ
)

=
4(T − 1)2

(2T −N − 3)(2T −N − 5)
Eδµ

(
δµTΣ−1δµδµTΣ−1δµ

)
=

4(T − 1)2

(2T −N − 3)(2T −N − 5)
Eδµ

(
(δµTΣ−1δµ)2

)
=

4(T − 1)2

(2T −N − 3)(2T −N − 5)

(
var(δµTΣ−1δµ) + Eδµ

(
δµTΣ−1δµ

)2)
.

(42)

The second term in Eq. (41) can be expressed as

E
(
δµTS−1δµ

)2
=

4(T − 1)2

(2T −N − 3)2
Eδµ

(
δµTΣ−1δµ

)2
. (43)

Together, this results in Eq. (41) to be given by

var(δµTS−1δµ) =
4(T − 1)2

(2T −N − 3)(2T −N − 5)

(
var(δµTΣ−1δµ) +

2

2T −N − 3
Eδµ

(
δµTΣ−1δµ

)2)
. (44)

Therefore, var(Ig,bc) can be simplified to

var
(
Îg,bc

)
=

2

2T −N − 5

(
2T −N − 3

2δθ4
var(δµTΣ−1δµ) +

1

δθ4
Eδµ

(
δµTΣ−1δµ

)2)
. (45)

To simplify this expression, note that if ε ∼ N (µ,Σ), then, for a constant matrix Λ, we have
E(εTΛε) = Tr(ΛΣ) + µTΛµ. (46)

Additionally, for a symmetric matrix Λ, the variance of the quadratic form is expressed as
var(εTΛε) = 2 Tr (ΛΣΛΣ) + 4µTΛΣΛµ. (47)

Applying Eqs. (46) and (47) yields

var(δµTΣ−1δµ) =
8N

T 2
+

8

T
δθ2Ig, Eδµ

(
δµTΣ−1δµ

)2
=

4N2

T 2
+

4N

T
δθ2Ig + δθ4I2

g . (48)

Using these expressions results in the final variance

var
(
Îg,bc

)
=

2

2T −N − 5

(
I2
g +

4(2T − 3)

Tδθ2
Ig +

4N(2T − 3)

T 2δθ4

)
(49)

This is the expression provided by Kanitscheider et al. [2015a]. Unfortunately, it is a function of the true infor-
mation Ig, which is unknown, such that the variance cannot be evaluated from data.

To find an unbiased estimate of this variance, note that the true information, Ig, shows up as Ig and I2
g . We

already have an unbiased estimate of Ig, and will now derive such an unbiased estimate for I2
g . Let us denote

this estimate by ˆ(I2
g

)
bc

(in contrast to the squared Îg,bc, which is Î2
g,bc). We find it by

E
(

(Îg,bc)
2
)

= var
(
Îg,bc

)
+ E

(
Îg,bc

)2

=
2

2T −N − 5

(
I2
g +

4(2T − 3)

Tδθ2
Ig +

4N(2T − 3)

T 2δθ4

)
+ I2

g

=
1

2T −N − 5

(
(2T −N − 3)I2

g +
8(2T − 3)

Tδθ2
Ig +

8N(2T − 3)

T 2δθ4

)
.

(50)
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Solving for I2
g and substituting Ig by its bias-corrected estimate Îg,bc reveals the bias-corrected estimate

ˆ(I2
g

)
bc

=
2T −N − 5

2T −N − 3
Î2
g,bc −

1

2T −N − 3

8(2T − 3)

Tδθ2
Îg,bc −

1

2T −N − 3

8N(2T − 3)

T 2δθ4
, (51)

which satisfies E
(

ˆ(I2
g

)
bc

)
= I2

g . Substituting the bias corrected estimates of Ig and I2
g into Eq. (49) results after

some algebra in the unbiased variance estimate

var
(
Îg,bc

)
=

2

2T −N − 3

(
Î2
g,bc +

4(2T − 3)

Tδθ2
Îg,bc +

4N(2T − 3)

T 2δθ4

)
, (52)

which can be computed from data.

1.5 Covariance of bias-corrected generalized Fisher information
As we are interested in how information scales with population size, we also need to know how information esti-
mates for different subpopulations relate to each other. Knowing this relationship is essential to our model fits,
as fitting the information scaling models to information estimates that are correlated across different population
sizes could results in significant mis-estimates if these correlations are ignored. In fact, we will use the results
from this section to show in Sec. 3.5 that the increase in information due to adding one more neuron to a pop-
ulation is uncorrelated across different subpopulations. Based on this insight, we thus fitted these information
increases rather than absolute informations, as illustrated in Fig. 4 in the main text.

To identify the relation between the information estimates for different subpopulations, we will focus on
two subpopulations with Nx and Ny neurons (Ny ≤ Nx) where the latter consists of a subset of neurons of the
former. That is, the subpopulation with Nx neurons contains all of the Ny neurons in the (possibly) smaller
subpopulation. We are interested in how their information estimates co-vary if we estimate both information
measures from the same set of T trials.

To find this covariance, let us decompose the true (i.e., non-empirical) moments of the larger subpopulation
into

δfx =

(
δfy
δfz

)
, Σx =

(
Σy Σu

ΣT
u Σz

)
. (53)

Here, δfx and δfy are the population tuning differences of the larger and smaller subpopulation, respectively,
and we have ordered the neurons in the larger subpopulation such that it contains all shared neurons first,
followed by all non-shared neurons. This re-ordering is possible, as the information estimates are independent
or how neurons are ordered within a population. Furthermore, Σx and Σy are the noise covariance matrices of
the larger and smaller subpopulation, and Σu is the the covariance of shared with non-shared neurons.

Experimentally, we cannot directly observe these moments, but instead estimate them through the empirical
moments,

δµx =

(
δµy
δµz.

)
, Sx =

(
Sy Su
STu Sz.

