
 

 

Machine learning classification can reduce 

false positives in structure-based virtual screening 

 

 

 

 

Yusuf Adeshina1,2, Eric Deeds2,3, and John Karanicolas1* 

 

 

1Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111 

 

2Center for Computational Biology, 3Department of Molecular Biosciences, 

University of Kansas, Lawrence, KS 66045 

 

*To whom correspondence should be addressed. 

E-mail: john.karanicolas@fccc.edu 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2020. ; https://doi.org/10.1101/2020.01.10.902411doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2020. ; https://doi.org/10.1101/2020.01.10.902411doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2020. ; https://doi.org/10.1101/2020.01.10.902411doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2020. ; https://doi.org/10.1101/2020.01.10.902411doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2020. ; https://doi.org/10.1101/2020.01.10.902411doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2020. ; https://doi.org/10.1101/2020.01.10.902411doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2020. ; https://doi.org/10.1101/2020.01.10.902411doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2020. ; https://doi.org/10.1101/2020.01.10.902411doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2020. ; https://doi.org/10.1101/2020.01.10.902411doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2020. ; https://doi.org/10.1101/2020.01.10.902411doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2020. ; https://doi.org/10.1101/2020.01.10.902411doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2020. ; https://doi.org/10.1101/2020.01.10.902411doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2020. ; https://doi.org/10.1101/2020.01.10.902411doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2020. ; https://doi.org/10.1101/2020.01.10.902411doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2020. ; https://doi.org/10.1101/2020.01.10.902411doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2020. ; https://doi.org/10.1101/2020.01.10.902411doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2020. ; https://doi.org/10.1101/2020.01.10.902411doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2020. ; https://doi.org/10.1101/2020.01.10.902411doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2020. ; https://doi.org/10.1101/2020.01.10.902411doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2020. ; https://doi.org/10.1101/2020.01.10.902411doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2020. ; https://doi.org/10.1101/2020.01.10.902411doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2020. ; https://doi.org/10.1101/2020.01.10.902411doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2020. ; https://doi.org/10.1101/2020.01.10.902411doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2020. ; https://doi.org/10.1101/2020.01.10.902411doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2020. ; https://doi.org/10.1101/2020.01.10.902411doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2020. ; https://doi.org/10.1101/2020.01.10.902411doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2020. ; https://doi.org/10.1101/2020.01.10.902411doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2020. ; https://doi.org/10.1101/2020.01.10.902411doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2020. ; https://doi.org/10.1101/2020.01.10.902411doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2020. ; https://doi.org/10.1101/2020.01.10.902411doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2020. ; https://doi.org/10.1101/2020.01.10.902411doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.10.902411
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2020.01.10.902411
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2020.01.10.902411
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2020.01.10.902411
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2020.01.10.902411
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2020.01.10.902411
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2020.01.10.902411
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2020.01.10.902411
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2020.01.10.902411
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2020.01.10.902411
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2020.01.10.902411
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2020.01.10.902411
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2020.01.10.902411
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2020.01.10.902411
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2020.01.10.902411
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2020.01.10.902411
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2020.01.10.902411
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2020.01.10.902411
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2020.01.10.902411
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2020.01.10.902411
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2020.01.10.902411
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2020.01.10.902411
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2020.01.10.902411
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2020.01.10.902411
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2020.01.10.902411
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2020.01.10.902411
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2020.01.10.902411
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2020.01.10.902411
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2020.01.10.902411
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2020.01.10.902411
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2020.01.10.902411
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

Abstract 

With the recent explosion in the size of libraries available for screening, virtual screening is 

positioned to assume a more prominent role in early drug discovery’s search for active chemical matter. 

Modern virtual screening methods are still, however, plagued with high false positive rates: typically, 

only about 12% of the top-scoring compounds actually show activity when tested in biochemical assays. 

We argue that most scoring functions used for this task have been developed with insufficient 

thoughtfulness into the datasets on which they are trained and tested, leading to overly simplistic models 

and/or overtraining. These problems are compounded in the literature because none of the studies 

reporting new scoring methods have validated their model prospectively within the same study. Here, we 

report a new strategy for building a training dataset (D-COID) that aims to generate highly-compelling 

decoy complexes that are individually matched to available active complexes. Using this dataset, we train 

a general-purpose classifier for virtual screening (vScreenML) that is built on the XGBoost framework of 

gradient-boosted decision trees. In retrospective benchmarks, our new classifier shows outstanding 

performance relative to other scoring functions. We additionally evaluate the classifier in a prospective 

context, by screening for new acetylcholinesterase inhibitors. Remarkably, we find that nearly all 

compounds selected by vScreenML show detectable activity at 50 µM, with 10 of 23 providing greater 

than 50% inhibition at this concentration. Without any medicinal chemistry optimization, the most potent 

hit from this initial screen has an IC50 of 280 nM, corresponding to a Ki value of 173 nM. These results 

support using the D-COID strategy for training classifiers in other computational biology tasks, and for 

vScreenML in virtual screening campaigns against other protein targets. Both D-COID and vScreenML 

are freely distributed to facilitate such efforts. 
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Introduction 

Advances in biomedical sciences, driven especially by the advent of next-generation genome 

sequencing technologies, have enabled discovery of many new potential drug targets [1,2]. Ultimately, 

however, validating a new candidate target for therapeutic intervention requires development of a 

chemical probe to explore the consequences of pharmacological manipulation of this target [3]. In recent 

years this step has typically been carried out by using high-throughput screening (HTS) [4] as a starting 

point for subsequent medicinal chemistry optimization; with improvements in automation, it has become 

feasible to screen libraries that exceed a million compounds [5]. 

More recently, however, sets of robust chemical transformations from available building blocks 

have been used to enumerate huge libraries of compounds that are readily accessible but never before 

synthesized [6-9]. These libraries can comprise billions of compounds, and thus remain far beyond the 

scale accessible to even the most ambitious HTS campaign. This expansion of chemical space in which to 

search, along with the high cost of setting up and implementing an HTS screen, has increasingly driven 

the use of complementary computational approaches. 

In broad terms, virtual screening approaches can be categorized into two classes: ligand-based 

screens and structure-based screens [10-12]. Ligand-based screening starts from the (2D or 3D) structure 

of one or more already-known ligands, and then searches a chemical library for examples that are similar 

(in either a 2D or a 3D sense). In contrast, structure-based screening does not require a priori knowledge 

of any ligands that bind to the target protein: instead, it involves sequentially docking each member of the 

chemical library against the three-dimensional structure of the target protein (receptor) and using a 

scoring function to evaluate the “quality” of each modeled protein-ligand complex. The scoring function 

is intuitively meant to serve as a proxy for the expected strength of a given protein-ligand complex (i.e. its 

binding affinity) [13], and is typically built upon either a physics-based force-field [13-17], an empirical 

function [18-22], or a set of knowledge-based terms [23-28]. 
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After docking, the scoring function is used to select the most promising compounds for 

experimental characterization; at this stage the accuracy of the scoring function is of paramount 

importance, and represents the primary determinant of success or failure in structure-based screening 

[29]. A snapshot of the field was captured by a review summarizing successful outcomes from 54 virtual 

screening campaigns against diverse protein targets [12]; for the most part, all groups screened the same 

3-4 million compounds from ZINC [30,8]. Excluding GPCR’s and artificial cavities designed into protein 

cores, the median values across the set reveal that an expert in the field – using their own preferred 

methods of choice, which can include various post-docking filters and human visual inspection (“expert 

hit-picking”) – can expect about 12% of their predicted compounds to show activity. That said, the hit 

rate can also be higher in cases where the composition of the screening library is restricted to compounds 

containing a functional group with natural affinity for the target site (certain well-explored enzyme active 

sites). Conversely, the hit rate is typically lower when the scoring function is applied without additional 

filters or human intervention [12]. The median value of the most potent hit from each of the collected 

campaigns had Kd or Ki value of ~3 µM, although this latter result is strongly impacted by the fact that 

some of these Kd or Ki values are from custom compounds subsequently optimized via medicinal 

chemistry, rather than from the initial screening hit. 