)
(54)

Using the same properties as in the previous section, these empirical moments relate to the true moments by

δµx ∼ N
(
δfx,

2

T
Σx

)
, S−1

x ∼ W−1
(
2(T − 1)Σ−1

x , 2(T − 1)
)
, (55)

δµy ∼ N
(
δfy,

2

T
Σy

)
, S−1

y ∼ W−1
(
2(T − 1)Σ−1

y , 2(T − 1)
)
, (56)

The empirical covariances additionally have the properties [Muirhead, 2005]

(Sz − SuS−1
y STu )−1 ∼ W−1

(
2(T − 1)(Σz −ΣuΣ

−1
y ΣT

u )−1, 2(T − 1)
)
, (57)

SuS
−1
y |S−1

y ∼MNNy×(Nx−Ny)

(
ΣuΣ

−1
y ,

1

2(T − 1)
(Σx −ΣuΣ

−1
y ΣT

u ),S−1
y

)
, (58)

8
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whereMN is the matrix-normal distribution.
From Eq. (39), the bias-corrected generalized information for two subpopulations denoted as Ixg,bc and I

y
g,bc

can be written as

Îxg,bc =
2T −Nx − 3

2T − 2

δµTxS
−1
x δµx
δθ2

− 2Nx
Tδθ2

, (59)

Îyg,bc =
2T −Ny − 3

2T − 2

δµTy S
−1
y δµy

δθ2
− 2Ny
Tδθ2

. (60)

We can decompose Îxg,bc into two terms. The first term is the shared information which is common between
subpopulations x and y as both of them contains all of neurons in subpopulation y. The second term is the
information gain that is gained by adding the non-shared neurons. This decomposition can be expressed as

Îxg,bc = Îyg,bc + δÎx−yg,bc , (61)

where δÎx−yg,bc is the information gain due to the non-shared components between subpopulations x and y. The
covariance of Îxg,bc and Î

y
g,bc is given by

cov
(
Îxg,bc, Î

y
g,bc

)
= var

(
Îyg,bc

)
+ cov

(
Îyg,bc, δÎ

x−y
g,bc

)
, (62)

where we already have expression for the variance on the right-hand side (i.e., Eq. (52)), and only need to find
an expression for the covariance.

To calculate cov
(
Îyg,bc, δÎ

x−y
g,bc

)
, let us first find an expression for δÎx−yg,bc . To find this expression, note that, by

the decomposition of δµx and Sx, and using block matrix inversion,

δµTxS
−1
x δµx = δµTy S

−1
y δµy +

(
δµz − SuS−1

y δµy
)T (

Sz − SuS−1
y STu

)−1 (
δµz − SuS−1

y δµy
)
, (63)

Substituting this relationship into Eqs. (59) and (60) results in the bias-corrected information gain

δÎx−yg,bc = Îxg,bc − Î
y
g,bc

=
Ny −Nx

2T −Ny − 3
Îyg,bc +

2T −Nx − 3

2T − 2

(
δµz − SuS−1

y δµy
)T (

Sz − SuS−1
y STu

)−1 (
δµz − SuS−1

y δµy
)

δθ2
+ const,

(64)

where "const" captures all non-stochastic terms that do not contribute to the covariance. Overall, this results in

cov
(
Îyg,bc, δÎ

x−y
g,bc

)
=

Ny −Nx
2T −Ny − 3

var
(
Îyg,bc

)
+

(2T −Nx − 3)(2T −Ny − 3)

(2T − 2)2δθ4

× cov
(
δµTy S

−1
y δµy,

(
δµz − SuS−1

y δµy
)T (

Sz − SuS−1
y STu

)−1 (
δµz − SuS−1

y δµy
))
,

(65)

where we have substituted Eq. (60) for Iyg,bc to find the second term on the right-hand side. The first term of
Eq. (65) is known from Eq. (52). The covariance expression in the second term can be expressed as

cov
(
δµTy S

−1
y δµy,

(
δµz − SuS−1

y δµy
)T (

Sz − SuS−1
y STu

)−1 (
δµz − SuS−1

y δµy
))

= E
(
δµTy S

−1
y δµy

(
δµz − SuS−1

y δµy
)T (

Sz − SuS−1
y STu

)−1 (
δµz − SuS−1

y δµy
))

− E
(
δµTy S

−1
y δµy

)
E
((
δµz − SuS−1

y δµy
)T (

Sz − SuS−1
y STu

)−1 (
δµz − SuS−1

y δµy
))

(66)

First we evaluate the last expectation in Eq. (66) which is

E
((
δµz − SuS−1

y δµy
)T (

Sz − SuS−1
y STu

)−1 (
δµz − SuS−1

y δµy
))

(67)

9
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Conditioned on S−1
y , we observe that (Sz−SuS−1

y STu )−1 is independent of SuS−1
y [Muirhead, 2005]. Thus we can

first take the expectation of (Sz − SuS−1
y STu )−1 to get

2T − 2

2T −Nx − 3

(
δµz − SuS−1

y δµy
)T (

Σz −ΣuΣ
−1
y ΣT

u

)−1 (
δµz − SuS−1

y δµy
)
. (68)

Next, we observe that SuS−1
y |S−1

y is matrix normal, which has a simple expression for the expectation of its
quadratic form. Using this expression yields

2T − 2

2T −Nx − 3

(
δµz −ΣuΣ

−1
y δµy

)T (
Σz −ΣuΣ

−1
y ΣT

u

)−1 (
δµz −ΣuΣ

−1
y δµy

)
+

Nx −Ny
2T −Nx − 3

δµTy S
−1
y δµy (69)

We do not need to complete the expectation over the remaining random variables because most involved terms
cancel out each other later on.

Utilizing the same strategy we evaluate the expectation of the first term in Eq. (66) which is given by

E
(
δµTy S

−1
y δµy

(
δµz − SuS−1

y δµy
)T (

Sz − SuS−1
y STu

)−1 (
δµz − SuS−1

y δµy
))
. (70)

Its expectation with respect to
(
Sz − SuS−1

y STu
)−1 is

2T − 2

2T −N − 3
δµTy S

−1
y δµy

(
δµz − SuS−1

y δµy
)T (

Σz −ΣuΣ
−1
y ΣT

u

)−1 (
δµz − SuS−1

y δµy
)
. (71)

The expectation with respect to SuS−1
y |S−1

y is given by

2T − 2

2T −Nx − 3
δµTy S

−1
y δµy

(
δµz −ΣuΣ

−1
y δµy

)T (
Σz −ΣuΣ

−1
y ΣT

u

)−1 (
δµz −ΣuΣ

−1
y δµy

)
+

Nx −Ny
2T −Nx − 3

(
δµTy S

−1
y δµy

)2
(72)

Utilizing the fact that δµy and δµz − ΣuΣ
−1
y δµy are jointly Gaussian and uncorrelated, which means they

are independent, we can combine Eqs. (72) and (69) to simplify the expression in Eq. (66) to

cov
(
δµTy S

−1
y δµy,

(
δµz − SuS−1

y δµy
)T (

Sz − SuS−1
y STu

)−1 (
δµz − SuS−1

y δµy
))

=
Nx −Ny

2T −Nx − 3

(
E
((
δµTy S

−1
y δµy

)2)− E
(
δµTy S

−1
y δµy

)2)
=

Nx −Ny
2T −Nx − 3

var
(
δµTy S

−1
y δµy

)
=

(Nx −Ny)(2T − 2)2δθ4

(2T −Nx − 3)(2T −Ny − 3)2
var

(
Îyg,bc

)
.

(73)

Substituting Eq. (73) into Eq. (65) results in

cov
(
Îyg,bc, δÎ

x−y
g,bc

)
=

Ny −Nx
2T −Ny − 3

var
(
Îyg,bc

)
+

Nx −Ny
2T −Ny − 3

var
(
Îyg,bc

)
= 0, (74)

which means that information in the smaller population is uncorrelated to the information gain obtained from
non-shared neurons. As a consequence,

cov
(
Îxg,bc, Î

y
g,bc

)
= var

(
Îyg,bc

)
. (75)

Note the this only holds for the bias-corrected information estimates. For the naïve estimates, a similar deriva-
tion shows that Îyg,nv and δÎx−yg,nv are correlated.
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2 Information scaling models
We assume that information in the recorded population is limited by the presence of information-limiting corre-
lations [Moreno-Bote et al., 2014]. In this case, the noise covariance matrix ΣN for a population of N neurons
decomposes into

ΣN = Σ0,N +
1

I∞
f ′Nf

′T
N , (76)

where Σ0,N is the non-limiting covariance component, I∞ is the asymptotic information, and f ′N is the derivative
of the mean population activity. All of these quantities depend on the stimulus, θ, but we will keep this depen-
dency implicit for notational convenience. In the N → ∞ limit, only the second component limits information,
while the information associated with Σ0,N grows without bounds.

To see how information grows in the presence of information-limiting correlations, note that the Sherman-
Morrison formula allows us to express Σ−1

N by

Σ−1
N = Σ−1

0,N −
Σ−1

0,Nf
′
Nf
′T
N Σ−1

0,N

I∞ + f ′TN Σ−1
0,Nf

′
N

(77)

Let us denote the linear Fisher information associated with the non-limiting component by I0,N = f ′TN Σ−1
0,Nf

′
N .

Then, after some algebra, the total Fisher information is given by

IN = f ′TN Σ−1
N f

′
N = f ′TN Σ−1

0,Nf
′
N −

f ′TN Σ−1
0,Nf

′
Nf
′T
N Σ−1

0,Nf
′
N

I∞ + f ′TN Σ−1
0,Nf

′
N

=
1

1
I0,N

+ 1
I∞

, (78)

or, equally, I−1
N = I−1

0,N + I−1
∞ . This result forms the core of our information scaling models. For the remainder of

this section we will discuss how we would expect information I0,N in the non-limiting component to scale, and
the impact of measurement noise on overall information scaling.

2.1 Linear non-limiting information scaling for large N

To characterize the scaling of I0,N with N , let us use the spectral decomposition

Σ0,N =

N∑
n=1

σ2
N,nzN,nz

T
N,n, (79)

with variances σ2
N,1, . . . , σ

2
N,N and principal directions zN,1, . . . ,zN,N . Then, I0,N is given by

I0,N =

N∑
n=1

(
f ′TN zN,n

)2
σ2
N,n

= ‖f ′N‖2
N∑
n=1

cos2 (αN,n)

σ2
N,n

, (80)

where αN,n is the angle between f ′N and zn.
To see how I0,N scales withN , let us assume that the αN,n’s are independent of the σ2

N,n’s. Furthermore, f ′N,n
(that is, the nth component of f ′N ) is O(1), such that ‖f ′N‖2 will be O(N). In addition, geometry requires that∑N
n=1 cos2 (αN,n) = 1, such that each cos2 (αNn) is O(1/N) [Moreno-Bote et al., 2014]. Together, this yields

I0,N ∝ N
N∑
n=1

1

N

1

σ2
N,n

=

N∑
n=1

1

σ2
N,n

. (81)

Therefore, under these assumptions, the scaling of I0,N only depends on the scaling of the eigenvalue spectrum
{σ2

N,1, . . . , σ
2
N,N} of Σ0,N .

For the following, we will assume that each neuron in the population features some small amount of "private"
noise that is not correlated with the variability of other neurons. This private noise introduces a lower bound,

11
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σ2
0 , on the variances, that is σ2

N,n ≥ σ2
0 for all n. Together with the above expression, this allows us to derive a

lower bound on the scaling of non-limiting information. In particular, by Jensen’s inequality

I0,N ∝ N

(
1

N

N∑
n=1

1

σ2
N,n

)
≥ N 1

1
N

∑N
n=1 σ

2
N,n

∝ N. (82)

The second-to-last expression contains the average variance, which is lower-bounded by σ2
0 and of order one.