Despite extensive efforts, the reasons for which active compounds are only identified at a 

relatively low rate are not quite clear. In addition to factors not evident from the structure of the modeled 

complex (compound solubility, incorrectly modeled protonation/tautomerization states of the ligand, etc.), 

we and others have hypothesized that the current bounds of performance may be attributable to 

limitations in traditional scoring functions [31,32]: these may include inadequate parametrization of 

individual energy terms, exclusion of potentially important terms, and also failure to consider potential 

non-linear interactions between terms. For these reasons, machine learning techniques may be especially 

well-suited for developing scoring functions that will provide a dramatic improvement in the ability to 

identify active compounds without human expert intervention. However, while machine learning may 

offer the potential to improve on the high false positive rate of current scoring function, further analysis 
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has revealed that many methods to date reporting promising results in artificial benchmark experiments 

may have inadvertently overfit models to the training data [33]: this can be a subtle effect of information 

leakage, occurring when the validation/testing data are not truly non-redundant from the training data. 

Other studies have shown that apparently impressive performance from deep learning methods can result 

from detecting systematic differences in the chemical properties of active versus decoy compounds [34]. 

Either of these artifacts inflates expectations based on benchmark performance, but ultimately leads to 

non-transferrable and disappointing outcomes when the methods are tested in subsequent prospective 

evaluations [35-38]. 

Here, we report the development of a dataset aimed to promote training of a machine learning 

model designed to be maximally useful in real-world (prospective) virtual screening applications. To 

build this dataset, we compile a set of “compelling” decoy complexes: a set that mimics representative 

compounds that might otherwise move forward to experimental testing if generated in the course of a 

typical virtual screening pipeline. We then use this dataset to train a machine learning classifier to 

distinguish active complexes from these compelling decoys, with the rationale that this is precisely the 

step at which standard scoring functions must be augmented. Finally, we apply this model in a 

prospective experiment, by screening against a typical enzyme target (acetylcholinesterase) and testing 

the top-scoring compounds in a biochemical (wet lab) assay for inhibition of protein activity. 

Results 

Developing a challenging training set 

Machine learning methods at varying levels of sophistication have long been considered in the 

context of structure-based virtual screening [39,31,32,40-46,29,47-54]. The vast majority of such studies 

sought to train a regression model that would recapitulate the binding affinities of known complexes, and 

thus provide a natural and intuitive replacement for traditional scoring functions [31,32,41-
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46,29,47,49,51-54]. The downside of such a strategy, however, is that the resulting models are not ever 

exposed to any inactive complexes in the course of training: this is especially important in the context of 

docked complexes arising from virtual screening, where most compounds in the library are presumably 

inactive. We instead anticipated that a binary classifier would prove more appropriate for distinguishing 

active versus inactive compounds, and that training would prove most effective if decoy complexes 

closely reflected types of complexes that would be encountered during real applications. 

Building first our set of active complexes, we drew examples from available crystal structures in 

the Protein Data Bank (PDB). Others have used collections of active compounds for which the structure 

of the complex is not known, and docked these to obtain a considerably larger set of active complexes 

[48,49]. The downside of this approach, however, is that mis-docked examples (which may be numerous) 

are labeled as active during training; this is problematic because mis-docked models do not have 

appropriate interactions with the protein target that would lead to engagement, and thus should be marked 

as inactive by the classifier. While restricting examples of active complexes to those available in the PDB 

drastically limits the number available for training, this strategy ensures that the resulting model will 

evaluate complexes on the basis of the protein-ligand interactions provided. 

Our primary consideration in compiling active compounds for the training set was that the scope 

of examples should match as closely as possible those anticipated to be encountered when the model is 

deployed. Training the model on an overly restrictive set of examples would limit its utility (since many 

cases will be “out of distribution”), whereas training too broadly might limit the resulting model’s 

performance. Accordingly, we sought to train the model on precisely the type of scenarios that match its 

intended application. We therefore further filtered the set of active compounds from the PDB to include 

only ligands that adhere to the same physicochemical properties required for inclusion in our compound 

library for real screening applications (see Methods). This led to a collection of 1383 active complexes, 

which were then subjected to energy minimization: this prevented us from inadvertently training a model 

that simply distinguished between crystal structures and models produced by virtual screening. 
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Turning next to the set of decoy complexes, our primary consideration in compiling the training 

set was that the decoy complexes should be as “compelling” as possible. If the decoy complexes can be 

distinguished from the active complexes in some trivial way – if they frequently have steric clashes, for 

example, or they are systematically under-packed, or they do not contain intermolecular hydrogen bonds 

– then the classifier can simply use these obvious differences to readily distinguish active versus inactive 

compounds. In addition to making compelling decoys, the proportion of decoys-to-actives also has a 

significant effect on the performance of machine learning trained model [55]. In order to achieve a nearly 

balanced training set, we aimed to include only small number of (very challenging) decoy complexes. 

For each active complex, we first used the DUD-E server [56] to identify fifty compounds with 

physicochemical properties matched to the active compound but completely unrelated chemical structure: 

this provided a set of compounds compatible in very broad terms for the corresponding protein’s active 

site, and also ensured that the decoy compounds would not have systematic differences from the active 

compounds. We then built low-energy conformations of each candidate decoy compound, and screened 

these against the three-dimensional structure of the active compound using ROCS [57]. From among the 

fifty candidates, we selected those that best matched the overall shape and charge distribution of the 

active ligand. Using the structural alignment of the decoy compound onto the active compound, we 

placed the decoy into the protein’s active site, and carried out the same energy minimization that was 

applied to the active complexes (Figure 1a). 