Therefore, the scaling of I0,N is at least O(N).
To gain further insight into the scaling of I0,N , assume a sequence of non-limiting covariance matrices

Σ0,M ,Σ0,M−1,Σ0,M−2, . . . , starting with some large population withM neurons. Each consecutivematrixΣ0,N−1

is constructed from the next-larger matrix Σ0,N by removing a single neuron, such that they share all en-
tries except for one row and column associated with that neuron. If we order their eigenvalues according to
σ2
N,1 ≥ σN,2 ≥ . . . σ2

N,N and σ2
N−1,1 ≥ σ2

N−1,2 ≥ · · · ≥ σ2
N−1,N−1, it is known that these eigenvalues obey the

interleaved ordering
σ2
N,1 ≥ σ2

N−1,1 ≥ σ2
N,2 ≥ σ2

N−1,2 ≥ . . . σ2
N−1,N−1 ≥ σ2

N,N . (83)

Using I0,N ∝
∑N
n=1 σ

−2
N,n, the information increase when moving from N − 1 to N neurons becomes

I0,N − I0,N−1 ∝
N−1∑
n=1

(
1

σ2
N,n

− 1

σ2
N−1,n

)
+

1

σ2
N,N

. (84)

This information increase is O(1) if both terms on the left-hand side are O(1).
The second term isO(1) if there exists some positive constant C such that, for allN above someN0, σ−2

N,N ≤ C.
As σ2

N,N is always the smallest eigenvalue of the covariance matrix, this implies that O(1) can be guaranteed
as long as σ2

N,N remains positive with increasing N , which is satisfied by our previous assumption that each
neuron has some private noise. If it instead would go to zero, we would have limN→M σ−2

N,N = 0, violating the
requirement.

For the first term we observe that the hierarchical eigenvalue relationship of nested matrices implies that
σ−2
N,n ≤ σ−2

N−1,n for all n = 1, . . . , N − 1. This implies that every element in the sum is negative. However, the
information increase I0,N − I0,N−1 cannot be negative. Therefore, the second term on the left-hand side has to
be at least as large as the negative first term (i.e., the sum), that is

1

σ2
N,N

≥ −
N∑
n=1

(
1

σ2
N,n

− 1

σ2
N−1,n

)
. (85)

As σ−2
N,N is O(1), the sum cannot be larger than O(1). Overall, as long as none of the variances become zero with

increasing N , the increase in I0,N will be O(1), which implies that I0,N scales with O(N).

2.2 Models for I0,N

The above argument shows that, under rather general conditions, I0,N can be expected to scale with O(N).
However, it does not tell us about how I0,N behaves for small N , which depends on the details of the structure of
ΣN,0.

To describe the details of this structure, we compared two models for I0,N . The first, called the lim model,
directly follows the scaling results and assumes that I0,N = cN with some parameter c that is independent of N .
The second model, called the lim-exp model, allows the non-limiting information to initially grow supralinearly
before converging to a linear growth. We derived this model by integrating c

(
1− e−N/τ

)
from zero toN , resulting

in
I0,N = c

(
N + τ

(
e−

N
τ − 1

))
, (86)

with the additional parameter τ that controls the extent of the initial supralinearity (in units of N ). We have
chosen this particularmodel, as it turns out easier to fit that alternativemodels (such as, for example, integrating
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a re-scaled logistic sigmoid over the positive half-line) that provide qualitatively similar qualitative I0,N scaling.
This model approaches I0,N = cN in the τ → 0 limit. Model comparison revealed the lim model to significantly
outperform the lim-exp model (Fig. S1), such that we focused on the lim model in the main text.

2.3 Impact of measurement noise
Our recordings of neural activity might be noisy, introducing additional variability into our estimates of ΣN and
f ′N . To estimate the effect of such measurement noise, we assume it to be of equal magnitude and independent
across neurons, such that it adds an additional diagonal term to the covariance decomposition,

ΣN = Σ0,N +
1

I∞
f ′Nf

′T
N + σ2

recI, (87)

where σ2
rec denotes the variance of the measurement noise. We don’t assume it to impact differential correlations,

as those limit information in the brain, rather than our measurement thereof.
Following the same derivation as in the beginning of this section, the information in a population ofN neurons

becomes
IN =

1
1

I0,rec,N
+ 1

I∞

, (88)

where
I0,rec,N = f ′TN

(
Σ0,N + σ2

recI
)−1

f ′N , (89)
is the non-limiting information, including measurement noise. We can, as before, use the spectral decomposition
Σ0,N =

∑N
n=1 σ

2
N,nznz

T
n and observe that I =

∑N
n=1 znz

T
n , resulting in

Σ0,N + σ2
recI =

N∑
n=1

(
σ2
N,n + σ2

rec

)
znz

T
n . (90)

This shows that measurement noise increases all eigenvalues of Σ0,N by the same magnitude.
This has several consequences. First, the added variance baseline results in I0,rec,N to grow more slowly with

N than I0,N . Second, this baseline causes in the eigenvalues of Σ0,N +σ2
recI to be more similar to each other than

those of Σ0,N alone. As a consequence, the growth of I0,rec,N ∝
∑N
n=1

(
σ2
N,n + σ2

rec

)−1 with N is more linear than
that of I0,N ∝

∑N
n=1 σ

−2
N,n. This might make I0,rec,N = crecN a good model of non-limiting information growth,

even if I0,N = cN is not. Third, as the measurement noise impacts only I0,rec,N but not I∞, measurement noise
only impacts our estimates of c but not of I∞. Fourth, measurement noise will lower our estimates of c, and
therefore increase our estimates of Na = a/(1− a)I∞/c, which is the population size at which a fraction a of the
asymptotic information I∞ is reached.

3 Estimating the information scaling moments from neural data
Here, we fix the discrimination (i.e., the pair of drift directions, θ1 and θ2) and discuss how we estimate the
moments of Fisher information for different population sizes. To do so, we assume a large population with M
neurons of which we subsample N neurons, and where N � M . Rather than focusing on the moments of the
Fisher information In for population size n ≤ N , we will instead focus on the moments of the Fisher information
increase, ∆In = In − In−1 (with I0 = 0), when increasing the population size from n − 1 to n neurons, for
reasons that become apparent later. Our aim is to estimate the mean, E (∆In), the variance, var (∆In), and the
covariance, cov (∆In,∆Im), for different population sizes n and m.
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3.1 Generative model and desired moments
To describe the stochasticity of ∆In, we assume the following generative process. Assume that neurons in the
large population have indices 1 to M , and that we uniformly draw a subset of N different neurons with indices
i1, i2, . . . , iN , denoted i1:N . This subpopulation has moments f ′i1:N and Σi1:N , that in turn can be used to compute
its associated Fisher information. However, we do not directly observe these moments, but instead record the
population activity across T trials for each stimulus, θ1 and θ2, from which we compute the empirical moments
γi1:N and Ωi1:N . These empirical moments are in turn used to compute the Fisher information increases ∆Î1:N ,
using the bias-corrected estimates discussed further above. In summary, the generative process follows the
Markov chain

i1:N → f ′i1:N ,Σi1:N → γi1:N ,Ωi1:N → ∆Î1:N . (91)
In this Markov chain, the first and last transition are deterministic, and the center transition is stochastic.
Therefore, we can write the generative model as

p
(

∆Î1:N

)
=
∑
i1:N

p
(

∆Î1:N (γi1:N ,Ωi1:N ) |i1:N

)
p (i1:N ) , (92)

where the Fisher information increases are a deterministic function of the empirical moments, and the sum is
over different subpopulations drawn from the larger population. We assume these draws to be uniform, that is
p (i1:N ) ∝ 1.

To find the moments of ∆În, we use iterated expectation, variance, and covariance, which, for a Markov chain
Z → X1, X2 is given by

EX1
(X1) = EZ

(
EX1|Z (X1)

)
, (93)

varX1
(X1) = EZ

(
varX1|Z (X1)

)
+ varZ

(
EX1|Z (X1)

)
, (94)

covX1,X2
(X1, X2) = EZ

(
covX1,X2|Z (X1, X2)

)
+ covZ

(
EX1|Z (X1) ,EX2|Z (X2)

)
. (95)

Applied to our generative model, that yields the decompositions

E∆În

(
∆În

)
= Ei1:N

(
E∆În|i1:N

(
∆În

))
, (96)

var∆În

(
∆În

)
= Ei1:N

(
var∆În|i1:N

(
∆În

))
+ vari1:N

(
E∆În|i1:N

(
∆În

))
, (97)

cov∆În,∆Îm

(
∆În,∆Îm

)
= Ei1:N

(
cov∆În,∆Îm|i1:N

(
∆În,∆Îm

))
+ covi1:n

(
E∆În|i1:N

(
∆În

)
,E∆Îm|i1:N

(
∆Îm

))
,

(98)

where both variance and covariance are decomposed into (i) the (co)variance of the information increase for a
fixed subpopulation i1:N , averaged across different subpopulations, and (ii) how the average information increase
for a fixed subpopulation (co)varies across different subpopulations.

Our data does not allow us to directly estimate these moments for two reasons. First, we don’t observe the
larger population, and so can’t use it to draw different subpopulations from this larger population. We will
address how we handle this limitation in the next subsection. Second, we only observe a single set of empirical
moments, µ and S, for the subpopulation that we record from. We will address how we handle this limitation in
the remaining subsections.

3.2 Simulating samples from a large, unobserved population
Our generative model assumes that we are subsampling N neurons from a large neural populations of M neu-
rons. Our data, in contrast, are population recordings from a single neural population with N neurons. To use
these recordings to simulate sampling from various subpopulations of the larger population, we assume these
subpopulations to be statistically similar to the recorded population. That is, the different sampled subpop-
ulations will contain neurons with similar activity statistics as the recorded population. Thus, each sampled
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subpopulation will contain all neurons from the recorded population, but in a different order for each sampled
subpopulation. We will simulate this by introducing a new index set j1:N = j1, j2, . . . , jN that, for each sampled
subpopulation i1:N , contains a random order of the indices 1, . . . , N of neurons in the recorded population. With
this, all of the above moments across i1:N will become moments across j1:N , while taking into account that the
recorded subpopulation is used as a proxy for sampling different subpopulations from a larger populations. We
will describe the consequences of this for each of the moments separately.

3.3 Estimating the mean
The desired mean of the information increase ∆În is, by Eq. (96) the average information increase for a par-
ticular set of empirical moments, γi1:N and Ωi1:N , for a particular subpopulation i1:N , averaged across different
subpopulations. We deal with not being able to sample different subpopulations by replacing i1:N by a randomly
ordered recorded population j1:N . Furthermore, we cannot draw different empirical moments, γi1:N and Ωi1:N for
a given subpopulation, as would be required to compute E∆Î|i1:N

(
∆În

)
. We will replace this expectation with

our best estimate thereof, which is the Fisher information increase estimate based on the bias-correctet Fisher
information, estimated from the empirical moments of the recorded population, µ and S. Overall, this leads to
the approximate estimate,

Ei1:N
(
E∆În|i1:N

(
∆În

))
≈ Ej1:N

(
∆În (µj1:N ,Sj1:N )

)
, (99)

where µj1:N and Sj1:N denote the empirical moments with neurons ordered according to j1:N . As our Fisher
information estimate is unbiased, the above estimate will be unbiased as well. In practice, we approximate the
expectation over j1:N by 10000 random ordering.

3.4 Estimating the variance

The variance, Eq. (97), is decomposed into two terms. The first, Ei1:N
(
var∆În|i1:N

(
∆În

))
, is the variance of

the Fisher information increase for a fixed subpopulation, averaged across many subpopulations. This term
captures the uncertainty in ∆În due to using the empirical moments to estimate it. The second term, given
vari1:N

(
E∆În|i1:N

(
În

))
, captures how the average Fisher information increase for a given subpopulation varies

across different subpopulations. Our data doesn’t allow us to compute either of these terms directly. However,
it turns out that they are both well-approximated by how the Fisher information increase estimated from the
empirical moments, µ and S, varies across different population orders, j1:N , that is

Ei1:N
(
var∆În|i1:N

(
∆În

))
+ vari1:N

(
E∆În|i1:N

(
∆În

))
≈ varj1:N

(
∆În (µj1:N ,Sj1:N )

)
. (100)

To understand why this approximation works, we need to consider two components that contribute to the empir-
ical moments of the recorded neurons. The first is that, for each neuron and each neuron pair, these empirical
moments are noisy, as they are estimated from a limited number of trials. Thus, we can approximate the ef-
fect of using empirical rather than true moments, as captured by the first term in Eq. (97), by computing the
variance across different neurons in the population, as achieved by the variance across different orderings, j1:N .
The second factor is that different neurons contribute different amounts of information to the population. This
comes into play in the second term in Eq. (97), and is again well-approximated by the variance across different
orderings, j1:N . As it seems paradoxical that the same variance can capture both kinds of effects at the same
time, we have demonstrated it in simulations of neural populations, shown in Fig. S7a.