We note that the protocol used here to build the decoy complexes doubles as an entirely 

reasonable approach for ligand-based (pharmacophoric) virtual screening: indeed, ROCS is typically 

applied to identify compounds with matched three-dimensional properties to a given template, with the 

expectation that the hits will themselves be active [58-60]. Thus, the unique strategy motivating 

construction of our training set is in essence a form of adversarial machine learning: we intentionally seek 

to build decoys that we anticipate would be mis-classified by most models. We named this dataset 

D-COID (Dataset of COngruent Inhibitors and Decoys), and have made it publicly-available for others to 

use freely (see Methods). 
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To confirm that this decoy-generation strategy indeed led to a challenging classification problem, 

we applied some of the top reported scoring functions in the literature to distinguish between active and 

decoy complexes in the D-COID set. For all eight methods tested (nnscore [32], RF-Score v1 [31], 

RF-Score v2 [44], RF-Score v3 [29], PLEClinear [53], PLECnn [53], PLECrf [53], and RF-Score-VS 

Figure 1: Developing a challenging training set (D-COID). (A) Active complexes were assembled 
from the PDB by filtering for ligands that match those reflected in a screening library. For each active 
complex, 50 physicochemically-matched compounds were selected and overlaid onto the active 
compounds; the three most similar compounds on the basis of overall shape and electrostatic similarity 
were aligned into the protein active site, and used as decoy complexes. This strategy mimics the 
selection of candidate (active) compounds in a realistic pharmacophore-based screening pipeline, and 
thus generates highly compelling decoy complexes for training/testing. (B) Modern scoring functions 
cannot distinguish active complexes from decoys in this set. Overlaid histograms are presented for 
scores obtained using various scoring functions when applied to active complexes (blue) and decoy 
complexes (red) in D-COID. For all eight methods tested, the distribution of scores assigned to active 
complexes strongly overlaps with the distribution of scores assigned to decoy complexes. From each 
model’s continuous scores, 10-fold cross validation was used to obtain the classification cutoff that 
maximizes Matthews correlation coefficient (MCC) on each subset of the data. These cutoffs were used 
in calculating the precision/recall/MCC for each method. The mean of these 10 threshold values is 
reported with each plot. 
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[49]), we found that the distribution of scores assigned to active complexes was strongly overlapping with 

those of the decoy complexes (Figure 1b), indicating that these models showed very little discriminatory 

power when applied to this set. 

Typical scoring functions report a continuous value, because they intend to capture the strength of 

the protein-ligand interaction. In order to use the scoring function for classification, one must define a 

threshold value at which complexes are predicted to be either active or inactive. To avoid over-estimating 

performance by selecting the threshold with knowledge of the test set, we carried out 10-fold cross 

validation to determine appropriate threshold. In particular, we used 90% of the dataset to define the 

threshold that maximized the Matthews correlation coefficient (MCC), then applied this threshold to 

assign each complex in the unseen 10% as active/inactive. Using this unbiased thresholding measure to 

assign each complex in the D-COID set, we found the Matthews correlation coefficient (MCC) for best-

performing scoring function in this experiment to be only 0.39. 

A new classifier for identifying active complexes: vScreenML 

Having developed a relevant and challenging training set, we next sought to develop a machine 

learning model that could discriminate between active and decoy complexes in this set. It has been 

pointed out in the past that machine learning models built exclusively upon protein-ligand element-

element distance counts can yield apparently impressive performance in certain benchmarks without 

proving useful beyond these [35]. To avoid this pitfall, we used as our starting point the Rosetta energy 

function [61]: a classical linear combination of traditional (physics-based) molecular mechanics energy 

terms, alongside empirical terms added so that distributions of atomic arrangements would quantitatively 

mimic those observed in the PDB [62]. While we acknowledge that the Rosetta energy function is not 

commonly used for virtual screening, this is primarily because it is too slow to be applied for docking 

large compound libraries: in one recent benchmark for classification of active versus decoy complexes 

[63], the Rosetta energy function showed equivalent performance as the popular FRED Chemgauss4 

scoring function [64]. 
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At the outset, we found that applying Rosetta to the D-COID set did not yield results notably 

different than in our previous experiment (Figure 2a), and indeed this was confirmed quantitatively 

through the Matthews correlation coefficient (0.39). Next, we used 10-fold cross validation to re-weight 

the terms in this scoring function for improved performance in this D-COID classification task using a 

perceptron [65,66] to maintain the linear functional form of the Rosetta energy function: this resulted in a 

modest improvement in the apparent separation of scores (Figure 2b), but a notable improvement in 

MCC (0.53). This observation is unsurprising, because the Rosetta energy function is primarily optimized 

for proteins rather than protein-ligand complexes, and re-training its component energies for a specific 

task will naturally lead to improved performance for that task. For precisely this reason, historically a 

separate linearly re-weighted version of the default Rosetta energy function has been used when modeling 

protein-ligand complexes [67] or when re-ranking complexes from virtual screening [63]. 
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Next, we explored the performance of models that move beyond linear combinations of these 

energy terms, and instead use these component energies as the basis for building decision trees. Using the 

XGBoost framework (an implementation of gradient-boosted decision trees), we observed notable 

separation of the scores assigned to active/decoy complexes (Figure 2c), along with a slight increase in 

MCC (0.56). 

To complement the existing terms in the Rosetta energy function, we next added a series of 

structural quality assessments calculated by Rosetta that are not included in the energy function 

Precision: 0.50
Recall: 0.64
MCC: 0.39

Precision: 0.64
Recall: 0.66
MCC: 0.53

Precision: 0.75
Recall: 0.57
MCC: 0.56

Precision: 0.79
Recall: 0.60
MCC: 0.60

Precision: 0.85
Recall: 0.67
MCC: 0.68
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Figure 2: Development of vScreenML. Overlaid histograms are presented for scores obtained when 
scoring active complexes (blue) and decoy complexes (red) from D-COID. Scoring functions used 
were: (A) Default Rosetta energy function, (B) Linearly-reweighted Rosetta energy terms, (C) Rosetta 
energy terms combined via XGBoost, (D) Rosetta energy terms plus structural assessments, (E) Rosetta 
terms plus additional diverse descriptors (non-optimized vScreenML), (F) vScreenML after hyper-
parameter tuning. Over the course of this sequence, the overlap between the active and decoy 
complexes is progressively reduced and MCC systematically increases. For the first two panels, 10-fold 
cross validation was used to obtain the classification cutoff that maximizes Matthews correlation 
coefficient (MCC) on each subset of the data. These cutoffs were used in calculating 
precision/recall/MCC, and the mean of these 10 threshold values is reported. Because the remaining 
panels each report results from classification models, their thresholds are fixed at 0.5. 
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(Figure S1); inclusion of these terms yielded a model with further improved discriminatory power 

(Figure 2d). Inspired by this improvement, we then incorporated additional structural features aiming to 

capture more sophisticated chemistry than that encoded in Rosetta’s simple energy function, specifically 

from RF-Score [31] (features that count the occurrence of specific pairwise intermolecular contacts), from 

BINANA [68] (analysis of intermolecular contacts), from ChemAxon [69] (ligand-specific molecular 

descriptors), and from Szybki [70] (a term intended to capture ligand conformational entropy lost upon 

binding). We proceeded to train a model using this collection of features, which we denote “vScreenML”, 

and were pleased to discover that these again increased the separation between scores assigned to active 

and decoy complexes (Figure 2e). Finally, we used hyperparameter tuning to optimize development of 

the model (Figure S2), and accordingly developed a model that provided nearly complete separation of 

active and decoy complexes (Figure 2f) and unprecedented MCC for this challenging task (0.74). We 

have made this model publicly-available for others to use freely (see Methods). 
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68 TOTAL 
FEATURES

Metrics XGB-Op XGB

Accuracy 0.90 0.89

Precision 0.87 0.86

Recall 0.70 0.67

AUC 0.83 0.81

F1-Score 0.78 0.75

Matt 0.72 0.69

Parameters XGB-Pre (Default) XGB-after (Optimized)

Learning rate 0.3 0.01

Min_child_weight 1 1

Max_depth 6 7

Gamma 0 0.1

Subsample 1 0.5

Colsample_bytree 1 0.4

Lambda 1 Default

Alpha 0 Default

Scale_pos_weught 1 1

N_estimators 100 1945

(A) (B)

Figure S1: Features incorporated into vScreenML. These features derive from six sources: Rosetta 
energy terms, Rosetta structural quantifiers, RF-Score’s rfscore_v1 features, BINANA’s analysis of 
intermolecular contacts, ChemAxon’s cxcalc features, OpenEye’s SZYBKI conformational entropy 
term. 

Figure S2: Hyperparameter tuning of vScreenML. (A) Performance comparison of the optimized 
and non-optimized vScreenML models. (B) XGBoost parameters before and after optimization. 
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Through the course of developing of this model, we transitioned from a linear combination of six 

Rosetta features with clear physical basis, to a collection of 68 diverse and likely non-orthogonal features 

connected through a more complex underlying model (Figure S1). Using the complete set of features that 

comprise vScreenML, we tested alternate machine learning frameworks, leading us to discover that a 

different implementation of gradient-boosted decision trees yielded essentially identical performance, and 

other models built upon decision trees were only slightly worse. By contrast, other models that are not 

built on decision trees did not provide comparable performance (Figure S3a). Importantly, we note that 

this model has been trained to distinguish actives from decoy complexes in a context where both have 

been subjected to energy minimization using the Rosetta energy function: the same optimized model is 

not necessarily expected to recognize actives successfully if they have not been prepared this way 

(e.g. crystal structures). 
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To evaluate the contributions of each part of our feature set, we next removed one at a time all 

features from a given origin, and explored how the lack of these features would affect performance 

(Figure S3b). This experiment showed that only a very small deterioration in performance was observed 

when either the RF-Score or BINANA features were removed, but removing both had a large impact; this 

is unsurprising, given the fact that many of the features in these sets are correlated. Further, removal of 

SZYBKI’s conformational entropy term had no impact on the model’s performance, suggesting either that 

the change in ligand conformational entropy as described by SZYBKI does not help distinguish active 

versus decoy complexes in this dataset, or that this effect is already captured through some combination 

of other features. In principle, features that are unnecessary (either because they are correlated with other 

features or because they do not help in classification) should be removed to better avoid the risk of 

Features Accuracy Precision Recall AUC Mathews
XGBoost 0.89 0.86 0.67 0.81 0.69
Gradient Boosting 0.89 0.85 0.67 0.81 0.69
Random Forest 0.86 0.83 0.55 0.76 0.61

Extra Trees 0.86 0.85 0.53 0.76 0.60
Support Vector Machine 0.75 0.00 0.00 0.50 0.00
Linear Discriminant Analysis 0.87 0.79 0.65 0.78 0.63
Quadratic Discriminant Analysis 0.38 0.28 0.96 0.56 0.17
Gaussian Naïve Bayes 0.50 0.32 0.90 0.63 0.26

K-nearest Neighbour (KNN) 0.73 0.45 0.25 0.57 0.18
DUMB 0.75 0.00 0.00 - 0.00

Features Accuracy Precision Recall AUC Mathews
Rosetta (Reweighted) 0.85 0.75 0.57 0.76 0.56
RF (Reweighted) 0.78 0.66 0.30 0.62 0.34
BINANA (Reweighted) 0.83 0.75 0.50 0.72 0.51
Rosetta+NC 0.86 0.79 0.60 0.77 0.60
Rosetta+NC+LigProp 0.86 0.79 0.60 0.77 0.62

Rosetta+NC+LigProp+Szybki 0.86 0.79 0.60 0.77 0.62
Rosetta+NC+LigProp+Szybki+RF 0.88 0.83 0.65 0.80 0.67
Rosetta+NC+LigProp+Szybki+BINANA 0.87 0.82 0.62 0.79 0.65
Rosetta+NC+LigProp+Szybki+RF+BINANA 0.89 0.86 0.67 0.81 0.69

(A)

(B)

Figure S3: Performance of alternate models. (A) Using the complete vScreenML feature set, 
alternate frameworks are used for building the model. (B) Examination of models in which a set of 
features from a given origin is removed en-masse; all models are trained using XGBoost. 
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overtraining. In this case, however, we because XGBoost is not particularly susceptible to overtraining 

and our feature set remains relatively small in comparison to our training set, we elected to instead test 

our model immediately in orthogonal benchmarks to evaluate potential overtraining. 

Benchmarking vScreenML using independent test sets 

The DEKOIS project (currently at version 2.0) [71,72] is intended to provide a “demanding” 

evaluation set for testing virtual screening methods. Acknowledging that a wide variety of factors make 

some protein targets easier to model than others, this set includes 81 different proteins with available 

crystal structures. For each protein, a custom library is provided that contains 40 active compounds and 

1200 decoys: thus, about 3.2% of each library is active. The crystal structures of active complexes are not 

provided (and indeed, most have not yet been experimentally determined). To evaluate performance of a 

new scoring function, one typically ranks all 1240 compounds for a given protein and selects the top-

scoring 12; the enrichment factor for this subset of the library (EF-1%) corresponds to the ratio of the 

percent of active compounds among the selected 12 to the ratio of active compounds in the original 

library. Scoring perfectly for a given protein in this set would mean ranking 12 active compounds before 

all 1200 of the decoys: this would correspond to EF-1% = 1.00/0.032 = 31. Conversely, a method that 

randomly selects compounds from the library would (on average) select active compounds 3.2% of the 

time, and thus yield an EF-1% of 1. 

Among the 81 proteins in the DEKOIS set, we noted that some were included in our training set 

as well. To avoid any potential information leakage that might overestimate the performance we could 

expect in future applications [33], we completely removed these testcases. This left a set of 23 protein 

targets, each of which vScreenML had never seen before. For each protein, we docked each compound in 

the corresponding library to the active site (see Methods); we note that this unavoidable step could 

artificially deflate the apparent performance of vScreenML or other models tested, since a mis-docked 

active compound should have no basis for being identified as active. Some of the compounds in the 

DEKOIS set could not be suitably modeled in all parts of our pipeline, and were therefore removed; each 
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of the 23 proteins considered ultimately was used to generate 30-40 active complexes and 800-1200 

decoy complexes. Each of these complexes (both actives and decoys) were then subjected to energy 

minimization using the Rosetta: as noted earlier, vScreenML should only be applied in the context of 

Rosetta-minimized structures. Along with vScreenML, we used eight other machine learning scoring 

functions were then used to rank the docked-and-minimized models: nnscore [32], PLECnn [53], PLECrf 

[53], PLEClinear [53], RF-Score v1 [31], RF-Score v2 [44], RF-Score v3 [29] and RF-Score-VS [49]. We 

additionally included the (default) Rosetta energy function in this benchmark [61]. 