3.5 Estimating the covariance
As the variance, the covariance, Eq. (98) can be decomposed into two terms that capture different sources of
uncertainty. The first term, Ei1:N

(
cov∆În,∆Îm|i1:N

(
∆În,∆Îm

))
, captures the uncertainty associated with esti-

mating empirical moments from a limited number of trials. To find this covariance, assume n 6= m and note
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that,

cov
(

∆În,∆Îm

)
= cov

(
În − În−1, Îm − Îm−1

)
= cov

(
În, Îm

)
− cov

(
În, Îm−1

)
− cov

(
În−1, Îm

)
+ cov

(
În−1, Îm−1

) (101)

where all covariances are conditional on i1:N . Without loss of generality we can assume that n > m, and use
Eq. (75) from Sec. 1.4 to find

cov
(

∆În,∆Îm

)
= var

(
Îm

)
− var

(
Îm−1

)
− var

(
Îm

)
+ var

(
Îm−1

)
= 0. (102)

This shows, that, conditional on i1:N , the information increase estimates are uncorrelated.
The second term, covi1:N

(
E∆În|i1:N

(
∆În

)
,E∆Îm|i1:N

(
∆Îm

))
, captures how the average Fisher information

increase associated with adding the nth neuron correlates with that when adding themth neuron across different
subpopulation samples. On average, these increases will be negatively correlated, for the following reason. The
variance of the information estimate În =

∑n
k=1 ∆Îk can be decomposed into

var
(
În

)
=

n∑
k=1

(
var

(
∆Îk

)
+ 2

k−1∑
l=1

cov
(

∆Îk,∆Îl

))
, (103)

which shows the impact of the individual variances, as well as the covariance between estimates associated with
different population sizes. For a population of M neurons, the estimate of total information, ÎM , will be the
same, irrespective of how the neurons are ordered within that subset. Therefore, var

(
ÎM

)
= 0. However, as, by

definition, var
(

∆În

)
≥ 0, the above decomposition implies that the covariances need to be on average negative,

to ensure that the sum of variances and covariances becomes zero.
The same principle applies if we estimate the variance of ∆În by shuffling the order, j1:N , of neurons in a

smaller, recorded population. If this population has N neurons, then var
(
EÎN |j1:N

(
ÎN

))
= 0, irrespective of

j1:N , such that the information increase estimates will be negatively correlated.
Recall that we use population order shuffling as a proxy for repeatedly subsampling N neurons from a larger

population of M neurons. The shuffling-induced negative correlations arise from using the same N recorded
neurons across all estimates. If we instead subsample a larger population, the different sampled subpopulations
are bound to share a smaller number of neurons. For two subpopulations that share no neurons, these estimates
would be completely uncorrelated. However, even for N � M , two random subpopulations of size N are likely
to share neurons of the larger population. Indeed, the same intuition underlying the birthday paradox [Suzuki
et al., 2006] tells us that we are almost guaranteed to find such shared neurons. However, the correlations don’t
only depend on the presence of shared neurons, but also on how many of them are shared, and the latter will
decrease significantly for largerM . To show that this significantly lowers the impact of negative correlations on
the total variance, we compare this variance computed with and without accounting for these correlations for dif-
ferentM ’s. As Fig. S7b shows, their impact drops significantly with growingM . Therefore, we will approximate
them to be zero, that is

cov∆În,∆Îm

(
∆În,∆Îm

)
≈ 0. (104)

This results in an overestimate of the variance of the Fisher information estimate, and make our fits less certain,
and, as a consequence, more conservative.

4 Population activity models
We used two different models to simulate population activity, as described below.
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4.1 A Gaussian population activity model with limited information
We used a simple Gaussian activity model to satisfies the assumptions of Gaussianity underlying the generalized
linear Fisher information, and to test some of the properties of our estimates. Thismodel violates some properties
of neural activity, like non-negativity, but is convenient for our purposes, as it supports fine control over the
eigenvalues of Σ0, the alignment of f ′ to Σ0, and the asymptotic information, I∞. For a population size of N
neurons, we generated Σ0 by drawing a random orthonormal matrixZ0 of sizeN×N that forms the eigenvectors
of Σ0. We parameterized the eigenvalues by σ2

n,0 = σ2
0 + σbm

−β , which together form the diagonal matrix D0 =

diag
(
σ2

0,1, . . . , σ
2
0,N

)
. Z0 and D0 together specify Σ0 by Σ0 = Z0D0Z

T
0 . For a given f ′, the full noise covariance

is then given by Σ = Σ0 + I−1
∞ f ′f ′T .

For Fig. S2, we drew a random f ′ ∼ N (0, I), and subsequently rescaled the vector such that ‖f ′‖ = g.
This makes the alignment of f ′ to the eigenvectors of Σ0 roughly uniform on average. For this figure, we use
parameters I∞ = 20 (or I∞ =∞ for the unlimited-information case), g = 20, σ2

0 = 10−3, σ2
b = 1, and β = 0.1.

For Fig. S7, we specified the alignment of f ′ to the eigenvectors of Σ0 by αn = σ2
α+ ∝ e−n/τα , normalized

such that
∑
n αn = 1. This yields f̃ ′ =

∑
n αnzn (zn is the nth eigenvector of Σ0), and f ′ =

√
gfN f̃

′/‖f̃ ′‖.
The magnitude of f ′ here scales with

√
N to ensure roughly similar information across different N ’s. The used

parameters were I∞ = 100, gf = 0.008, σ2
0 = 5 × 10−5, σ2

g = 3, β = 0.5, σ2
α = 10−3, and τα = 30, which results in

population statistics comparable to those shown in Figs. 3 and 8 in the main text.