To compare performance between methods, we plot EF-1% using one method (for each of the 23 

protein targets) as a function of EF-1% using the other method (Figure 3a). As plotted here, points below 

the diagonal are specific protein targets for which vScreenML outperformed the alternate method (higher 

EF-1% for this protein target). The importance of training on both actives and decoys for this task is 

immediately apparent in these comparisons, by comparing for example vScreenML against PLECnn (a 

neural network representing the current state-of-the-art among models trained exclusively on active 

complexes). For the 23 targets in this experiment, PLECnn out-performs vScreenML in 3 cases (points 

above the diagonal), whereas vScreenML proves superior in 12 cases (the other 8 cases were ties). 

To evaluate in a statistically rigorous way which method was superior, we applied the (non-

parametric) Wilcoxon Signed-Rank test: this paired difference test uses the rank values in the data, and 

thus it takes into account not just which method has higher EF-1%, but also the magnitude of the 

difference [63]. We used a two-tailed test, in order to assume no a priori expectation about what method 

would out-perform the other. At a threshold of p<0.05, this analysis shows that vScreenML out-

performed 8 of the 9 alternate scoring functions to a statistically significant degree. Only RF-Score-VS 

was not out-performed by vScreenML at a statistically significant threshold; however, we note that about 

half of the 23 targets in this benchmark were included in training RF-Score-VS (black points in this 

figure), which may have provided it with a slight advantage relative to vScreenML (since the latter had 

not seen any of these targets before). 
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To test these methods on a second independent virtual screening benchmark, we drew from our 

own prior studies of inhibitors of protein-protein interactions [63]. In the course of evaluating existing 

scoring functions, we had several years ago assembled a set of small molecules that engage protein 

interaction sites; 10 of these protein targets had not been included in training vScreenML. For each of 

these, we had previously compiled 2000 decoys with dissimilar chemical structure matched to the active 

compound’s lipophilicity. The decoy compounds were already docked and energy minimized from our 

studies, making this “PPI set” a natural testbed for the newer methods that were not available at the time 

this benchmark was developed [63]. In contrast to the DEKOIS benchmark, the structures of the active 

complexes are drawn from (energy-minimized) crystal structures, removing a potential source of 

variability (since mis-docked active compounds should not be labeled “correct” by a scoring function). 

Because each protein target is only associated with a single active compound in this test set, we 

cannot meaningfully calculate enrichment factor; instead, after scoring each of the complexes we simply 

report the rank of the active compound. As there are 2001 complexes for each protein target, a method 

that performs as random would be expected to rank the active compound at position 1001, on average. 

After applying each of the same scoring functions used in our DEKOIS experiment, we find that for 5 of 

the 10 protein targets vScreenML ranks the active compound among the top 100 (i.e., top 5% of the 

compounds for a given target) (Figure 3b). The other scoring functions tested each ranked the active 

Figure 3: Comparing vScreenML to other scoring functions using two independent virtual 
screening benchmarks. Each benchmark is comprised of multiple protein targets, corresponding to 
points on these plots. (A) DEKOIS benchmark, comprised of 23 protein targets. For each target 
(individual dots), 30-40 active complexes and 800-1200 decoy complexes are provided. For a given 
target, each scoring is used to rank the set of complexes. For a given scoring function, the number of 
active complexes in the top 1% of all complexes is used to calculate the enrichment of actives relative to 
randomly selecting complexes; thus, higher numbers indicate better performance). When comparing 
vScreenML against another method, a point below the diagonal indicates superior performance by 
vScreenML for this particular target. Targets seen by rfscore_VS during training of this method are 
marked with black triangles. (B) PPI benchmark, comprised of 10 protein targets. For each target, a 
single active complex is hidden amongst 2000 decoy complexes. Instead of using enrichment, the rank 
of the active compound (relative to the decoys) is calculated: thus, lower numbers indicate better 
performance. When comparing vScreenML against another method, a point above the diagonal 
indicates superior performance by vScreenML for this particular target. p-values in both cases were 
computed using the two-tailed Wilcoxon Signed-Rank test. 
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compound in the top 100 for at most one target, except for RF-Score-VS which met this criterion twice. 

Once again applying the Wilcoxon Signed-Rank test to these rankings, we once again conclude that 

vScreenML out-performs at a statistically significance degree all of these alternate scoring functions 

except for RF-Score-VS. 

 

 

To determine whether vScreenML’s impressive performance derived from its training on the 

D-COID set or from the broad collection of features it includes, we used D-COID to train a model using 

the features from RF-Score v1; our re-trained model preserves the same random forest framework and 
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Figure S4: Retraining rfscore_v1 using D-COID. (A) Overlaid histograms for scores obtained when 
scoring active complexes (blue) and decoy complexes (red) from D-COID using the original rfscore_v1. 
(B) Overlaid histograms after re-training rfscore_v1. (C) Comparison of the original and re-weighted 
versions of rfscore_v1 applied to the DEKOIS benchmark. (D) Comparison of the original and re-
weighted versions of rfscore_v1 applied to the PPI benchmark. (E) Comparison of re-weighted 
rfscore_v1 versus vScreenML on the DEKOIS benchmark. (F) Comparison of re-weighted rfscore_v1 
versus vScreenML on the PPI benchmark. 
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hyperparameters from the original model [31]. As noted earlier (Figure 1b), RF-Score v1 initially yields 

very little discriminative power when applied to the D-COID set; after re-training on this set, we find 

much improved separation of the scores assigned to active versus decoy complexes (Figure S4ab), 

though not close to the performance of vScreenML (Figure 2f). This re-trained variant of RF-Score v1 

also out-performs the original RF-Score v1 on both the DEKOIS and the PPI benchmarks, albeit not to a 

level of statistical significance, and for the PPI benchmark it even ranks two actives in the top 100 for 

their corresponding protein targets (Figure S4cd). That said, the level of improvement is insufficient for 

the re-trained RF-Score v1 to out-perform vScreenML in either benchmark (Figure S4ef), consistent with 

their relative performance on D-COID set. Overall, these observations show that training using the 

D-COID approach can certainly improve performance of existing scoring functions for other unrelated 

tasks; however, it also suggests that some part of vScreenML’s power derives from the broad and diverse 

set of features that it uses. 

Evaluating vScreenML in a prospective experiment 

As noted earlier, it is absolutely essential to test new scoring functions in prospective 

experiments: this can readily determine whether performance in a given benchmark experiment is likely 

to extend into real future applications, and rule out any possibility that inadvertent information leakage 

allowed an overfit model to “cheat” in benchmark experiments. We selected as our representative target 

human acetylcholinesterase (AChE) because of its biomedical relevance and the availability of a 

straightforward functional assay (using commercially-available enzyme and substrate). 

To ensure that our search for new candidate AChE inhibitors would not be limited by the 

chemical space present in a small screening library, we turned to a newly-available virtual library of 

“readily-accessible” but never-before-synthesized compounds [9]. At the time of our screen, this library 

was comprised of 732 million chemical entities that conform to historic criteria for drug-likeness [73,74]. 

Because building conformers and docking each entry in this library would be extremely computationally 

demanding, we instead took a two-step approach to finding candidate inhibitors. First, we explicitly 
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docked a chemically-diverse set of 15 million representatives from the library, and applied energy 

minimization to the top 20,000 models from the crude docking step. We ranked each of these using 

vScreenML, and identified the top 100 candidates. For each of these 100 initial candidates, we returned to 

the complete compound library and identified 209 analogs on the basis of chemical similarity: after 

merging these with the parent compounds from each search, this led to a new focused library of 20,213 

unique compounds. We structurally aligned each of these compounds back onto the parent docked model 

that led to their selection, re-minimized, and then used vScreenML to rank these second-stage candidates. 

We collected into a single list the 20 top-scoring compounds from the first round together with the 20 top-

scoring compounds from the second round, noting that 4 compounds were included on both lists. We 

eliminated compounds that were extremely close analogs of one another, and sought to purchase the 

remainder. Based on a standard filter [75], none of these structures were predicted to be PAINS (pan-

assay interference) compounds. Ultimately 23 compounds were successfully synthesized, as selected by 

vScreenML without any human intervention. 

We initially tested these compounds at a concentration of 50 µM for inhibition of AChE, using a 

colorimetric enzyme assay (Figure 4a). To our amazement, we found that nearly all of the 23 compounds 

selected by vScreenML showed detectable enzyme inhibition: all except AC12 and AC7 showed a 

statistically significant difference in AChE activity relative to DMSO alone (p<0.05, one-tailed t-test). Of 

these 23 compounds, 10 of them provided more than 50% inhibition, indicating that these compounds’ 

IC50 was better than 50 µM. Moreover, the most potent of these used a variety of diverse chemical 

scaffolds, although the most potent pair (AC6 and AC3) do share an extensive common substructure 

(Figure 4b). We then evaluated the activity of the most potent inhibitor, AC6: in the absence of any 

medicinal chemistry optimization, we found this compound to have an IC50 of 280 nM, corresponding to a 

Ki value of 173 nM (Figure 4c). Thus, applying vScreenML led to a much higher hit rate than observed 

in typical screening campaigns, and also yielded a much more potent starting point than is typically 

observed. 
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Unsurprisingly, the underlying model of the complex that was used by vScreenML to identify this 

compound shows extensive and nearly optimal protein-ligand interactions (Figure 4d). In principle, it 

should be the quality of these interactions that guided vScreenML to prioritize this compound for 

Figure 4: Prospective evaluation of vScreenML in a virtual screen against human 
acetylcholinesterase (AChE). (A) Of the 23 compounds prioritized by vScreenML for testing, at 
50 µM nearly all of these inhibit AChE. Data are presented as mean ± SEM, n = 3. (B) Chemical 
structures of the most potent hit compounds. (C) Dose-response curve for the most potent hit 
compound, AC6. Data are presented as mean ± SEM, n = 3. (D) Model of AC6 (orange sticks) in the 
active site of the acetylcholinesterase (light gray). (E) Predicted activity of AC6 from three target 
identification tools: none of these identify AChE as a potential target of this compound, suggesting that 
this is a new scaffold for AChE inhibition. (F) Similarity searching against all compounds in ChEMBL 
designated as AChE inhibitors (either by fingerprint similarity of by shared substructure) finds no hits 
with discernible similarity, confirming that this is a new scaffold for AChE inhibition. 
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experimental validation. To rule out the possibility that vScreenML had instead somehow “recognized” 

AC6 as an AChE inhibitor from its training, we asked whether chemoinformatic approaches could have 

been used to find AC6. 

We first provided the chemical structure of AC6 to three different “reverse screening” methods: 

Similarity Ensemble Approach (SEA) [76], SwissTargetPrediction [77,78], and PharmMapper [79,80]. 

Each of these tools look for similarity of the query compound against all compounds with known 

bioactivity, then they rely on the fact that similar compounds have similar bioactivity to predict the likely 

target(s) of the query compound. SEA and SwissTargetPrediction carry out this search on the basis of 2D 

similarity (i.e. similar chemical structures), whereas PharmMapper evaluates 3D similarity (i.e. shared 

pharmacophores). We took for each method the top 5 predicted activities for AC6, but found that none of 

these methods included AChE among their predictions (Figure 4e). All of these methods do include 

AChE among their list of potential targets, however, as confirmed by ensuring that this prediction 

emerges when these servers are provided with the structure of previously-described AChE inhibitor 

donepezil (Figure S5). 

To directly determine the AChE inhibitor described to date that is most similar to AC6, we 

compiled from ChEMBL all 2742 compounds reported to have this activity. We then screened this 

collection to determine their similarity to AC6, as defined by either chemical fingerprints or by shared 

substructure. The 5 most similar compounds as gauged by either approach bear no obvious similarity to 

AC6 (Figure 4f): collectively then, these experiments confirm that AC6 is indeed a novel chemical 

scaffold with respect to its inhibition of AChE, and could not possibly have been identified by 

vScreenML through inadvertent leakage during the model’s training. 
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A)

B)

C)

Figure S5: Positive control for target identification methods. We confirmed that all three methods 
would successfully identify AChE as the target of a known AChE inhibitor (donepezil, CHEMBL1678). 
(A) Similarity Ensemble Approach (SEA). (B) SwissTargetPrediction. (C) PharmMapper. We note that 
AChE was only ranked #112 among the PharmMapper hits because the 3D conformations it built for 
donepezil were not sufficiently well-matched to the active conformation to produce a better ranking. 
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Discussion 

At the outset of this work, we noted that typical virtual screening studies report hit rates of about 

12%, with the most potent reported compound having Kd or Ki value of ~3 µM (with the caveat that some 

of these relied on additional optimization beyond the initial screen) [12]. Obviously the results of our 

screen against AChE using vScreenML far surpass these mileposts; in light of this, it important to 

carefully consider the potential contributions to vScreenML’s performance in this experiment. 

First, we re-emphasize the dissimilarity between AC6 and any known AChE inhibitor: this makes 

it exceedingly unlikely that vScreenML found AC6 simply on the basis of having been trained on some 

close analog. 

Second, we carried out a non-standard two-step screening strategy to efficiently explore the 

complete Enamine collection, hoping to essentially carry out an internal round of medicinal chemistry 

optimization before testing any compounds explicitly. Tracking the provenance of our most potent 

compounds, however, we discovered that all four of our most potent compounds had already been 

identified in the first of the two screening steps (Table S1). A previous virtual screen of the Enamine 

library [9] explicitly docked all compounds from the library, at a time that the library comprised “only” 

138 million compounds, and found through retrospective analysis that picking a single representative 

compounds from a cluster of analogs would typically not yield sufficient docking score for the cluster to 

be advanced for further exploration. In essence, both our results and the observations from this previous 

screen suggest that the SAR landscape may not be sufficiently smooth to allow potentially promising 

scaffolds to be identified from a single arbitrary representative: rather, finding the best hits (on the basis 

of docking scores) does unfortunately require explicitly screening each member of the library 

individually. In this context, then, it is unlikely that the observed performance of vScreenML can be 

attributed to having used a two-step strategy for screening the Enamine library. 