4.2 A visual hierarchy population activity model
We relied on [Kanitscheider et al., 2015b] for a more realistic model of V1 population activity that is driven by
pixel-level inputs. Details of this model can be found in Kanitscheider et al. [2015b]. Briefly, a population of N
neurons responded to a P × P pixelated images J of an oriented Garbor. The nth neuron’s linear filter Fn was
for each (x, y) pixel determined by

ce−
(x2+y2)

2σ2 cos

(
2πx

λ
cos (θn) +

2πy

λ
sin (θn) + φ

)
, (105)

where c is the Michelson contrast, θn determines the neuron’s tuning, σ2 determines the size of the exponential
envelope, and λ and φ are the Garbor’s frequency and phase, respectively. The filter was computed by the above
function for each (x, y) and then standardized to have mean zero and unit variance across all (x, y). Image
templates, J(θ), in response to stimulus θ were generated equally, with θn replaced by the template’s orientation,
θ. Each neuron’s gain, an, was drawn from a log-normal distribution with unit mean and variance σ2

a, and then
multiplied by the overall gain, g.

Neural population activity is assumed to arise from the image template with Gaussian pixel noise (zero mean,
variance σ2

0), followed by application of the per-neuron linear filters, Fn, multiplied by their gain an, and a Poisson
step. For Fig. S2, we estimated information from a set of trials, in each of which neural activity was generated
from a different pixel noise instantiation. For Fig. S5, we skipped the Poisson step, as it introduced additional
noise and was not required for the point we were trying to make. Instead, we estimated Fisher information
from approximations to the neural mean responses and their covariance matrix, following Kanitscheider et al.
[2015b]. We computed the mean response of neuron n to image J by fn(θ) =

[
an
∑
xy Fn,xyJxy(θ)

]
+
, where [·]+ is

the threshold-linear function that sets negative values to zero. The population noise covariance was computed
by

Σ(θ) = σ2
0

(
aaT

)
⊗
[
F TF

]
+

+ diag (a⊗ f(θ)) , (106)

where ⊗ denotes the (element-wise) Hadamard product, a = (a1, . . . , aN )
T is the column vector of per-neuron

gains, F is the P 2×N filter matrix with per-neuron filters unrolled as vectors along its columns, and f(θ) is the
mean population activity in response to stimulus θ. The information was computed from Σ(θ) and f(θ).

For Fig. S2 we used the parameters σ = P/5, λ = P/1.5, φ = 0, c = 1, g = 20, and σa =
√

2, as in Kanitscheider
et al. [2015b], and additionally N = 2500, P = 32 and σ0 = 0.25. To simulate infinite information, we removed
pixel noise by setting σ0 = 0. For Fig. S5, we used the same parameters except N = 1000, g = 10, and σ0 =
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0.11, to achieve the desired level of information, and approximate information saturation within the simulated
population size. In all simulations, neural tuning, θn, was uniformly distributed over [−π, π], and pixels (x, y)
were uniformly distributed over locations [−(P − 1)/2, (P − 1)/2] in both dimensions.
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5 Supplementary Tables

Session
Mouse Contrast Avg. A B C D E F G

1 10% 0.12± 0.02 0.14 0.11
2 10% 0.07± 0.03 0.11 0.04
3 10% 0.16± 0.02 0.22 0.20 0.09 0.13 0.14
4 10% 0.12± 0.01 0.10 0.11 0.12 0.10 0.13 0.13 0.16
5 10% 0.22± 0.06 0.12 0.16 0.20 0.40

25% 0.23± 0.03 0.19 0.20 0.22 0.32
6 10% 0.20± 0.02 0.16 0.23 0.22

25% 0.22± 0.01 0.20 0.23 0.24

Table S1: Average Fisher information per neuron in rad−2/neuron, across all sessions/mice, averaged across all
δθ = 45◦ discriminations. The average Fisher information was computed from the Fisher information scaling
for trial-shuffled data that removed across-neuron correlations. For individual neurons, it can be computed
by 2 (〈r|θ1〉 − 〈r|θ2〉)2

/
(
δθ2 (var (r|θ1) + var (r|θ2))

)
, where r|θj is the neural response to stimulus θj . The Avg.

column provides the average across sessions (mean ± 1 SEM).
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6 Supplementary Figures

Figure S1: Model comparison of different information scaling models. Both panels show histograms of differ-
ences in the Watanabe-Akaike Information Criterion (WAIC) for two different models fitted to the measured
information scaling curves across all eight discriminations with δθ = 45◦, sessions, and mice. (a) shows the
WAIC difference for fitting a model that assumes no information limitation (unlim) to one that does (lim), for
regular (blue) and shuffled (red) data. For regular data this difference is in most cases positive, indicating that
the information-limiting model fits the data better. In fact, even for individual negative WAIC differences, the
average across all eight WAIC difference within a session remains positive. For shuffled data, a model assuming
no information limitation fits the data better in all instances. This confirms that our model comparison is not
biased towards the model assuming limited information. (b) shows the WAIC difference for fitting two models
that assume limited information (see Sec. 2.2), one with linear scaling of the non-limiting component (lim), and
one assuming initial supralinear scaling of that component (lim-exp). The latter only fits the data better in few
instances. In those, the average WAIC difference across all discriminations within that session is nonetheless
positive. The colored lines in (a) and (b) show the median WAIC difference across all comparisons.
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Figure S2: Recovering asymptotic information from simulated population activity. We simulated neural popu-
lation activity, using either a multivariate Gaussian population model (a-c; see Sec. 4.1 for details) or a linear-
nonlinear Poisson model (d-f; see Sec. 4.2 for details) and fitted a linear scaling (unlim) and a limited information
scaling model (lim). For each model type, we generated two large datasets (limited information and unlimited
information; δθ = θ2 − θ1 = 45◦ in both cases) and then subsampled neurons and trials to perform the fits. (a,d)
Example information scaling for N = 300 and T = 500 (mean ± 1SD information estimation; green/red = lim-
ited/unlimited information). For the Gaussian model we could specify the asymptotic information I∞ (dashed
grey line). For the LNP model we estimated it from the information I2500 at N = 2500 neurons. (b-c,e-f) Esti-
mated asymptotic information and non-limiting information scaling for the lim model from data with different
population sizes N and numbers of trials T per stimulus. The posterior estimates are shown as in Fig. 4c in the
main text. Blue/green and orange/red colors indicate a better fit by the lim and unlim model (WAIC for model
comparison), respectively. Asymptotic information is well-estimated by the lim model (b,e), and more certain for
larger N and T . Model comparison in most cases (28 out of 30 for Gaussian model, 26 out of 30 for LNP model)
correctly identifies if information was limited or unlimited (colors).
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Figure S3: Statistics of a linear fit I−1
N = β0 +β1N

−1 across all eight discriminations with δθ = 45◦, sessions, and
mice. (a) The adjusted R2 is close to one for all fits. (b) Both intercept, β0, and slope, β1, are significantly above
zero for all discriminations. The plot shows these intercepts with 95% CIs, which are obscured by the dots.