 27 

Compound Identified as a top-scoring hit 

AC6 1st round 

AC3 1st round 

AC10 Both rounds 

AC11 1st round 

AC15 2nd round 

AC5 2nd round 

AC13	 2nd round	

AC19 Both rounds 

AC23 1st round 

AC9 Both rounds 

 

 

In this vein, we also note that our screening strategy was allowed to explore an unusually large 

chemical space comprising 732 million synthetically-accessible compounds. However, seven of our top 

ten compounds (those with IC50 values better than 50 µM) had already been identified in the first 

screening step (Table S1), owing to the ineffectiveness of identifying useful scaffolds from a single 

representative compound. The bulk of the success in this screen was essentially achieved by screening a 

library of 15 million diverse compounds, which is by no means unprecedented and has not led to such 

dramatic success in the past. 

Table S1: Provenance of AChE inhibitors. For each of the 10 AChE inhibitors that provided more 
than 50% inhibition at a concentration of 50 µM, we determined at what stage this compound was 
prioritized for testing. Our strategy included two stages of screening: first we screened only 15 million 
diverse compounds from the Enamine collection, then we expanded our search by collecting analogs for 
each of these hits. We note that 7 of these 10 compounds were identified in the first round of screening; 
after re-refinement in the second round, 3 of these were still highly-ranked whereas 4 had been 
surpassed by analogs (or received lower scores upon re-refinement). Only 3 of these 10 compounds 
would have been missed if our screening had been limited to a single round of 15 million compounds. 
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Importantly, we cannot rule out the prospect that the performance we observe here is a result of 

AChE being an unexpectedly easy target. It is certainly the case that virtual screening hit rates against 

GPCRs are often much higher those obtained for other target classes [12]. Indeed, careful examination of 

the literature showed that some of the studies reporting virtual screens against AChE [81-85] do indeed 

find considerably higher hit rates and more potent compounds than the median values we quote across all 

target classes. In light of these other results, then, a degree of caution must be exercised before 

extrapolating the performance of vScreenML in this prospective AChE benchmark to other target classes; 

further evaluation will be needed to explicitly determine whether vScreenML affords similarly 

outstanding results in future screening experiments. 

At the same time, however, results of retrospective benchmarks comparing vScreenML to other 

scoring functions are unambiguous. As described, vScreenML dramatically outperforms eight other 

modern machine learning scoring functions on both the DEKOIS and the PPI benchmark sets. Both 

benchmarks were carried out with careful vigilance to ensure that information from training could not 

contaminate the test data. In the past, we strongly suspect inadvertent overtraining of this type has limited 

the utility of other models and at the same time provided artificially inflated performance on initial 

(retrospective) benchmarks. Indeed, a recurrent disappointment from many past machine learning scoring 

functions has been their inability to translate performance from retrospective benchmarks into equivalent 

results in future prospective applications [37]. For example, three years after publication of nnscore [32] 

this program was used in a screen against farnesyl diphosphate synthase, and only provided one hit with 

IC50 of 109 µM (from ten compounds tested) [86]. Where possible, then, we strongly urge incorporation 

of careful prospective evaluations alongside retrospective benchmarks, as a safeguard against potentially 

misleading performance from the latter. Already such prospective experiments have been included in 

other recent studies [41,87], strongly supporting transferability of the underlying methods. The ability to 

readily compare vScreenML against other machine learning scoring functions was also greatly facilitated 

by the Open Drug Discovery Toolkit (ODDT) [88], which provides implementations of multiple methods. 
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Direct head-to-head evaluations of this manner are indeed critical to explore the relative strengths of 

different approaches, ideally across diverse types of benchmarks. 

While vScreenML does incorporate a broad and distinct set of features, these have been largely 

collected from other approaches: there is nothing particularly unique or special about the features it 

includes. There are also numerous potential contributions to protein-ligand interactions that are not 

captured in this collection of features, ranging from inclusion of tightly-bound interfacial waters 

[16,89,90] to explicit polarizability and quantum effects [91,92]. In this vein, ongoing research in ligand-

based screening has led to new approaches that learn optimal molecular descriptors (and thus the 

representation that directly leads to the features themselves) at the same time as the model itself is trained 

[93,94]: these might similarly be used as a means to improve the descriptors used in structure-based 

screening as well. Thus, there is likely to be considerable future improvement to vScreenML that is 

possible, by further optimization of the features that it captures. 

Rather than the specific features incorporated in this first incarnation of vScreenML, we believe 

that the impressive performance we observed in our retrospective benchmarks is instead primarily 

attributable to the strategy used in training the model. Whereas scoring functions have historically 

focused on recapitulating binding affinities of complexes, vScreenML is unique in having been trained to 

distinguish active complexes from extremely challenging decoys in the D-COID set. Indeed, the 

overarching hypothesis of our study was that building truly compelling decoys to better represent the 

(inactive) compounds selected from actual virtual screens we would lead to a model capable of 

distinguishing precisely these cases. The performance of vScreenML in both the retrospective and 

prospective benchmark strongly supports this hypothesis. 

Thus, the D-COID set represents an important resource for driving development of improved 

scoring functions beyond vScreenML, and accordingly we have made this dataset freely available for this 

purpose (see Methods). 
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Methods 

Accessing these tools 

The D-COID dataset is available at https://data.mendeley.com/datasets/8czn4rxz68/  [95]. 

vScreenML is available at https://github.com/karanicolaslab/vScreenML . 

Building the D-COID set 

The overarching goal of our study was to train a model for real virtual screening applications. We 

therefore included in D-COID only active complexes that included representative drug-like ligands, and 

excluded chemical matter that did not reflect the composition of the screening libraries we prefer to use. 

We downloaded from the Protein Data Bank (PDB) [96] all protein-ligand complexes (56,195 

entries as of May 2018), and then restricted this set to crystal structures with resolution better than 2.5 Å 

(43,148 complexes). We then drew from Ligand Expo [97] to define a set of 2937 specific ligands found 

in the PDB that we deemed ineligible for our study: these include nucleotide-like molecules (e.g., ATP), 

co-factors (e.g., NAD), metal-containing ligands (e.g., heme), crystallographic additives (e.g., PEG), and 

covalent ligands. We filtered to retain only complexes that included an eligible ligand, and did not have 

an additional ligand within 12 Å of the eligible ligand (leaving 26,271 complexes). To focus training on 

precisely the type of chemical matter used in our virtual screens, we then applied to this collection the 

same stringent filter we use when building our screening libraries: molecular weight between 300-400 Da 

and clogP 1-4. This filter drastically cut down the size of our collection (to 2,075 complexes). Finally, 

complexes with double occupancy or ambiguous density were manually excluded, leaving a high-quality 

collection of 1,383 active complexes. 
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For each of these active complexes, we extracted the ligand and used the Database of Useful 

Decoys Enhanced (DUD-E) [56] server to generate 50 property-matched decoys: compounds with similar 

physicochemical properties but dissimilar chemical topology. For each of these decoy compounds, we 

used OpenEye’s OMEGA [98] to generate 300 low-energy conformers, and then used ROCS [57] to align 

each of these to the structure of the active conformer from the PDB. The three decoys that best matched 

the three-dimensional shape and pharmacophoric features of the active conformer were identified on the 

basis of their Tanimoto-Combo score; this led to a total of 4,149 decoy compounds. By virtue of having 

aligned the conformers of the decoys to the active conformation to evaluate their similarity, already the 

alignment was available for placing the decoy compound in the corresponding protein’s active site. We 

later discovered that 39 of these decoy compounds included chemical features that could not be processed 

by the programs we used to extract structural features for vScreenML; these decoys were removed, 

leading to a total of 4,110 decoy complexes. 

Finally, to present both the active and decoy complexes in a context mimicking that of a virtual 

screening output, we subjected all complexes to standard energy minimization in Rosetta [61]. 

Extracting structural features 

For each of the minimized active and decoy complexes, structural features were extracted first 

using the Rosetta (“REF15”) energy function [61]. Ligand properties were calculated using ChemAxon’s 

cxcalc [69], and the ligand’s conformational entropy was estimated using OpenEye’s SZYBKI tool [70]. 

The open source implementations of RF-Score [31] and BINANA [68] were used to calculate structural 

features from these two programs. The complete list of vScreenML’s features is presented in Figure S1. 

Machine learning 

We considered a total of nine classification algorithms in this study, using the Python 

implementations of each: Support Vector Machine (SVM) [99], Gradient Boosting (GB) [100], Extreme 

Gradient Boosting (XGB) [101], Random Forest (RF) [102], Extremely Randomized Trees (ET) [103], 
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Gaussian Naïve Bayes (GNB) [104], k-Nearest Neighbor (kNN) [104], Linear Discriminant Analysis 

(LDA) [104], and Quadratic Discriminant Analysis (QDA) [104]. 

Training was carried out using 10-fold cross-validation; splitting the dataset into 10 subsets was 

carried out in a stratified manner to ensure that the overall ratio of actives to decoys was preserved in each 

split. For XGBoost hyperparameter optimization, we carried out a grid search to find the set of parameters 

that gave the best cross-validation accuracy (splitting out a separate validation set from the data). 

To re-train RF-Score v1 under D-COID, we used a standard random forest model with 

hyperparameters n_estimators=500 and max_features=5 (drawing these values from the original study 

describing RF-Score v1 [31]). 

Virtual screening benchmarks 

Comparisons between scoring functions was enabled by the Open Drug Discovery Toolkit 

(ODDT) [88], which provides implementations of nnscore (version 2), RF-Score v1, RF-Score v2, 

RF-Score v3, PLEClinear, PLECnn and PLECrf at https://github.com/oddt/oddt. The implementation of 

RF-Score-VS was obtained from https://github.com/oddt/rfscorevs. 

In both the DEKOIS and the PPI benchmark experiments, we carefully sought to minimize any 

potential information leakage from vScreenML’s training (on D-COID) and the targets present in these 

benchmark sets. Excluding a specific complex present in both sets is insufficient, because the structure of 

a close chemical analog bound to the same target protein could still provide an unfair advantage. For this 

reason, we excluded from these benchmarks sets any protein targets present in D-COID (on the basis of 

shared Uniprot IDs). This reduced the number of DEKOIS targets from 81 to 23, and the number of PPI 

targets from 18 to 10. 

For the DEKOIS set, we docked both the actives and the decoys to their respective target protein 

using OpenEye’s FRED [64], then applied energy minimization in Rosetta. For the PPI set, active 

complexes were minimized starting from their crystal structures; decoy complexes were generated by 

docking with FRED then energy minimized. 



 33 

Statistical analysis was carried out using the (two-tailed) Wilcoxon Signed-Rank test as 

implemented in Python. Comparisons were applied directly to the EF-1% values for the DEKOIS 

experiment, and to the log10 of the ranks in the PPI experiment. 

Virtual screen against acetylcholinesterase 

We began by downloading from the chemical vendor Enamine the “diverse set” of 15 million 

compounds representative of their REAL database (732 million compounds). For each compound we used 

OMEGA [98] to generate 300 low-energy conformers, and used FRED [64] to dock these against the 

crystal structure of human acetylcholinesterase solved in complex with potent inhibitor donepezil (PDB 

ID 4ey7) [105]. We carried forward the top 20,000 complexes (on the basis of FRED score) for Rosetta 

minimization, and used each of these minimized models as input for vScreenML. 

For each of the top 100 complexes (as ranked by vScreenML), we extracted the ligand and used 

this to query the Enamine database for analogs. Each query returned 210 analogs; because 787 of these 

were redundant, this led to a new collection of 20,213 unique compounds for the second stage of 

screening. Each of the compounds in this new library was used to build 300 conformers, and ROCS was 

used to select the conformer that allowed for optimal alignment onto the ligand in the complex from the 

first round of screening. The resulting models were energy minimized in Rosetta, then used as input for 

vScreenML. 

Models from both the first and second rounds of screening were collected together, and the top-

ranked models from vScreenML were identified, and the top-scoring 32 compounds were requested for 

synthesis. Of the requested compounds, 23 were successfully synthesized and delivered for testing. 

Acetylcholinesterase inhibition assay 

Compounds were tested for inhibition of human acetylcholinesterase (AChE) using a colorimetric 

assay [106]. Acetylthiocholine is provided as substrate, which is hydrolyzed by AChE to thiocholine; the 

free sulfhydryl then reacts with Ellman’s reagent (5,5’-dithiobis-(2-nitrobenzoic acid); DTNB) to yield a 
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yellow product that we detected spectrophotometrically at 410 nm. AChE, acetylthiocholine, and DTNB 

were acquired together as the AmpliteTM Colorimetric assay kit (AAT Bioquest). Assays were carried out 

in 0.1 M sodium phosphate Buffer (pH 7.4), 1% DMSO, with 0.01% Triton. Assays were carried out in 

96-well plates in reaction volumes of 100 µL, and absorbance was monitored for 30 min. The rate of 

product formation was determined by taking the slope of the absorbance as a function of time, and 

normalized to that of DMSO alone to yield percent inhibition for each well. 

IC50 values were obtained from dose-response curves spanning inhibitor concentrations from 

10 nM to 50 µM. To determine Ki, we first determined the Km value for substrate acetylthiocholine under 

our assay conditions. This allowed the Cheng-Prusoff equation [107] to be used for obtaining Ki from 

IC50, assuming classic competitive inhibition. 

Novelty of AC6 as an AChE inhibitor 

For each of the target identification methods (Similarity Ensemble Approach (SEA) [76], 

SwissTargetPrediction [77,78], and PharmMapper [79,80]), we used the corresponding web servers to 

generate predictions for AC6. 

To find the most similar known AChE ligands, we searched ChEMBL [108] for 

acetylcholinesterase and downloaded all 2742 hits in SDF format. We then used ChemAxon’s 

Standardizer tool to remove counterions from compounds in salt form. Using RDKit [109] we generated 

Morgan fingerprints with radius of 2 for each of the ChEMBL ligands, then evaluated the Dice similarity 

of these fingerprints relative to that of AC6. We also used RDKit to evaluate the maximum common 

substructure (MCS) between AC6 and each of the ChEMBL ligands, setting ringMatchesRingOnly=True 

and completeRingsOnly=True. We ranked the resulting matches based on the number of atoms and bonds 

in the common substructure. 
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