Figure S4: Model comparison of per-discrimination fits vs. pooled fits across multiple discriminations. The
figure shows for each session (individual sessions connected by grey lines; horizontally jittered for clarity) the
WAIC difference of fitting the information scaling of individual discriminations (indv) vs. fitting all of these
discriminations simultaneously (pooled). The mostly positive WAIC differences, preferring pooled fits, confirm
that the information scaling across different discriminations with the same drift direction difference δθ were
exceedingly similar. The tested discriminations were 45◦ vs. 90◦, 135◦ vs. 180◦, 225◦ vs. 270◦, and 315◦ vs. 0◦

(δθ = 45◦); 45◦ vs. 135◦, 90◦ vs. 180◦, 225◦ vs. 315◦, and 270◦ vs. 0◦ (δθ = 90◦); and 45◦ vs. 180◦, 90◦ vs. 315◦,
and 225◦ vs. 0◦ (δθ = 135◦). The WAIC differences for δθ = 315◦ had overall smaller magnitudes, as they pooled
across three rather than four discriminations.
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Figure S5: Linear Fisher information is expected to drop with increasing δθ. (a) Generalized linear Fisher
information measures how easy it is to discriminate two stimuli from the population responses they evoke. This
discriminabiliy is measured by the performance of a linear discriminator, normalized by the stimulus difference
(δs or δθ). For population responses (dots = mean population activity for one stimulus, shaded areas = 1SD of
the noise covariance; δfi = difference in mean population activity for different δsi / δθi) whose mean response
changes linearly with the stimulus s, this information remains unchanged when δs changes (top; δs1 vs. δs2).
Population activity that encodes a circular stimulus θ is bound to violate this linearity, and its associated linearly
decodable information drops with an increase in δθ (bottom; δθ1 vs. δθ2). This occurs also if a non-linear decoder
that accounts for the circularity of θ would recover the same information, irrespective of δθ, and is not a bug
of the linear decoder, which nonetheless correctly identifies all linearly decodable information (that drops with
δθ). (b) We demonstrate this effect by simulating V1 population in response to oriented Garbor pattern, and
estimate the information encoded about their orientation. We show how information grows with population
sizes for stimulus pairs with different δθ (colors; mean ± 1SD across different orders with which neurons are
added to the population). (c) The information at N = 1000, which we use as a proxy for I∞, drops with δθ, for the
reason illustrated for the rotational code in (a). Details of the simulations to generate (b) and (c) are described
in Sec. 4.2. The simulations quantify information about oriented Garbor pattern rather than the drift direction
of drifting gratings, and so should only be qualitatively compared to the data in the main text.

Figure S6: The scaling of the estimated population size with the fraction of asymptotic information. Let Na
denote the population size required to encode a% of the total asymptotic information, I∞. Changing a results in
a simple re-scaling ofNa. This figures illustrates this re-scaling for different a, usingN95 as a base measure. For
example, if we would be interested in N90 instead of N95, we would read off the scaling factor for 90%, and would
re-scale the reported N95 to get estimates for N90.
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Figure S7: The variance and covariance of Fisher information scaling. We simulated virtual populations of dif-
ferent sizes M as described in Sec. 4.1, yielding f ′ and Σ for each M . (a) To demonstrate that the variance
in the Fisher information increase estimate due to shuffling well-approximates the combined variance due to
population subsampling and due to estimating the moments from a finite number of trials, we generated one
population with M = 10, 000 neurons. We in turn drew 100 empirical moments, γ ∼ N

(
f ′, 2Σ/(Tδθ)2

)
and

Ω ∼ W (Σ/(2T − 2), 2T − 1), corresponding to estimating these moments from T = 1, 000 trials each for two drift
directions separated by δθ = 45◦. We additionally subsampled N = 300 neurons of the full population ten times,
resulting in ten i1:N neuron indices, and, for each i1:N , containing a fixed set of neurons, shuffled their order 100
times, resulting in 100 j1:N per i1:N . For the empirical moments, we computed the Fisher information increase
for each subsampled, shuffled population j1:N , resulting in 106 estimates for each population size n ∈ 1, . . . N . The
figure shows the variance due to shuffling only (blue, averaged over different subsamples and empiricalmoments),
and due to empirical moments only (red, averaged over different subsamples and shuffles). As comparison, we
computed the total variance of the same estimate across 100 subsampled populations with N = 300 neurons for
each set of empirical moment (black; variance across 104 estimates), which is the variance we aim to estimate. As
the plot shows, the variance due to shuffling well-approximates this total variance. A naïve sum of the variance
due to empirical moments and shuffling (grey dashed) would over-estimate the total variance. (b) To estimate the
degree by which the variance of the Fisher information increase, var

(
∆În

)
, is overestimated when ignoring the

negative correlations across different ∆În’s, we generate populations of different sizes, M , and their associated
moments. For each population, we then estimated the covariance cov

(
∆În,∆Îm

)
across 1,000 different subsam-

ples i1:N of populations of N = 300 neurons. In turn, we estimated the Fisher information variance once when
taking into account this covariance, var

(
În

)
=
∑n
j=1

(
var

(
∆Îj

)
+ 2

∑j−1
k=1 cov

(
∆Îk,∆Îj

))
, and once when not

doing so, ˜var
(
În

)
=
∑n
j=1 var

(
∆Îj

)
. The plot shows the resulting fraction

(
˜var
(

∆În

)
− var

(
∆În

))
/var

(
∆În

)
for different n andM as an average across ten different generated populations, and shows that the variance over-
estimate becomes smaller for larger populations.
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